Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

A FRAMEWORK FOR REUSABILITY
USING GRAPH-BASED MODELS

Dana L. Wyatt

Department of Computer Science
University of North Texas
Denton, Texas 76203

ABSTRACT

This paper presents a framework for developing and managing
reusable simulation components using graph-based models. Graph-
based models can be defined as those models in which communica-
tions between submodel component are represented with a directed
graph. A system architecture which readily supports this approach is
presented and an example application domain is then outlined. Fi-
nally, potential research implications of this framework are discussed.

1. INTRODUCTION

Simulation is a popular technique used to assist decision makers
in a wide variety of disciplines, including agriculture, business,
engineering, and the social sciences. In 1989, it was considered of
such dramatic importance to the technological needs of the United
States thatit was named one of twenty-two critical technologies by the
Department of Defense and the Department of Energy [Pritsker
1989].

However, modeling and simulation is a time consuming and
complex task. Used incorrectly, its results can be grossly misleading.
In recent years, a considerable amount of time and energy has been
placed in the examination and evaluation of various modeling meth-
odologies [Balci 1989; Derrick et. al. 1989; Thesen 1989]. In fact,
Derrick reports that no fewer than thirteen modeling methodologies
are currently in use. Each methodology offers its own advantages and
disadvantages. One is selected by a modeler in hopes that it can offer
the appropriate perspective for a specific problem. The goal, of
course, is to model a system correctly and consistently, using an
appropriate level of detail.

Unfortunately, accurately modeling large and complex systems
often proves to be quite difficult and expensive. Experienced mod-
elers are in short supply [Balci and Nance 1987]). Thus, many
simulationists have limited experience in modeling complex systems.
Tools and techniques are available to assist the modeler in developing
acceptable simulation studies. These include formal life cycle meth-
odologies and simulation environments. However, little has been
done to address the issue of reuse as it applies to simulation.

2. AFRAMEWORKFOR REUSABILITY

This paper will address the issue of simulation component reuse
by examining a framework which supports reusability for graph-
based models. This framework is described in general terms and has
been utilized by implementations in several languages. Itis presented
in order to spark the reader to consider the implications of such an
framework.

2.1 Reuse

Software reuse is a technique, as well as a philosophy, which

472

offers some real benefits to the simulation community [Reese and
Woyatt 1987]. It has been used with some success in specific commer-
cial sectors of the software engineering community. Reuse exists at
two levels: formal and informal. In the software engineering commu-
nity, formal reuse includes the reuse of requirements specifications,
design documents, and other high level life cycle documents. Infor-
mal reuse includes the reuse of data structures and code.

Advocates of reuse believe that building software from compo-
nents which have been previously validated makes the task of con-
structing large software systems somewhat easier. However, effec-
tive reuse of components requires that an environment exist which
makes them easily available and accessible. In addition, it requires an
organizational philosophy which encourages and supports this “build-
ing-block” approach to software generation rather than the maverick
“go-it-alone” approach. The commitment to reuse from an organiza-
tion is not without cost. In many cases, the initial cost of developing
generalized, reusable components exceeds the cost of developing the
software in a traditional manner. However, the return on investment
is hopefully achieved in subsequent projects when the reusable
components may be included.

2.2 Simulation Environments

There has been some movement in recent years to design and
implement some form of integrated software support environments
for simulation [Balmer 1987; Reese and Sheppard 1983]. It is
perceived that these environments will improve the productivity of
modelers and increase the likelihood of successful simulations.
However, the availability of support systems still lags far behind that
found in the software engineering community.

In the software engineering community, the capabilities of
support environments vary. The most comprehensive environments
include support for virtually all areas of the software life cycle, from
requirements specifications to detailed design and test plans, from
code support to version control. Other environments might include
only support for informal reuse aspects or part of the life cycle.

However, the simulation community is still somewhat frag-
mented over what functional components an integrated software
support environment for simulation should include. Comprehensive
environments might include support for:

* A particular simulation methodology

* Basic simulation activities (event and manipulation routines,

random number generation, etc)

+ Graphical model support (the ability to accept graphical
specification of models and/or to produce graphical
output)

Automatic programming (automatic generation of simulation
code from formal definitions of model behavior)

+ The integration of artificial intelligence

D.L. Wyatt

Smaller environments might only include, for example, support for a
particular methodology or for automatic programming.

The framework proposed herein could be considered a specifica-
tion for an integrated software support environment because it pro-
vides the modeler with a system which supports the second through
fourth items above, as well as providing an environment which
supports easy access to previously defined model components, thus
encouraging reusability.

2.3 Graph-Based Models

The models for which this framework is intended are those which
can be described using directed graphs. This modeling approach has
been used historically with some success [Kaplan 1987]. A directed
graph consists of a collection of nodes, which correspond to model
components, and a collection of arcs, which correspond to communi-
cation paths between nodes. The basic premise behind this frame-
work is that model components can be developed, validated, and
saved and that communication paths between selected components
can then be specified in order to describe a complete model.

