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ABSTRACT

This paper discusses the computational techniques, the
coding methodology and the performance for the transport
Monte Carlo simulation on the vector supercomputers and on
the shared-memory parallel processors. A cascade shower
simulation code EGS4 has been taken as an example. As for
vector processing, more than 10 times of performance has
been obtained by treating the problem in a different manner
from the conventional sequential processing in such a way as
to exploit the vector architecture of current super-
computers. As for parallel processing, more than 25 times
performance has been obtained over sequential processing by
using 29 processors. This paper also discusses a new
analytical performance model for parallel processing, new
issues in parallel processing the transport Monte Carlo codes,
and comparisons between vector and parallel approaches.

1. INTRODUCTION

In recent years, the demand for solving large scale
scientific and engineering problems has grown enormously.
Since many programs for solving these problems inherently
contain a very high degree of parallelism, they can be
processed very efficiently if algorithms employed therein
expose the parallelism to the architecture of a
supercomputer.

Today's supercomputers such as CRAY X-MP,CRAY
Y-MP, CRAY 2, FUJITSU Vector Processor Systems, Hitachi
S-820 System and NEC SX System, mainly depend on the
vector processing approach to boost their performances, with
parallel processing capabilities besides vector processing in
most cases [Fernbach 1986; Hockney and Jesshop 1988;
Mendez and Orszag 1988; Uchida et al. 1990]. One example
of the vector architecture is shown in Fig. 1 [Uchida et al
1990].

Particle transport problems are widely encountered in
the neutron and radiation calculation in nuclear engineering,
phase-space simulation and cascade shower simulation in high
energy physics [Alcouffe et al. 1985; Nelson et al. 1985]. To
this date, the Monte Carlo simulations constitute the only
feasible means of solving many such problems involving
complicated interactions and arbitrary geometrical struc-
tures, although they consume vast amount of computation
time and are expensive.

While the supercomputers have successfully exhibited
very high performance for applications such as solving the
partial differential equations and signal processing, these
machines usually give only the scalar performance for the
existing Monte Carlo simulation codes. In order to fully
utilize the architecture of a supercomputer for such applica—
tions, development of suitable algorithms is very important.

In this paper, we will discuss the algorithm issues as
well as the software engineering issues involved in the
high-performance computation of the transport Monte Carlo
simulation, particularly how the parallelism in the application
programs are to be matched with a given supercomputer
architecture. We will also introduce a new law which is
suitable for the performance characterization in the
asynchronous parallel processing, as an alternative to

Amdahl's law in the synchronous parallel processing. The
techniques and issues discussed here are not solely for the
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for the Monte Carlo applications, but should be applicable to
other applications as well.
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Figure 1. An Example of Vector Architecture
(FUJITSU VP2000 Series)

2. CHARACTERISTICS OF TRANSPORT MONTE CARLO
SIMULATION CODES

2.1 Scalar Nature of Code Structure

In a typical transport Monte Carlo simulation code,
each particle is transported through the media, boundary
crossing is checked in a given geometrical structure, then it
encounters some interactions. This process is continued until
the particle escapes from the structure, or until there is no
further interest in this particle. Processing of each particle
involves many data-dependent IF tests, due to the stochastic
nature of the computational model of physical interactions,
hence leaving very little parallelism within the particle loop.

It should be noted, however, that a very high degree of
parallelism exists at the particle level, since there could be
thousands of particles to be simulated, each of which can be
treated independently of others. Due to the above-men—
tioned nature of the transport Monte Carlo simulation, it has
generally been regarded as a perfect application for the
parallel processing rather than for vector processing.

In this paper, we will take EGS4 code as an example, to

dicuss how it can be effectively vectorized as well as
parallelized.

2.2 Overview of Cascade Shower Simulation Code EGS4

EGS4 is the latest version of the EGS (Electron-Gamma
Shower) Code System which has been developed at the
Stqnford Linear Accelerator Center [Nelson et al. 1985].
This codﬁ: system is a general purpose package for the Monte
Carlo simulation of the coupled transport of electrons and
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photons on an arbitrary geometry. EGS4 is widely used in
high energy physics (simulation of electromagnetic cascade
showers) and in medical physics.

