Proceeding:s of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

IMPLEMENTATION ISSUES USING SIMULATION FOR
REAL-TIME SCHEDULING, CONTROL, AND MONITORING

Catherine M. Harmonosky

Department of Industrial and Management Systems Engineering
207 Hammond Building
The Pennsylvania State University
University Park, Pennsylvania 16802

ABSTRACT

As Computer Integrated Manufacturing (CIM) Systems
become more prevalent, more emphasis is being placed upon
effective production control methods to insure the system’s op-
erational success. Real-time scheduling and control decision-
making aids that provide insight into the long-term effect upon
system performance from possible alternate decisions made in
real-time would provide a powerful tool for the scheduler.
Although using simulation as a real-time decision-making tool in
a CIM System seems conceptually straightforward, there remain
many implementation issues that must be solved prior to a suc-
cessful actual application in a physical system. This paper dis-
cusses some of the most significant implementation issues, based
upon personal experience trying to apply simulation as a real-
time decision-making tool in a laboratory setting as well as
interchanges with other industrial experts working in this area.

1. INTRODUCTION

In the manufacturing environment, the terms Computer
Integrated Manufacturing (CIM) Systems and Flexible Manufac-
turing Systems (FMS) have become more commonplace over the
last ten to fifteen years. More people are realizing that the
success of Computer Integrated Manufacturing (CIM) Systems
depends upon effective production scheduling and control, often
accomplished through real-time decisions made on the shop
floor. The flexibility often heralded as a major advantage of
these types of systems [Roch 1986] actually complicates the
scheduling and control task a) by increasing the number of
routes needed for material handling, b) by making tracking of
jobs more difficult, or c¢) by increasing the demand upon the
scheduler (human or automated) for evaluation of the environ-
ment and subsequent real-time decision making [Harmonosky
1990].

I])ue to the dynamic nature of manufacturing processes,
intelligent real-time scheduling has always been a desirable, but
elusive, goal. The premise is that real-time adjustment of
scheduling or sequencing rules, e.g. SPT, EDD, FCFS, may lead
to better long-term system performance. Ideally, a system
scheduling or control decision made in real-time should have a
positive impact upon long-term system performance. Tools are
needed to aid in this decision assessment, which have a capability
to look ahead into the future system conditions. With increased
shop floor level computing power and more empbhasis placed on
networked computer communications, there has been renewed
industrial interest and increased academic research in the real-
time scheduling area.

This interest leads to the natural attempted application of
simulation techniques, proven to assist the manufacturing
community in initial system design evaluation, to the problem of
real-time control [Harmonosky and Robohn 1990; Grant, et al.
1988; Erickson et al. 1987; Sadowski 1985]. More specifically, it
is logical to try and use discrete event simulation languages,
which have been specially designed for application in environ-
ments such as manufacturing and are accepted by the manufac-
turing community. Although this may seem to be an easy match
conceptually, an attempt at actual application to a physical
system highlights many important application issues and impedi-

595

ments that must be discussed, studied, and overcome before
simulation could be successfully implemented as a real-time
scheduling tool.

This paper discusses these operational issues and possible
solutions to some problems. The information is based upon
experience working with an existing discrete event simulation
language being applied as a real-time decision tool in a laborato-
ry setting as well as interchanges with other industrial experts
working in this area.

2. PROPOSED STRUCTURE FOR REAL-TIME CONTROL

The scenario for using simulation as a real-time decision
making tool is illustrated in Figure 1. A computer simulation of
a CIM system is linked with the actual physical system. Once
the link between the simulation and the system is established, the
simulation logic will be controlled by the actual system communi-
cation signals, dictating start and stop of robot movement,
equipment processing, and cart movement. The simulation will
always reflect the current system status, and it will be in effect
monitoring the system. Then, when a system production control
decision is needed, the starting condition for the simulation is the
actual system status. For each different control decision option,
a simulation run may be executed for some period of time. The
future impact upon the system due to different decisions may be
evaluated by analyzing simulation statistical results [Harmonosky
and Barrick 1988]. In this mode, the simulation model is used
as a real-time production control tool with look-ahead system
assessment capabilities.