Figure 1 illustrates a graph-based model constructed from three
nodes, N1, N2, and N3. Arcs Al and A2 are stimuli arcs and have no
inputnode. They are used toindicate thatinput from the outside world
is passed on to nodes N1 and N2, respectively. Arcs A3 and A4 are
connective arcs and indicate acommunication path exists between the
indicated nodes. Arc A5 is an output arc. It has no output node and
corresponds to output from a node which is passed on to the outside

world.

A2

Figure 1. A Sample Graph-Based Model

Figure 1 describes a relatively simple model. However, by
adding a scenario, the graph begins to describe more interesting
models. It might represent a manufacturing system in which N1isa
machine which constructs widgets using raw material supplied through
A1l. N2 constructs widget caps using raw materials supplied through
A2. N1 and N2 pass the items constructed to N3 along arcs A3 and
A4, respectively, where they are then assembled at node N3 and then
shipped through AS5. Similarly, one could construct scenarios in
which nodes represent processors in a multiprocessor environment or
an unloading/loading process for ships in a harbor.

2.4 System Architecture

Graph-based models such as the ones described above may be
developed and implemented using the graph-based model (GBM)
system framework discussed in this section. Figure 2 illustrates the
architecture of the GBM system, which is comprised of three subsys-
tems: a component base and associated evaluator, a model base, and
a simulation manager.

2.4.1 Component Base and Evaluator

The Component Base (CB) consists of a library containing all

473

—

USER

Figure 2. The GBM System Architecture

odel components which are available to the modeler. A model
component corresponds to a node and is the basic building block of
this system. It consists of a component name and a set of behavioral
specifications describing ithe component’s operation and output
given a set input values. Components can be added to the CB as
needed, and it is this structure which gives the system both power and
flexibility.

The CB requires an Evaluator to determine the appropriate
behavior for a component given a specific instance of input values.
The Evaluator is an interpreter which retrieves the appropriate com-
ponent from the CB library given its name, executes a behavioral
specification script, and determines the appropriate output values and
the delay through the component.

242 Model Base

The Model Base (MB) is a library in which complete models are
stored. Models are created by specifying a directed graph consisting
of components from the CB and communication paths between the
components. Thus, a model is a collection of nodes and arc connec-
tions. The development of models in this environment may be
accomplished graphically or textually, depending upon the user
interface available. Once developed, a model must be loaded from the
MB into the Active Model Graph area in order to simulate its
behavior. Itis the Active Model Graph area contains the model and
the system environment for a particular simulation run.

2.4.3 Simulation Manager

The last subsystem is the Simulation Manager. The Simulation
Manager is responsible for coordinating the simulation, maintaining
the clock, and updating the event list. The Simulation Manager also
functions as the interface between the modeler and the GBM system
by providing utilities for creating, modifying, and deleting MB entries
and CB components, as well as for controlling a particular simulation
experiment.

2.5 Discussion

The GBM system as presented above consist of three subsystems
which function collectively to provide a simulation environment for
graph-based models. The Component Base and Model Base are
essentially databases of model components. The only significant
code is found in the Simulation Manager and Evaluator. In addition,
the primary data structures in this system are the event list and the
Active Model Graph.

The structure of the GBM system is such that virtually any

A Framework for Reusability Using Graph-Based Models

system which may be represented by a graph-based model may be
simulated. The Simulation Manager is a generalized control routine
and needs minimal tailoring to be suitable for other problem domains.
The Evaluator is tailored for a specification behavorial specification
technique and must be rewritten if the technique changes.

Sources for incoming stimuli such as jobs in a manufacturing
system or messages in a communication system may either be
specified atrun time as input or defined using a component whose sole
purpose is to generate stimuli. Output is handled in a similar manner.
Output arc values may be displayed at each time interval, or a
component whose task is to simply record values may be placed as a
terminator. This last technique would allow post-processing of
simulation output for graphical display purposes or for statistical uses.

Itisbelieved that this framework offers a significant potential for
component reuse. By defining model components using a simple,
building-block nature, a modeler may construct a larger, more com-
plex model by specifying the relationships which exist between the
components. In the following section, a research project at the
University of North Texas which uses the framework will be dis-
cussed.

3. DIGITAL CIRCUIT SIMULATION

During the past year, a digital circuit simulator previously
written in Lisp was reimplemented in C++ and C using the GBM
framework described above [Benavides and Wyatt 1988; Ali and
Wyatt 1990]. Digital circuit simulation is a natural application for any
graph-based modeling system. It is a rather intuitive process to
examine figure 3 and recognize that it is equivalent to the generic
graph-based model described in figure 1. In figure 3, nodes N1 and
N2 are defined to be 2-input AND gates and node N3 is defined as a
2-input NAND gate. The arcs (called nets) correspond to wires
between the gates.

e ee—
>7

And,

Figure 3. A Sample Digital Circuit

3.1 Active Model Graph Data Structure

The Active Model Graph area contains the current model which
is being simulated. This model is represented as a directed graph of
gates and nets. Because of the way in which gate and net information
is required, each must be accessible directly from the simulation
manager. Therefore, each gate entry in the model must include:

+ gate name

+ gate type

« list of input nets to the gate

« list of output nets from the gate

In addition, each net entry in the model must include:

* net name
* net value
» list of gates which drive it
« list of gates which it drives

474

This organization for data structures may be met in one of many
manners. In the C++ implementation, classes are used. In the C
implementation, threaded linked lists are used. The actual implemen-
tation structure is not important as long as the information is acces-
sible.