An electromagnetic cascade shower starts with one
particle with very high energy (say, above 1 Gev) which
subsequently creates many particles through radiation and
collision (Fig. 2). Particles in a shower are transported
through the media, and are eventually discarded as they lose
their energy below a prescribed threshold through collision
and radiation processes or as they escape from the
geometrical structure. The analog Monte Carlo approach has
been adopted in EGS4, and all the multiplicative processes
are simulated.

Figure 2. An Electromagnetic Cascade Shower
2.2.1 General Code Structure

The general control flow of the major subroutiqe
SHOWER is illustrated in Fig. 3. In EGS4, only one particle is

processed at a time, and there are no explicit DO loops at all
in the main body of the code.

2.2.2 Data Structure

A push-down stack is used for storing the particle data
with a pointer which points to the top of the stack. At the
start of a simulation, the stack is loaded with one incident
particle (usually an electron). Since only one particle can be
processed at a time in the scalar processing, there is no need
to develop a shower to its full extent. Instead, as the
simulation proceeds, the newly created particles are placed
in the stack, the particle with the lowest energy always being
on the top. This is equivalent to tracing the shower tree in
Fig. 2 toward the shortest branch, thus keeping the stack
depth to the minimum. The push-down stack is obvious!y the
optimal choice for scalar processing from the viewpoint of
the memory size requirement.

2.2.3 Control Scheme

The control scheme employed in EGS4 is very simple;
the particle on the top of the stack is always to be processed
in the next simulation step. When the stack is empty,
simulation is completed.

VECTOR PROCESSING OF TRANSPORT MONTE
CARLO SIMULATION CODES

3.

As the vector supercomputers become widely available,
quite a few reports have been recently made regarding the
efforts in vectorizing the transport Monte Carlo simulation
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Figure 3. General Control Flow of EGS4

codes [Bobrowicz et al. 1984; Chauvet 1984; Asai et al. 1986;
Martin and Brown 1987; Miura 1986,1987; Martin 1988}, most
of which strongly indicate that vector approach is indeed
worthwhile. Vectorization is the act of tuning an application
code to take advantage of the vector architecture [Fernbach
1987]. Vectorization may be done by the compiler alone,
with the aid of the so-called the compiler directives, with
explicit function calls to some special library, or through
code restructuring, depending on the capabilities of the
compiler as well as on the complexity of an application code.
3.1 Basic Strategy for Vector Processing

The basic strategy for vectorization is similar in all the
reported works, namely to pool particles in a common data
structure called stack or queue, and to form vectors with
particles possessing identical characteristics by gathering
them from the common data structure. In this way, many
particles can be processed in one pass in vector mode. In
order for this strategy to be successful, it is very important
to carefully design the data structure so that the vectorized
algorithms can exploit the parallelism contained in the
problem; the scalar Monte Carlo codes in many cases adopt
inherently sequential data structure (typically a last-in
first—out buffer or a push-down stack).

The efficiency of vector processing also depends on the
varieties of interaction patterns and/or complexities of
geometry, both of which strongly influence the complexity of
the codes as well as the effective vector length at each step
of simulation. In the actual vectorized codes, most of the
loops are heavily populated with the nested IF-THEN-ELSE
structures, and the compiler's capability to vectorize such
complex loops is essential in obtaining a good vector
performance. In practice, code-restructuring involves a deep
understanding of the codes and takes considerable amount of



Vectorization and Parallelization of Transport Monte Carlo Simulation Codes

effort, since the Monte Carlo codes are usually very large in
size.

The reported vector performance improvement over the
scalar ranges anywhere from 1.4 to to 85, most of them
falling between 5 and 10 [Martin 1988].

3.2 Vectorization of Cascade Shower Simulation
Code EGS4

All the works in vectorizing the transport Monte Carlo
simulation codes, as mentioned in 3.1, are concerned with the
transport of the neutral particles such as neutrons and
photons, but no research work has been reported in the area
of the charged particle transport, especially the cascade
shower simulations. This section describes the approach for
vectorizing the electromagnetic cascade shower Monte Carlo
code EGS4, and shows that the vector supercomputer with
powerful vector data handling capabilities can achieve good
vector performance.