System
Control Computer

System Status

Specify Options |
option 2]... option n

option |

Simulate Options
option | Joption Zl...option n

Update Simulation
w/ Current System
Status

Analyze & Select
Option

Selected Option

Figure 1. Scenario for Interfacing Simulation with Physical
System for Real-time Control

C.M. Harmonosky

This scenario gives two basic modes of operation for the
simulation model. First, a monitoring mode is used when the
model is linked directly to the physical system constantly
receiving status information. In this mode, delays for part
processing and movement are dictated by information received
from the system indicating an end of activity event (i.e. the
delay is not a value selected from a probability distribution).
When in the monitoring mode, graphical animation capabilities
of a simulation language can be invaluable, allowing the user to
effectively "view" the physical system status without being on the
factory floor.

Second, a decision-making mode is used when the model
evaluates different control decision options, being utilized in a
more traditional simulation role. One issue becomes how long
to make the look-ahead planning horizon, which has a direct
effect on the execution time of the model [Wu and Wysk 1989].
The more time each evaluative simulation runs, the longer it will
take to make scheduling and control decisions. This affects the
degree to which truly "real-time" control of a system is main-
tained. The tradeoff that must be considered is having the look-
ahead horizon long enough to produce valid statistics on
performance measures capturing the effects of some minimum
number of observations versus having a rapid control decision
keeping the spirit of a real-time response [Harmonosky and
Robohn 1990; Davis and Jones 1988).

3. MAJOR ISSUES/CONSIDERATIONS

This section addresses some specific operational issues
assuming the structure scenario discussed in Section 2 and
application of a discrete event simulation language.

3.1 Communications to a Physical System

The mechanism for retrieving system status data from the
physical system for use in the simulation poses several problems.
First, the base language of the simulation language may not be
the language used by the plant level control software. Therefore,
any information passed from the system must be preprocessed
by a program written in a general purpose language to put
system data into a format the simulation will understand.
Second, in most cases, this is not simply passing the same
message or numerical value by translation from the physical
system to the simulation. The form of the message or value
needed by the simulation may be completely different. For
example, the physical system may send simple flags between
personal computers (pc’s) that control machines and higher level
pc’s; however, in order for the simulation to process correctly, a
different unique value may be needed or a particular variable in
the simulation may have to be set to some specific value based
on the physical system flag. The necessary mapping between

system flags and model data requirements may not be an easy
task depending on the complexity apd size of the system and the
number of messages passed per minute.)

Another interfacing issue concerns what detail of data is
necessary for the simulation to properly emula}e and monitor the
system and where to get the data in the 'thSIC?]. system. If the
computer communication hierarchy is facilitated through
hardwiring links to one central controlling computer, it may be
possible to access all data from monitoring this single central
computer. If a network is used to accomplish the communica-
tion hierarchy, it may be possible to access all data from
monitoring the network by "camping" the simulation on the line.

However, in either case, the central control computer or the
network may not be receiving (or have access to) all the
messages passed in the system due to the division of tasks
associated with hierarchical control schemes. Therefore, a
simulation that needs system status information at a very detailed
machine operational level may not be able to attain this informa-
tion from the central controller or the network. For example,
Figure 2 shows a possible hierarchical communication scheme
with the names associated with the pc’s indicating the piece of
equipment it controls. Note that the Work Station A computer
is responsible for all part movement within the station, including
transfers between the robot and machines and buffer. It does
not transmit this information over the network, because the
central control computer does not need this detailed information
of intra-station activity. On the other hand, a simulation that is
emulating and monitoring the physical system finds the Work
Station A detailed information necessary to run.

Thus, the interfacing issue involves language compatibilities,
types of data necessary, and from where to access the data in the
communication hierarchy. One other point is worth mentioning
regards use of networks. It may seem that networks make the
interfacing problem much easier; however, a language compati-
bility issue still exists. Also, the rate at which a network transfers
information will have an impact on how "up-to-date" the
simulation monitor will be at any point in time.

3.2 Saving Simulation Information at Decision Points

When using simulation as a means of real-time control,
monitoring the system with the simulation (as suggested in
Section 2) provides a means of always maintaining the current
system status. This way when a real-time production control
decision is needed, the system status is available and no time
delay is associated with obtaining that information. Each
different scheduling/control alternative should be evaluated using
this current system status as a starting point. However, conflicts
may be encountered when executing different evaluative
simulation model runs with even a simple type of scheduling
alternative.

