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ABSTRACT

This paper describes the research efforts in the Center for
Computer Integrated Manufacturing at the Oklahoma State University
to develop an object-oriented modeling environment. After providing
the underlying motivation for the research effort, some of the major
research tasks are described. Highlights of this development effort
are: physical and information/decision components are modeled
separately; a set theoretic formalism is provided; a model specifica-
tion language is critical; a powerful graphical user interface is essen-
tial. Current status and future plans are described.

1. INTRODUCTION
1.1 Background

A simulation model is an abstract, logical, mathematical model
of a system which can be dynamically exercised through the use of a
computer. The main goal of simulation modeling is the development
of a model that represents the real system such that experiments per-
formed on the model yield results which can be extrapolated to the
real system.

The history of simulation modeling software can be broken into
five periods: the era of custom programs, the emergence of simula-
tion programming languages, the second generation of simulation
programming languages, the era of extended features, and the current
period [Nance 1984]. Early simulation modeling was performed
using custom programs written in general purpose computer lan-
guages, such as FORTRAN. Although this approach proved the vi-
ability of simulation modeling, the models were typically expensive
and time consuming to design and maintain. Usually, the work done
on a specific modeling project could not be easily utilized during sub-
sequent modeling efforts. This resulted in simulation being used
primarily on large, expensive projects.

In the early 1960's, as the field of simulation developed further,
discrete event simulation languages such as GPSS, GASP, and
SIMULA were introduced [Nance 1984]. These languages were
primarily written in general purpose languages but provided generic
functions and subroutines to perform many of the tasks routinely re-
quired in simulation, such as calendar functions (e.g., scheduling of
events) and statistics collection. Unfortunately, the bulk of the simu-
lation model development effort was still spent in developing prob-
lem specific code that had little reusability in future problems. In the
late 1960's a second generation of simulation languages emerged. In
most cases (i.e., GPSS V, SIMULA 67, and GASP IIA), these lan-
guages were more powerful replacements of their predecessors.

In the 1970's, as the use of simulation modeling grew, devel-
opments in simulation languages were driven toward the extension of
simulation specific languages to facilitate easier and more efficient
methods of model translation and representation. Many of the lan-
guages which evolved from these developments, GPSS, SLAM, and
SIMAN, are still widely and actively used today [Law and Haider
1989].

In addition to the developments occurring in simulation lan-
guages, changes were also occurring in the way simulation models
were used within organizations. More and more frequently simula-
tion was used to study smaller, short term problems and projects.
This effectively increased the pressure for development of faster and
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more efficient modeling methodologies with higher levels of
reusability and user friendly interfaces.

1.2 Current Status of Simulation Modeling

In the early 1980's, many changes were occurring in the com-
puter hardware arena; personal computers were becoming a main-
stay, high resolution graphics and animation were efficiently realiz-
able, and artificial intelligence (AI) and expert systems were seeing a
resurgence with practical implementations. These changes had, and
continue to have, a direct impact on simulaton methodologies.
Simulation modeling is now open to a much broader base of potential
users through advances such as: 1) menu and icon driven model
builders, 2) expert systems to aid in the building and debugging of
models, 3) graphs and charts to display model results both during
and after execution, and 4) model animation to view the operation of
the system as a whole or zoom in on a specific area of interest.

In the area of graphics and animation, packages such as
SLAMSYSTEM, Cinema/SIMAN, and SIMFACTORY [Law and
Haider 1989] are among the leading edge competitors. The anima-
tion and graphics are typically developed and presented as an integral
part of the simulation language. By contrast, AI and expert system-
concepts impact simulation modeling through the use of a simulation
'front-end' or application generator. These tools interact with the
user and ultimately result in a set of code which can be passed
directly to the simulation language. Among the leading edge com-
petitors in this area are EZSIM [Endesfelder and Tempelmeier 1987],
Sg’lgl;][Khoshnevis and Chen 1987], and MAGEST [Oren and Aytac
1 .

In terms of continuing the growth of simulation modeling and
expanding the use of simulation in general, construction of new
simulation models and modification of existing models still provide
formidable challenges to researchers. For example, modeling primi-
tives and animation objects must be expressed in the user's language.
Also, the time required to construct and validate simulation models
must continue to decrease through the use of concepts such as rapid
prototyping and model reusability. Object-oriented programming
appears to have the potential to be a major contributor to these areas
of research.