The remainder of this section describes EGS4-V, a
vector version of the electromagnetic cascade shower Monte
Carlo code EGS4, developed by us. The vector super-
computer used for this research is FUJITSU VP200 Vector
Processor System with FORTRAN77/VP  Vectorizing
Compiler [Fernbach 1986].

As stated in 2.2, the code structure of EGS4 is highly
sequential and seems unvectorizable at first sight. The
following subsections will describe how EGS4 code has been
restructured to yield a high vector performance.

3.2.1 Independence of Particles and Degree of Parallelism

In a cascade shower simulation, once a particle is
created, it is completely independent of other existing
particles and can be processed in any order. Therefore, if the
shower is fully developed at the earliest possible stage, a
very high degree of parallelism is expected. Furthermore, if
a sufficient number of particles have been accumulated for
one type of interaction, they can be efficiently processed in
one pass in the vector mode. This observation leads to an
entirely different control scheme and data structure from
those in the original scalar code as described in 2.2.

An experimental vector version, named EGS4-V, has
been developed along this line. Neither the physics models
nor the sampling algorithms have been modified in this
effort; only the order in which the particles are to be
processed are different from the original EGS4 code.

3.2.2 Vectorization of Loops Containing IF Tests

One of the most important issues in vectorizing a
Monte Carlo simulation code is how to vectorize the DO
loops containing IF tests. In a typical Monte Carlo simulation
code, there are two types of IF structure, namely the
feed-forward type IF test and the feed-backward type IF test
[Miura 1986]. These two types of IF structure must be
treated separately in vector coding.

The first type is encountered when different
computations are to be performed depending on the result of
an IF test (Fig.4a). For example, positrons may be treated
differently from electrons, or the particles in high energy
range may be treated differently from those in low energy
range, etc. The feed-forward type IF test can usually be
vectorized by the vectorizing compilers. Fig. 4b depicts a
simple case when the mask bits are used to process the two
branches separately. Note that the feedback path has been
eliminated in the vectorized code.

The second type is usually encounterd in the rejection
sampling routines [Knuth 1981; Kalos and Whitlock 1986},
where the data dependent values of the trial (rejection)
functions are compared with the random numbers and the
trials are repeated until the sampling is accepted (Fig. 5a).
The vectorization of the feed-backward type IF requires
some semantic modification of the original scalar code. The
common approach is to define two temporary buffers, the
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Figure 4. Feed-forward Type IF Test

Accept Buffer (Buffer 2 in Fig. 5b) and the Reject Buffer
(Buffer 1 in Fig. 5b). The accepted samples are compressed
into Buffer 2, while the rejected samples are compressed into
Buffer 1 at the end of each iteration. In the subsequent
iterations, Buffer 2 becomes the input to the loop. This
process is repeated until Buffer 2 becomes empty. In the
vectorized code, the feedback path still exists, but it has
been moved to the outside of the loop, hence reducing the IF
test to the feed-forward type. As is clear in the above
description, the vector data handling capabilities such as the
vector compress/expand and the hardware gather/scatter are
essential for this operation. In many practical cases, these
two types of IF tests are used together and heavily nested to
construct a very complex IF structure.
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Figure 5. Feed-backward Type IF Test

3.2.3 Random Number Generation

Tl‘}e most commonly used technique for random number
generation in the transport Monte Carlo codes is the
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congruential method due to its simplicity [Knuth 1981; Kalos
and Wh@tlock 1986]. In EGS4 code, for example, the following
multiplicative congruential method is used:

Loop over i
Iseed = A * Iseed modulo 232
(random seed in integer format)
Ran =Iseed * 2™
(floating-point random number),
where A = 663608941.