Central
Computer

Control

Work Station A

| 1

Work Station B Material Handling
Computer Computer System Computer
[
[] ~
] Material Material
Machine Machine Handling Machine Handling
| 2 Robot Computer Robot
Computer Computer Computer Computer

Figure 2. Hierarchical Computer Communication Scheme Example

596

Implementation Issues Using Simulation for Real-Time Scheduling, Control, and Monitoring

This issue is best discussed with an example. Consider
applying different queue disciplines in a model to reflect the
execution of different sequencing rules in the physical system.
The system may be running for 100 minutes in a first come first
served (FCFS) sequencing mode, when some kind of interruption
occurs, such as a machine breakdown or the introduction of a
new part with abnormally high processing priority. The statistical
information for performance measures during these 100 minutes
of FCFS operation as well as the exact system status at the time
of interruption must somehow be saved into a status file that the
simulation package can read as initialization information to
evaluate different decision alternatives. Now in the decision-
making mode, the simulation of each sequencing rule uses a
model of the physical system with a specific queue priority, such
as shortest processing time (SPT), earliest due date (EDD), etc.,
using the first 100 minutes of FCFS data as the initialization
information.

In many simulation languages, a capability exists to save a
particular system state and then recall that state at some later
time. It may be reasonable to assume that only statistical
information from the first 100 minutes of operation and system
status data (e.g. entities in queues, in process, etc.) would be
recalled. However, if the queue priority rules are pieces of data
automatically saved by the simulation when a system snapshot is
taken, queue priorities will remain the same as those first 100
minutes, effectively inhibiting the evaluation of more than one
sequencing rule. To address this problem, it may be necessary
to write extensive user-code that saves selective data referring to
system status and write user-code to reinitialize the simulation to
evaluate another possible decision, bypassing the language-
provided snapshot saving functions. This may not be a trivial
user-code to write, depending upon accessibility into the
simulation language’s structure (e.g. possibly needing to modify
variables that are in proprietary code).

3.3 A priori Decision Alternative Knowledge

As the previous section 3.2 suggested, the types of alterna-
tive production control decisions that someone may wish to
evaluate may create specific evaluation problems. Also, the
simulation of different alternatives may require modification of
the existing model that would necessitate recompiling the model
before a new run could be made (e.g. new queue priority,
alternative job route). When trying to implement a real-time
decision making tool, the user cannot afford to waste time
making model modifications and recompiling code at each
decision point, which would effectively negate the "real-time"
nature of the tool.

To circumvent this problem, an individual simulation model
could be constructed for each type of alternative decisions the
user expects to evaluate. The individual models would typically
be extensions and/or slight modifications of the base model, but
would exist in a compiled state and could simply be selected and
initialized with the appropriate information. This is much faster
than constantly generating each model desired. Further, when
considering eventual application of the tool in an industrial
setting, the scheduler who may be extensively using the tool may
not be an expert at simulation model generation, necessitating
the availability of existing compiled models.

Then, one necessary element for the rapid response needed
for real-time implementation is some a priori knowledge of the
alternative scheduling/control decisions that are to be simulated.

Using the same example as the previous section, if the base
model is the physical system operating under a FCFS scheduling
rule and candidate rules include SPT and EDD, those extended
models corresponding to the SPT and EDD rules should already
exist when the simulation is ready for decision-making mode.

3.4 Specialized Model Structure

Another issue of real-time simulation implementation is the
model structure. In order to facilitate easier interface with the
physical system, the model structure may have to take a form
that is different from the traditional perspective of workpieces
moving between operations which drives the system. Because

597

CIM systems are driven by messages throughout the computer
communication hierarchy, it may be appropriate to focus the
simulation model upon signaling logic among the controlling
computers. The idea is to have the simulation emulate commu-
nication signals which trigger activities (e.g. cutting on a lathe,
retrieving raw material). The logic used in the actual system
communication hierarchy to trigger system activities is the same
logic used to control the simulation [Harmonosky 1990].