1.3 The Object-Oriented Paradigm

The concepts of object-oriented programming (OOP) are having
a profound impact on computer software construction. Advantages
of OOP over traditional (procedural) programming have been docu-
mented in Cox [1986] and Meyer [1987]. According to Meyer
[1987]: "...object-oriented design may be defined as a technique
which, unlike classical (functional) design, bases the modular
decomposition of a software system on the classes of objects the
system manipulates, not on the functions the system performs."
Meyer goes on to point out that objects remain more or less stable,
whereas functions tend to adapt to changing needs or circumstances.

The principal idea associated with QOP is that all items (e.g.,
variables) in the system are treated as “objects”. An object is either a
"class" or an instance of a class. A class is that software module
which provides a complete definition of the capabilities of members
of the class. These capabilities are either provided by the procedures
and data storage contained within the immediate class definition or
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inherited from other class definitions to which this class is related.
An instance of a class is a realization of the class having all of the
operating capabilities provided in the class definiion. OOP embodies
four key concepts which result in making software systems more
understandable, modifiable, and reusable. These concepts are:
encapsulation, message passing, late binding, and inheritance.

lation means that an object's data and procedures are
enclosed within a tight boundary, one which cannot be penetrated by
other objects. Data stored within an object is directly accessible only
by the procedures that have been defined as part of the class to which
the object belongs. The use of objects therefore improves the relia-
bility and maintainability of system code.

passing is a necessary result of encapsulation. In order
for one object to affect the internal condition of another object, the
first object must request (by sending a message) the second object to
execute one of the second object’s procedures.

Binding refers to the process in which a procedure and the data
on which it is to operate are related. In contrast to early binding (i.e.,
at the time of code construction) in traditional procedural languages,
late binding provided in OOP delays the binding process until the
software is actually running. This feature provides for variable data
types to change during execution, operator overloading (i.e., same
message structure for different code implementation), and storage
independent of data type.

Inheritance provides for a low level form of software reuse.
OOP classes are defined in a hierarchical tree structure. Each class in
the tree structure inherits the methods and data storage structure of all
of its superclasses. Inheritance allows the construction of new
objects from existing objects by extending, reducing, or otherwise
modifying their functionality.

The differences between software development in procedural
languages and OOP languages is due to these four characteristics.
First, understandability of classes is improved because they represent
the data and method implementations of a coherent concept rather
than the loose combination of multiple procedural routines.
Secondly, the four features of OOP improve the ease with which
already developed software systems can be maintained and modified.
By encapsulating the data and methods which use the data, internal
class implementations can be altered while instances of the class
retain the same message passing relationships to other objects in a
software system. Finally, base language code is reusable through
inheritance (i.e., definition of new subclasses) and through the use of
instances of a class as an internal component of new classes.

Many of OOP's characteristics can be traced to the SIMULA 1
language [Meyer 1988]. SIMULA has found a popular academic
following in Europe and throughout the world, but has never gained
wide spread use in the commercial environment [Kreutzer 1986, page
105]. While SIMULA embodies some of the concepts of QOP, it is
not a pure OOP language. Smalltalk, one of the purest OQOP lan-
guages, was influenced by Simula's model of computation.
Smalltalk added the message passing paradigm creating a program-
ming style which we now know as OOP [Kreutzer 1986, page 194;
Meyer 1988, page 437].

The concepts underlying OOP can be extended to simulation
modeling [Adiga, 1989; King and Fisher 1986; Mize et al. 1989;
Thomasma and Ulgen 1988; Ulgen et al. 1989]. In terms of simula-
tion modeling requirements, following the object-oriented paradigm
has the important advantage of preserving the bulk of developed code
for general use in model building. Each model building exercise then
performs the particular functions that are of interest at that ime. The
object definitions remain independent of the functions of the system
being modeled. The characteristics of OOP allow us to rethink our
entire approach to systems modeling using computers. The follow-
ing section describes the current status of our research efforts to
develop an object-oriented modeling (OOM) environment for manu-
facturing systems. In section 3, we conclude with a summary of
ongoing development plans.
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2. AN OBJECT-ORIENTED MODELING
ENVIRONMENT FOR MANUFACTURING
SYSTEMS

Modular representation of physical and information/decision
components is a distinctive attribute of the environment described
herein. A set theoretic formalism is provided to support this separa-
tion. As illustrated in Figure 1, other attributes of the modeling envi-
ronment are the development of a high level model specification lan-
guage, the construction of a library of simulation objects, and the
provision of a graphical user interface. These concepts are discussed
next.