) Although .this algorithm may seem recursive, it can be
easily vectorized if the multiplicative coefficients
(A, A2 A3, ... AN) modulo( 232 ) are pre-calculated and

stored in an array. At the time of random number
generation, each element of this array (up to the desired
number of random numbers not exceeding N) is multiplied by
the current value of Iseed and the resulting integer random
numbers are normalized to obtain the floating-point random
numbers, all in the vector mode. Only the last integer
random number needs to be stored as the seed for future use.
Similar technique is also applicable to the linear congruential
method [Matsuura et al. 1985].

While the vectorized random number generator
generates the identical random number sequence as the
original scalar algorithm, the vectorized Monte Carlo code
and the scalar Monte Carlo code do not necessarily produce
the identical simulation results since the order in which the
random numbers are used may be different in two cases.

3.2.4 Vector Algorithms for Scoring Computations

In the Monte Carlo simulations, the simulation results
are wusually represented by accumulating the physical
quantities in the regions of interest or, equivalently, in the
form of the histograms. Typical examples are the energy
deposition in the detectors, or the angular distribution of the
radiation. This type of computation may be generically
called scoring. A simple model of the scoring computation
may be depicted as follows:

Loop over i
k = Ireg(i)
Esum(k) = Esum(k) + Edep(i),

where i is the particle index (1 < i < N), Edep(i) is the energy
to be deposited by the i-th particle, k = Ireg(i) is the index of
the region where the i-th particle is located (1 < k <
Kmax), and Esum(k) is the accumulated energy in the k-th
region.

Scoring computation is inherently sequential and not
vectorizable in its present form, since more than one particle
may deposit energy in the same region (to be called
recursion). If the CPU time for the scoring computation is
insignificant, it may be left scalar. If the CPU time is
significant, on the other hand, there are several vectorizable
algorithms which can avoid the recursion. Some of such
algorithms are briefly described in the following.

Algorithm 1: Running Sum Method

(1) Sort k = Ireg(i) in the ascending order.

(2) Rearrange Edep(i) accordingly to obtain Edep(i').
(3) Count the runs for all distinguishable k's in (1)

(say, R(k").

(4) For each k', take the summation of R(k') elements
of Edep(i') and store it in Esum(k"').

Algorithm 2: Sort and Stride Method [Parady 1988]

(1) Sort k = Ireg(i) in the ascending order.

(2) Rearrange Edep(i) accordingly to obtain Edep(i').

(3) Find the maximum run of k in (1) (say, Rmax).

(4)  Accumulate Edep(i') in the corresponding Esum
with the stride of Rmax.

Algorithm 3: Two-dimensional Work Buffer Method

[Orii 1983]

(1) Define and clear a two-dimensional work buffer

Wbuf(Kmax, L)-
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(2)  Accumulate Edep(i) in Wbuf(Ireg(i),i), L
particles at a time.
(3)  After all Edep(i)'s have been accumulated in

Wbuf, accumulate W buf(k,*) in Esum(k) for

each k.

Each algorithm has its own merits and demerits, and
should be selectively used, depending on the N, Kmax and
available work buffer area in the memory. Typical vector vs.
scalar speedup factor is from 5 to 10, if an appropriate
vector algorithm is used.

3.3 Global Code Structure of EGS4-V

Fig. 6 illustrates the general control flow structure of
the ‘subroutine SHOWER, the main part of EGS4-V. It
consists of the dataflow control section and a multi-way
jump to the slave subroutines. The dataflow control section
monitors the particle data at each simulation step and
Initiates the execution of the next subroutine. The slave
subroutines include the particle transport, the interactions
and the garbage collections. Most of the slave subroutines
are the vectorized version of the original subroutines, but
some are newly defined for this vector version.

EVENTS WITH DISCARDED PARTICLES

CHECK
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QUEUE

EVENTS W/O DISCARDED PARTICLES
SELECT EVENT
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PARTICLES WITH HIGHEST
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Figure 6. General Control Flow of EGS4-V
3.3.1 Data Structure

The EGS4-V uses the queues instead of the push-down
stack in order to fully expose the parallelism in the particle
data. Here, a queue means a collection of particles which
are ready for the next step of computations. Queues are
defined in the main memory as one-dimensional arrays, but
the order of the elements is unimportant for this application.
It is obvious that a shower can be most quickly developed by
traversing the shower tree in Fig. 2 in the horizontal
direction; the newly created particles are immediately stored
in the queue.