With this model structure, communication requests for
service at a given work station are placed in a queue, sending a
signal to the model section emulating that work station, and the
request remains in that queue until another communication
signal is sent indicating work station availability. This may be
accomplished through a series of detached queues. Therefore,
the job part entity does not seize any resources--rather, the part
is delayed in various queues representing different system
activities, such as communication delays and processing or
handling delays. Because the simulation structure emulates the
computer communication hierarchy, an interfacing framework
exists to take the triggering signals from the physical system
instead of from within the simulation [Harmonosky and Barrick
1988]. This facilitates the continuous monitoring allowing the
simulation to always reflect the current system status.

Another advantage to this structure is the allowance of
conditional delay times for entities in a processing delay %c.g.
machining operation), necessary in the real-time mode. In a
normal simulation the processing delays are dictated by some
time sampled from a distribution. When linked to a physical
system, the delay is not a fixed number but rather an interval

that is ended by some triggering signal. The structure described
here supports this type of delay.

3.5 The Decision-Making Mode

Once the decision-making mode has been entered, imple-
mentation issues include the stochastic or deterministic nature of
the look-ahead and evaluation of the results. Typically in
simulation studies, future random events, such as machine
breakdowns or unexpectedly long processing times, are included
in the analysis to get a better estimate of ’steady-state’ expected
performance. However, it is conceivable that a look-ahead
window length may be the next 8 hours or 24 hours, due to the
need to get quick answers and run several alternatives. The
question must be addressed of what types of random events are
reasonable to include during these types of run lengths and/or
what would be the inaccuracies introduced with assuming more
deterministic behavior.

When analyzing alternatives in the initial implementation of
a simulation real-time control system, it is probable that alterna-
tive decisions for testing will come from human scheduling
expertise dictating 3 or 4 alternatives. As these alternatives are
simulated in the Jook-ahead mode, the output statistics will be
available for analysis bye the scheduler. The types of data
comparisons and the ultimate selection of an alternative to
implement will be the scheduler’s task based on the output
statistics available from the look-ahead simulation of each
alternative. The analysis and evaluation of results will undoubt-
edly be system dependent considering the system performance
measure and any secondary criteria. However, as the real-time
control system is used, each time a decision is made, information
regarding the cause (system conditions) and the effect (specific
action and result) could be recorded. After enough cause-effect
relationships have been noted, the information may be arranged
in an expert system, automating the alternatives analysis. Then,
issues involving experimental design and automating the results
analysis must be resolved.

3.6 Recovery from Decisions

The concept of interrupting the real-time monitoring activity
of the simulation and using it in its more traditional role as a
look-ahead evaluative tool presents a recovery problem.
Although the evaluation of alternative scheduling rules should
occur rapidly to keep within the "real-time" framework, the
physical system will continue operating while the simulation is in_

C.M. Harmonosky

the decision-making mode. Some mechanism must keep track
of shop-floor activities during that period [Erickson et al. 1987],
then the simulation must again be reinitialized to current system
status when returned to the monitoring mode.

One key stumbling block to this recovery will be in material
handling. Material handling devices are usually in continuous
motion between points and keeping accurate account of part
locations in transit could pose a great challenge. One possible
solution is to copy the simulation at the time a decision is
needed to be used in the decision-making mode while a monitor-
ing mode simulation continues running in parallel. This would
require some type of multi-tasking environment (which may not
be feasible) and depends upon the simulation language’s
capability to support this copying concept. Another possible
solution is to continue receiving signals from the physical system
and store them in a file. When the simulation returns to the
monitoring mode, it would process all the signals to again reflect
current system status. The success of this technique is a function
of the amount of time spent in the decision-making mode and
the rate of signalling in the physical system. This may be
reasonable if the time spent in decision-making mode is small,
processing times are on the order of several minutes, and the
system is not very congested (i.e. not many concurrent entities
which are not idle in queues). However, if it takes too long for
the simulation to process all the stored signals, the system may
be again ready for a decision before the simulation 1s ready to
assist.

4. SIMULATION LANGUAGE VS. GENERAL-PURPOSE
LANGUAGE

Up to this point, a discrete-event simulation language (such
as SIMAN, SLAM II, or GPSS) has formed the foundation for
discussion. However, it may be possible to use a general-
purpose programming language such as FORTRAN or C to
write all the necessary simulation and control software. This
section addresses some advantages and disadvantages associated
with each option.