User

Graphical Model
User Specification
Interface Language
Model
Specification
Model Library of
Generator Simulation
Module Objects
Simulation

Model

Figure 1. Modeling Environment Architecture

2.1 Separation of Physical and Information Components

The performance of a manufacturing system is highly influenced
by control policies used in its operation. In evaluating the system
performance, it is desirable not only to consider the physical compo-
nents and the physical configuration, but also the results of different
operating policies. A complex hierarchical decision making structure
exists in a manufacturing system. The decisions are based on avail-
able information, which is often incomplete, inaccurate, and delayed.
A decision maker at each level uses heuristics, personal expertise,
company rules, and policies to arrive at a control decision.
Traditional system modeling tools do not provide convenient struc-
tures for specifying these interactions. For example, in simulation
modeling the representation of controlling influence is often embed-
ded into elements of code modeling physical components.

There are two reasons why a modeler would desire to incorpo-
rate explicit and separate information processing and decision making
structures into his/her models: 1) to obtain a more realistic model of
the system, and 2) to determine the effect a certain operating policy
will have on the system performance. In performance modeling of
manufacturing systems, existing simulation languages fail in this
regard. They do not provide realistic constructs for modeling infor-
mation flows and control decisions. In addition, the constructs they
do provide must be hard coded, and dispersed into the model, creat-
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ing code that is hard to modify. Thus, evaluation of a different con-
trol policy necessitates an almost complete rewrite of the model.

A new modeling paradigm is needed to capture the dynamics of
information processing and decision making as well as the physical
processes in manufacturing systems. This architecture should sepa-
rate the decision making entities from the physical components so
that changes in one can be done independent of the other. AI and
OOP offer tools to create such a modeling environment. For exam-
ple, the knowledge representation structures in Al provide a means
for separating knowledge and data [Nilsson 1980], while OOP offers
an environment in which code reusability makes it easy to modify the
models [Cox 1986].

In the proposed framework, information flow is modeled in a
hierarchical structure [Karacal 1990; Zeigler 1976]. For example, a
customer order gets translated into product orders, which, in turn,
give rise to component orders, batch orders, and finally, device ac-
tivity orders. The information processing, and information delays
manifest themselves in the creation of these orders. Similarly, the
decision making processes are modeled through a hierarchy of con-
trol levels: system level control, shop level control, work center level
control, and finally, device level control. The control levels can be
modeled by embedded expert systems.

2.2 A Formalism for Modeling Manufacturing Systems

Within the context of discrete event simulation, formalism can be
defined as a set of conventions for the construction of discrete event
simulation models. In broad terms, it gives a definite form to how
and what can be expressed about a system to be modeled.
Formalism uses set theoretic concepts for the abstraction of real sys-
tems that, in the end, generates a uniform convention of communica-
tion.

To model the aforementioned separation of physical and infor-
mation components in a multiple level manufacturing system, a new
formalism is proposed [Karacal 1990]. The total system under study
is expressed as a structured hierarchy of subsystems, each of which
is one of five levels: source system, data system, information sys-
tem, knowledge system, and intelligent system (see Figure 2). A
very brief outline of the formalism is given in the following.

Intelligent System

(via abstraction)

I Knowledge System ]
4

(via heuristics)

lInformation System J

(via relationships)

I Data System |

(via meaning)

I Source System I

Figure 2. Five-level Model of System Intelligence

The source system, at the lowest (device) level of the hierarchy,
provides facts about the system. No meaning is attached to the facts
at this level. This subsystem consists of: the physical components, a
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set of observed facts, the real number set for time, and a mapping
from observation sets to the set of observed facts. When meaning is
added to the facts coming from the source system, a data system
results. Thus, the data system has an additional mapping from the
fact set to the data set. This mapping provides the meaning for the
facts.