In the current implementation of EGS4-V, there are
two separate queues in EGS4-V, namely, E-Queue for
electrons/positrons, and P-Queue for photons. This is not the
only choice; one common queue may be used for all types of
particles. The event status ID is also assigned to each
particle in the queue besides the physical variables. The said
ID can take one of the 14 values corresponding to the 14
slave subroutines. 14 event status counters are also provided,
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each keeping track of the number of particles in the
corresponding status.

3.3.2 Control Scheme

The dataflow control section in subroutine SHOWER
serves as a global event monitor by constantly scanning the
event status counters, so that the subroutine with the highest
particle count is always to be executed in the next simulation
step for the maximum vector efficiency.

3.3.3 Garbage Collection

In any vectorized shower simulation code, many
particles are created and/or discarded in each simulation
step, and the queue can easily overflow. Therefore, it is
necessary to reclaim the unused portion of the queues. This
process is commonly called garbage collection. There are
two methods for implementing the garbage collection. The
first method is to compress the queue whenever the number
of discarded particles in the queue exceeds a certain
threshold. In this method, the newly created particles can be
stored in the contiguous locations of the queue. The second
method is to use a so-called source buffer which holds indices
pointing to all the available locations in the queue. When
particles are discarded, their indices are added to the source

buffer, while when particles are newly created, their
locations are provided from the source buffer. In this
method, the queue 1is always accessed via indirect
addressing.

In the current implementation of EGS4-V, the first
method has been adopted for ease of debugging. The
dataflow control section checks the amount of garbage after
executing the subroutines which involve discarded particles.

3.4 Timing Measurement of a Sample Problem with EGS4-V

A sample problem has been run on FUJITSU VP200
System to measure the vector performance of EGS4-V
against the original scalar EGS4. In this problem, 1 Gev
electrons are injected into a lead block of infinite size, so
that no boundary crossing takes place. The number of the
incident electrons has been varied from 10 to 200.

The results of the timing measurement are shown in
Fig. 7. Since the publication of the early results [Miura
1987], the code has been improved, and an asymptotic vector
vs. scalar performance ratio of 11.6 has been obtained for
this measurement.

CPU
Seconds
8
Scalar

6
4
2 Vector

50 100 150 200

Number of Incident Particles
Figure 7. Timing Measurement of EGS4-V
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Fig. 8 and Fig. 9 depict dynamic behaviors of the active
vector length. Fig. 8 shows a case of 100 incident electrons
with 1 Gev energy each, while Fig. 9 shows a case of one
incident electron with 100 Gev energy. The vector lengths
have been averaged over 10 simulation steps in these graphs.
In both cases the vector length varies considerably in spite of
the above-mentioned smoothing process. Table 1 summarizes
the results of two cases.

Vector
Length
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200 '\Mh”\\.a_,“

1000 1500

500 2000 2500
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Figure 8. Typical Dynamic Behavior of Vector Length
(1Gev, 100 electrons)
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Length
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1000 2000 4000 5000

Simulation Steps

73000

Figure 9. Typical Dynamic Behavior of Vector Length
(100Gev, 1 electron)

Table 1. Simulation Results in Two Cases

Incident Incident CPU  Simulation Peak Average
Energy Particles Time Steps Vector Vector
(Gev) (Sec.) Length Length

1 100 2.2105 2720 2113 277.8
100 1 2.6552 5298 1245 148.8

It should be noted that the total energy involved in
these two simulations is the same, and the total number of
operations should be nearly equal. In vector processing,
however, the total CPU time is shorter when there are more
incident particles, which is due to longer vector length.
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4. PARALLEL PROCESSING OF TRANSPORT MONTE
CARLO SIMULATION CODES
4.1 Issues in Parallelizing Transport Monte Carlo Codes

In this paper, we will focus our discussions on the
parallel processing based on the shared-memory architec-
ture. Although the parallelization may seem conceptually
more natural and straightforward than the vectorization for
the transport Monte Carlo simulations, there are new issues
in parallel programming at the same time. These issues are
not solely confined to the Monte Carlo simulation, but of a
more general nature. Some of them are addressed in the
following.