Simulation languages developed for use in manufacturing
environments may be very suitable for modeling a CIM-type
system, but they require a user knowledgeable in the specific
simulation language used. Most industrial engineers are familiar
with some type of simulation language, but, people from other
disciplines that may be involved in a real-time control project
(e.g. mechanical and electrical engineers and computer scientists)
are more likely to have some knowledge of a general purpose
language. In addition, most simulation languages do not have the
capability to directly communicate with external programs, due
to their specialized structure. This necessitates the use of a
general purpose language to some extent. General purpose
languages may be used to construct tailor-made simulation
applications from ground zero, with extensive interfacing
capabilities.

However, a significant advantage of using a simulation
language is that queue structures, file manipulation, event
calendar maintenance, data saving, and statistical calculation
capabilities are included in simulation languages. All these basic
capabilities would have to be manually coded using a general-
purpose language. Many simulation languages have built-in
animation constructs that are crucial to the monitoring task.
These could be done in general-purpose programming languages,
Epththe overhead involved in coding animation routines is rather

igh.

5. CONCLUDING REMARKS

Although using simulation as a real-time decision-making
tool in a CIM environment seems very natural, there is still a
significant gap between conceptual design and actual operational
application to a physical system. Some of the most significant
issues discussed in this paper include modeling structure,
interfacing to the physical system, saving system status for
evaluating alternatives, and recovery at decision points. Howev-
er, with more researchers and practitioners becoming actively

involved in resolving these difficulties, future application of this

598

technique appears very promising.
ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. DDM-8909760. The Gov-
ernment has certain right in this material.

REFERENCES

Davis, W.J. and A.T. Jones (198131), "A Real-Time Production
Scheduler for a Stochastic Manufacturing Environment,"
International Journal of Computer Integrated Manufacturing
1,2, 101-112.

Erickson, C., A. Vandenberge, and T. Miles (1987), "Simulation,
Animation, and Shop-Floor Control", In Proceedings of the
1987 Winter Simulation Conference, A. Thesen, H. Grant,
and W.D. Kelton, Eds. IEEE, Piscataway, NJ, 649-653.

Grant, F.H., S.Y. Nof, and D.G. MacFarland (1988), "Adap-
tive/Predictive Scheduling in Real-Time," In Advances in
Manufacturing Systems Integration and Processes: 15th Confer-
ence on Production Research and Technology, D.A. Dornfeld,
Ed. Society of Manufacturing Engineers, Dearborn, MI, 277-
280.

Harmonosky, C.M. (1990), "Elements of Effective Production
Control in a Computer Integrated Manufacturing Environ-
ment," In Proceedings of Manufacturing International 90,
Volume I: Intelligent Manufacturing Structure, Control, and

Integration, E. Fisher, C.L. Moodie, LA. Martin-Vega, L.

Mcéinnis, and E.T. Sanii, Eds. The American Society of
Mechanical Engineers, New York, NY, 9-13.

Harmonosky, C.M. and D.C. Barrick (1988), "Simulation in a
CIM Environment: Structure for Analysis and Real-time
Control," In Proceedings of the 1988 Winter Simulation
Conference, M.A. Abrams, P.L. Haigh, and J.C. Comfort,
Eds. IEEE, Piscataway, NJ, 704-711.

Harmonosky, C.M. and S.F. Robohn (1990), "Real-Time Schedu-
ling in Computer Integrated Manufacturing: A Review of
Recent Research," Working Paper No. 90-108, Department
of Industrial and Management Systems Engineering, Penn-
sylvania State University, University Park, PA.

Roch, AJ. (1986), "Flexible Automation Holds Key to Competi-
tive Advantage for Aerospace Manufacturer," Industrial Engi-
neering 18, 11, 52-59.

Sadowski, R.P. (1985), "Improving Automated Systems Schedul-
ing" CIM Review 2, 1, 10-13.

Wu, S.D. and R.A. Wysk (1989), "An Application of Discrete-
Event Simulation to On-Line Control and Scheduling in
Flexible Manufacturing,” International Journal of Production
Research 27, 9, 1603-1623.