By investing the data with relations between them, an informa-
tion system is obtained. This, again, is done through a mapping from
data and operation sets to the information set. A mapping, named
genKnowledge, takes the information set in an information system,
and through the defined interdependencies of the information set,
generates a knowledge base in predicate calculus format. The
knowledge system consists of the information system, the interde-
pendencies, the genKnowledge mapping, and the time for its compo-
nents. A reasoning mechanism is then used to generate additional
knowledge from the knowledge base. Intelligent system, the top
level in the hierarchy of this formalism, possesses the components to
carry out this reasoning and to make intelligent decisions.

To illustrate the manner in which this hierarchy is expressed in
set theoretic formalism, the source system can be abstracted as fol-
lows:

SS =<P, read, F, T>

where:
P = representation of physical components
F = set of observed facts
read = mapping from an observation set to F
T = bounded real number set for time
and
P=<X,Y,C, OP>
where:
X = set of physical inputs (work parts, tools, etc.)
Y = set of physical outputs (processed parts, scrap, etc.)
C = set of interface channels (communication and
material flow channels)
OP = operations set (physical operations)

In a similar manner, set theoretic formal expressions are constructed
to represent the remaining four levels of the system intelligence hier-
archy (see Figure 2).

The entities in a model of a manufacturing system can be divided
into two main categories: decision making entities and data driven
physical entities. The decision making entities can be represented
with the properties of intelligent system level constructs of the for-
malism. The physical entities form the bottom level of the formalism.
They may be represented at the source system level. In this way, the
formalism provides constructs for separately modeling information
elements, decision processes, and physical processes in the real sys-
tem. The formalism described above can be constructed quite natu-
rally in an object-oriented paradigm [Karacal 1990].

2.3 Model Specification Language

The primary purpose of the specification language is to describe
the fundamental structure and behavior of the system elements.
Modeling a manufacturing system now involves a “translation” of the
physical, information, and decision components into this high level
language. The syntax and semantics of this language are structured
to facilitate the automatic translation from model specification to exe-
cutable simulation program code.

The initial efforts are directed at the development of a very gen-
eral form of the model specification language. The vocabulary of this
language is tailor-made for manufacturing systems and hence, is eas-
ily understood by the modeler (see Figure 3). A model specification
will be translated into the (Smalltalk) objects and control structures
that model the essential workings of the real system. The object
classes and names utilized in this translation are again ones that are
readily recognized and understood by individuals involved in discrete
parts manufacturing.
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Arrivals Part-XYZ Exponential 30.0
Arrivals Part-123 Exponential 13.0
Machine MC1
Machine MC2
AssyPart Assemblyl Exponential 10.0
Routing Part-XYZ 1
MC2 Exponential 5.0 Deterministic 0.0
Routing Part-123 2
MC2 Exponential 2.0 Deterministic 0.0
MC1 Exponential 4.0 Deterministic 0.0

Figure 3. Model Specification
2.4 Simulation Objects

The Smalltalk simulation objects in the OOM environment can be
classified into two broad categories. The first category contains
objects providing the software functions which allow the background
simulation processing tasks, such as, time advance, event triggering,
entity creation, list processing, etc., to be performed. The second
category includes objects providing the reusable building blocks for
modeling manufacturing systems.

The building blocks for manufacturing modeling consist of gen-
eral elements found in a manufacturing environment, such as
machines, material handling vehicles, conveyors, work orders,
routings, etc. As the capabilities of the system are enhanced, the
inheritance capabilities of OOP can be utilized to create subclasses of
these generic objects that more completely model the behavior of
specific items. For example, the modeling of a general conveyor will
be extended to such specific conveyor types as a gravity conveyor, or
a power and free conveyor, etc. Likewise, the specific types of
material handling vehicles will be extended to include manually
operated lift trucks, fork lifts, AGV's, etc. These enhancements are
readily achievable in the Smalltalk-80 paradigm because the more
specific subclasses automatically inherit the capabilities of their more
general parents.

~ OSU CIM Simulation Version 1.1 6/29/90

The building blocks embody a higher level of abstraction than
utilized in currently available simulation languages. For example, the
OOM environment utilizes a class of objects called machines, which
are made up of three basic primitives: an input queue, a processor,
and a controller. The queue and processor primitives embody the
physical aspects of the machine while the controller models the deci-
sion making aspects. As can be seen, this one object embodies the
characteristics of at least two SLAM II [Pritsker 1986] node state-
ments (e.g., QUEUE nodes, SELECT nodes, etc.).