4.1.1 Identifying Global and Private Variables

In a shared-memory architecture, all the variables in
the COMMON blocks must be carefully examined whether
they should be shared among the processors (global variables),
or privately copied for each processor (private variables). In
the scalar codes, each COMMON block may contain both
types of variables, in which case it has to be split into two
blocks for parallelization. This is a very time-consuming
task, if done manually. Definitely, good software tools are
needed in this area. Another issue to be noted is that the
notion of the COMMON block for parallel processing is not
well established, and some systems do not support both types
of COMMON blocks, hence the portability problem.

4.1.2 Machine-dependent Library Functions of Synchronization
Primitives for Parallel Programming

Even within the category of the parallel processing
systems with the shared-memory, each system has its own
library functions, compiler directives or FORTRAN exten-
sions to describe and/or control parallel processing. There is
no standard in this area. This, again makes the porting of the
parallel codes very difficult.

4.1.3 Parallel Random Number Generation

Unless great care is taken that each particle uses the
same sequence of random numbers in the parallel code as in
the scalar code, results are not guaranteed to be the same.
Worse yet, it is quite possible to construct a parallel code
which does not produce the same results from run to run due
to the effect of race conditions in obtaining random
numbers. One practical solution to this problem is the
concept called Lehmer-tree, based on two sets of the linear
congruential random number generators [Frederickson et al.
1984]). By adopting this concept and by assigning a random
seed to each particle, the same simulation results can be
obtained regardless of the order in which the particles are
processed and with any number of processors. This is a new
area, and further research will be needed to establish
algorithms for generating good parallel random numbers.

4.2 Two Approaches for Parallelizing EGS4 Code

In the remainder of this section, we describe our
experiences in parallelizing EGS4 on Sequent B21000 Parallel
Processing System [Osterhaug 1987]. There are two basic
approaches in parallelizing the EGS4 code: one is to
parallelize the original scalar code in such a way as to
process many independent particles in parallel (to be called
fine—grain approach), and the other approach is to start with
the vectorized version and either to process each loop in
parallel (so called microtasking), or to process the indepen-
dently executable vectorized subroutines in parallel (so called
macrotasking, or large—grain approach).

4.3 Fine-grain Parallel Programming

In this approach, each processor fetches a particle from

‘a shared stack and executes the scalar simulation code. The
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synchronization is done by locking and unlocking the stack
pointer to the shared particle stack, thus allowing dynamic
load balancing. We have developed the fine-grain parallel
version of EGS4 called EGS4-P [Miura and Babb 1988]. The
Lehmer-tree technique [Frederickson et al. 1984] was
incorporated in this code. A sample problem was run with
one 50 Gev electron injected into a lead block of infinite
size, and a parallel speedup factor of more than 25 was
obtained with 29 Sequent B21000 processors. (Fig. 10)

Sp
30
25
20
Actual

15 Speed-up
10
5

5 10 15 20 25 30
N

Figure 10. Speedup of EGS4-P on Sequent B21000
System

The sub-linear characteristics of the speedup curve as
indicated in Fig. 10 can be ascribed to the following factors:
(1) Initiation of the parallel tasks

When a new task is spawned, all the private common

blocks have to be replicated. This task replication time

is proportional to the number of tasks, while the total
execution time itself is almost inversely proportional to

the number of the tasks. Therefore, this overhead
becomes more significant as the number of the
processors increases, unless the problem size is

sufficiently large.

(2) Asymmetric development of a cascade shower
The development of a shower is asymmetric in the
initial stage, so that the degree of parallelism is low
until a sufficiently large number of particles have been
generated.

(3) Critical section of the code
There are inherently sequential operations in the child
tasks due to the exclusive accesses to the particle stack
(the critical section).

(4) Physical resource contentions
In a shared-memory architecture, the common physical
resources such as the memory bus and the memory
banks also limit accesses by only one processor at a
time. The amount of the overhead due to this factor
heavily depends on the system parameters such as the
cache size, the memory bus throughput, the memory
configuration etc., and are not under the user's control.

While the first two factors may become less significant
as the size of a shower increases, the third and the fourth
factors always take a certain percentage of the CPU time,
regardless the size of a shower. In our numerical
experiments on the Sequent Parallel Processing System, the
fraction of the CPU time spent in the critical section is
estimated to be somewhere between 1 and 2 percent. The
effects of the physical resource contentions are not included
in this estimate. We further analyze the effect of the
critical section to the speedup factor in Section 5.



Vectorization and Parallelization of Transport Monte Carlo Simulation Codes

4.4 Microtasking and Large-grain Multitasking Approaches

We have investigated the possibilities of parallel pro-
cessing the vectorized version of the EGS4 Monte Carlo
code. So far, our experiments revealed that the microtasking
approach did not turn out to be attractive due to the
complexity of the DO loop structure and a lack of a software
tool at the time of this study. On the other hand, the
large-grain approach is more promising since the code
structure of the vectorized version of the EGS4 already
incorporates independently executable slave subroutines.
With the advent of the vector multiprocessor systems, this
approach seems to be the right one, and deserves further
research. We are now in the process of implementing a
large-grain vector-parallel version of EGS4 code based on
the Large Grain Data Flow concept [Babb and DiNucci 1989].

5.  ANALYTICAL PERFORMANCE MODEL
FINE-GRAIN PARALLEL MONTE CARLO CODES

FOR

In this section, we introduce a simple analytical model
which is suitable for interpreting the sub-linear charac-
teristics of the speed-up factor which was observed in the
fine-grain parallel version of EGS4 code.

5.1 Synchronous Model vs Asynchronous Model for Parallel
Processing

It should be emphasized that the commonly known
Amdahl's law is applicable only to the cases when the
parallelizable part of the code is processed simultaneouly by
all the processors before entering the sequential part of the
code (Barrier Model). Throughout this paper, we will call this
model synchronous parallel processing. Vector processing can
be regarded as a special case of the synchronous parallel
processing.

The Amdahl's law can be stated as follows [Amdahl

1988]:

sp=l/(l—a+q/N)

where S is the speedup factor, a is the fraction of the
CPU time to be spent in the parallelizable part of the code,
and N is the number of the processors. Fig. 11 illustrates
typical speedup as a function of a for various values of N
for the synchronous parallel processing while Fig. 12
illustrates the speedup as a function of N for various values
of a.

Sp
30 N=30
25 N=25
20 N=20
15 N=15
10 N=10
5 =5
0.2 0.4 0.6 0.8 1 ¢

Figure 11. Speedup Factor for Synchronous Model of
Parallel Processing (Sp Vs a)
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Figure 12. Speedup Factor for Synchronous Model of
Parallel Processing (Sp vs N)

5.2 Analytical Speedup Factor for Asynchronous Model of
Parallel Processing

In the fine-grain parallel version of the EGS4 code, on
the other hand, processors can run independently of others as
long as they do not access the particle stack. The access to
the particle stack is exclusive, constituting a critical section,
but only those processors which access this critical section
while it is busy are kept waiting, not all the processors are
kept waiting (Critical Section Model). In this sense, the
parallel processing in this case may be dubbed asynchronous
parallel processing.

The analytical formula for the speedup curve which is
discussed here is based on the machine servicing model or
quasi-random input model in the Queueing Theory [Feller
1968; Kobayashi 1978], where the parallelizable part of the
code (to be called parallel section hereafter) corresponds to
N sources, and the sequential part of the code (to be called
critical section hereafter) corresponds to a single server. For
the sake of the simplicity of the discussion, we assume that N
sources and one server have exponential service time
distributions with the parameters A and p, respectively.
Due to the stochastic nature of the execution time of the
parallel and critical sections of the code, the parallelization
ratio « should be interpreted as the statistical average, and
is related to X and u as follows:

a=p/(A+p)

Under the above assumptions, the analytical form of
the speedup factor for the asynchronous model can be derived
by utilizing the readily available results from the
corresponding queueing model.

Since a detailed derivation of the analytical formula is
given in [Miura 1990], only the results are presented here.