2.5 User Interface

While the model specification language is understandable to the
average manufacturing systems engineer (i.e., modeler), ideally,
he/she should never have to use it directly. It is desirable to provide
the system modeler with an environment that allows him/her to build
a model graphically, run it, and analyze it without having to directly
interact with the specification language. The primary vehicle that
facilitates the achievement of this goal is the user interface. The user
interface utilizes the model-view-control (MVC) paradigm supported
by Smalltalk-80 [Goldberg and Robson 1989]. The prototype user
interface consists of two basic modules: a model development mod-
ule and an execution module.

The purpose of the model development module is to provide a
mechanism that allows the user to build a model of the system under
study. This part of the user interface presents the modeler with a
screen containing a menu for specifying commonly encountered
physical system elements (i.e., machines, conveyors, material han-
dling devices, etc.). Another menu facilitates specification of infor-
mation system elements (for example, part routing, bill of materials).

After entering all of this basic system information, the user can
construct and run a simulation model from the application menu.
After execution the user is presented with a graphical display sum-
marizing system performance (i.e., throughput, WIP, utilization at
each machine, etc.; see figure 4). The user can then make selections
regarding presentation of the text version of the output. The three
options are to display it on the screen, print a hard copy, or both.
Finally, after the user has viewed the output, he/she can, by selecting
another menu item, return to the model development mode to make
changes to the basic system data and rerun the model.

Resources | Parts BOM | Routing | Statistics | SimModel
Simulation initiated at (17 July 1990 10:49:20 am )
Statistics for Machine: Assy2

No.Obs. Average Std.Dev Minimum Maximum Current
Utilization: 7 0.0074 0.0859 0.0 1.0 0.0
Proc.Time: 4 2.7853 3.9464 0.0 8.5305 0.4176
nput Queue
Queue for Part-XYZ
Length 7 03190

Part-XYZ time in system

BOM Editor

Part List Component List

fPart-123

| Assembly?
i Part-123

Part-XY 2

Part-123

Assembly 1

Figure 4. Output Display
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2.6 Prototype Implementation

A kitting operation in a large electronics manufacturing plant
served as the test bed for the first real-world implementation of an
earlier version of the object-oriented modeling environment described
in previous sections. Figure 5 presents a diagram of the physical
layout of this system. Components enter the system as: “selects”
which are directly applied to kits, bulk parts which are preformed
prior to inclusion in kits, and reeled parts which are sequenced before
being applied to kits. Kits which exit the kitshop are composed of
the appropriate grouping of selects, preformed bulk parts, and
sequenced reels. The workstations include two sequencing
machines, ten kitting stations, and fifteen preform operation stations.
There are work-in-process storage locations for selects, preformed
bulk parts, partially completed kits, and sequenced reels.
Approximately ten different kits are produced. The experience in
modeling the kitting operation demonstrated the desirability of pursu-
ing object-oriented modeling [Beaumariage, 1990].

v $[ Receiving WIP
and (Seq. reels and HICS)
Shipping
Gravity feed racks
(hold partially | Seq. | | WIP
completed kits) | m/C's | | Pre-
Formed
Kitting Stations Bulk
Parts
Off.
Selects
Area
;:g SBWulll; Bulk parts preform stations

Figure 5. Kitshop in an Electronics Plant

3. ONGOING DEVELOPMENT PLANS

A number of enhancements to the environment described above
are under development that will make it a powerful system design
and analysis tool for the practicing engineer. These enhancement are
in: 1) simulation classes and methods, 2) on-line output analysis and
report generation, and 3) user interface.

Examples of enhancements which will be added to existing simula-

tion classes and methods include:

The ability to handle a variety of queueing disciplines.

Expanding the current general classes of machines, material

handlers, and conveyors.

The ability for multiple executions of the same model.

Addition of a battery of random variate generators.

Provision for extensive statistics collection, for example,

monitoring idle, busy, and setup time statistics for machines.

Examples of enhancements which allow on-line output analysis and

report generation include:

= Develop the capability for storing the output data in a
spreadsheet or database format.

= Allow the user to develop special report forms on-line.

> Implement a set of statistical analysis tools for on-line analysis
of results, i.e., automatic confidence interval construction, etc.

Examples of enhancements to the user interface

= Develop an icon-based modeling environment.

=>» Provide for specifying system parameters through dialog boxes
instantiated by clicking on icons.
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