Sp =(1-y Y/(1-a) (0 <a< 1)
=1 (xa=0)
=N  (a=1)

Wl!ere I, is the probability that no processor is in
the critical section, which is a function of &« and N as
defined in the following:

My = 1/(1+Np+N(N-1)p2+....+NIpN ),
and

p=Mu=(l-a)/a

Fig. 13 illustrates the speedup (Sp) as a function of
para}]ehzation ratio (o) for various values of N, while Fig.
14 illustrates the speedup as a function of the number of
processors (N) for various values of a.
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Figure 13. Speedup Factor for Asynchronous Model
of Parallel Processing (Sp Vs a)
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Figure 14. Speedup Factor for Asynchronous Model
of Parallel Processing (Sp vs N)

5.3 Discussions

By comparing Fig. 11 with Fig. 13, or Fig. 12 with Fjg.
14, several interesting observations can be made regarding

the similarities and the dissimilarities between the

synchronous and the asynchronous models of parallel

processing.

(1) Inboth cases, speedup factor is N when a = 1.

(2) For a given N and 0 < a < 1, the asynchronous
speedup factor is always greater than the synchronous
one, and both are less than 1/(1-a).

(3) As a decreases from 1, the asynchronous speedup
factor initially gives a slow decay while the
synchronous speedup factor gives a very sharp decay.

(4) For a given a and with an increasing N, the
asynchronous speedup factor saturates at the
asymptotic value 1/(1-a) faster than the synchronous
one.

(5) As « approaches 0, the asynchronous speedup factor

rapidly converges to the synchronous one, both yielding
]ata=0.

While the asynchronous speedup factor may depend on
the actual probability distribution of the CPU time spent the
parallel and critical sections, the qualitative results as
described above are believed to hold in general. With regard
to our experimental data for the EGS4 code, our analytical
model gives « .97 as the best fit. Since the critical
section alone takes from 1 to 2 percent of the total CPU
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time, the bus contention and the memory bank conflict are

supgolsed to take the rest of the 3 percent according to this
model.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This paper discussed vectorization and parallelization
techniques for the transport Monte Carlo simulations. The
fundamental differences between scalar coding and vector
coding, and also between the scalar coding and parallel
coding have been addressed, based on our own experiences. It
has been pointed out that the transport Monte Carlo codes
inherently contain a very high degree of parallelism, and that
they can be either vectorized or parallelized efficiently.

As for the vectorization of the transport Monte Carlo
codes, typical speedup factors of 5-10 have been reported in
the literature. It should also be noted that parallelism at the
higher level becomes visible through the vectorization pro-
cess, which is quite suitable for vector-parallel processing.
The vectorization techniques described in this paper are not
solely confined to the transport Monte Carlo simulations, but
should be applicable to other seemingly unvectorizable
problems. The vector data handling capabilities which are
accessible from FORTRAN language, are the key factors for
implementing vector codes.

Although parallelization of the Monte Carlo codes may
be more straight-forward than vectorization, a lot more
research and development should be made in the
programming environment in general, especially in compiler
technology, in debugging tools, and in parallel software
development tools which can provide useful information for
efficient parallel programming. The necessity for a global
scanning capability on the part of the compiler should be
emphasized as the architectural trend moves toward various
forms of parallel architecture, where the detection of
so—called large granularity parallelism is required.
Development of a fully automatic compiler may become
impractical for such systems. Rather, user—friendly
interactive software tools seem to be the right approach
[Pacific Sierra Research Corporation 1989; Klappholtz and
Kong 1989].

We have also introduced an analytical model of the
asynchronous parallel processing for the cases where the
commonly known Amdahl's law is not applicable. This model
is suitable, for example, for describing the performance
characteristics of the fine-grain parallel version of the EGS4
Monte Carlo code. With the advent of the asynchronous
parallel algorithms in various application areas, the
analytical performance models along the line of our approach
should be examined for other cases.

Since supercomputing is an application-driven area,
very close interactions between researchers in various
applications and supercomputer manufacturers will be crucial
in order to cope with the ever-increasing demands for large
scale scientific and engineering computations.
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