3.2 Component Base and Evaluator

The CB for the digital circuit simulator consists of behavioral
specifications for components such as AND, NAND, NOT, OR, and
NOR gates. The behavioral specification for digital gates is accom-
plished using truth tables and gate delays. Each gate componentin the
CB has a record which includes:

+ gate type

 number of input pins
+ number of output pins
« gate delay

+ output values list

The digital circuit simulator uses tri-state logic corresponding to
FALSE (0), TRUE (1), and UNKNOWN (2). Therefore, if a gate has
2 input pins, its associated truth table has nine (3**2) entries. In order
to reduce the amount of storage required for truth tables, only the
output values are entered.

The Evaluator is responsible for determining the appropriate
behavioral actions for a specific gate type. The Evaluatoris passed the
gate type and input net values. The appropriate output value is
retrieved by indexing into the output values list using the input net
values. Thus, the component’s behavior can be determined and the
time at which it responds is calculated as the current time plus any
associated gate delay. The Evaluator returns the new outputnet values
and the time at which the transition occurs.

3.3 Model Base

The MB for the digital circuit simulator consists of a collection
of text files containing model descriptions. In the C++ implementa-
tion, OrCad is used to define the models using TTL gates. OrCad is
a graphical schematic capture tool. The OrCad files are loaded into
the Active Model Graph using a conversion utility provided in the
digital circuit simulator,

In the C implementation, a different approach is used to create
and store models. A model is specified textually using a mini-
language as shown in Figure 4. This “program” is then input into the
simulator which creates the model in the Active Graph Area and
evaluates it when so instructed.

3.4 Simulation Manager

The simulation manager for the digital circuit simulator provides
event list manipulation routines, a controller that coordinates the
simulation, and a user interface.

The event list is a linked list which contains net names, transition
values, and the times at which the transitions are to occur. It may be
constructed as a time wheel or simply an ordered linked list. Its
structure is important only for the sake of efficiency.

For each clock time, the simulation manager examines each
event notice and the associated net values are updated. Each gate
which is driven by, or has its input value determined by, a net which
has had a value changed must be reevaluated. In turn, this reevalu-
ation generates new event notices for all output nets of these gates.

D.L. Wyatt

* Define the original model
#DEFINE_MODEL;

N NODE001 AND;

N NODE002 AND;

N NODE003 NAND;

I ARCO001 NODEO(01 = TRUE;

I ARC002 NODEO01 = FALSE;

I ARCO003 NODEO002 = UNKNOWN;
I ARC004 NODEO(02 = FALSE;

O ARCO005 [NODE001] NODEO003;
O ARCO006 [NODE002] NODEO003;

O ARCO007 [NODEO003];

#EVALUATE_MODEL,;

#DUMP_MODEL,;

* Specify changes which occur at some future point in time
* and reevaluate

I ARCO003 NODEQ02 = TRUE;
#EVALUATE_MODEL;

#DUMP_MODEL;

#EXIT;,

Figure 4. Sample Model Description for the C Implementation

The user interface for the digital circuit simulator varies for each
implementation. In the C++ system, the interface is menu-driven.
OrCad is used to create a graphical description of the model and a
conversion utility takes the OrCad output and creates an Active Model
Graph. The menu is used to specify the circuit to be loaded and to
define the input stimuli. The user may run the simulation or step
through it interactively. Output net values are displayed textually.

In the C implementation, a model is specified textually using a
mini-language as shown above. This program provides input for the
simulator. Note that as it exists currently, the C implementation does
have a controller. Itis up to the modeler to specify each evaluation
which must take place. Because of its recent completion, the impli-
cations of this interface have not been fully investigated.

3.5 Discussion

The digital circuit simulator described above has been a very
successful project. The original implementation is in Lisp on a TI
Explorer [Benavides and Wyatt 1988]. The C++ implementation is
under Unix on a VAX 11/780 [Wyatt and Ali 1990]. The C implem-
entation is on an IBM PC in Turbo C and on a VAX VMS-based
system. In each case, the system architecture remained relatively
unchanged.

The structure of a digital circuit simulator lends itself very
naturally to the GBM approach. It uniquely illustrates the concept of
developing more complex models from basic building blocks. Power
and flexibility for a digital circuit simulator in this framework are
achieved by adding more components to the CB. In addition,
verification of the digital circuits simulated using the GBM system is
relatively simple because of the non-stochastic nature of the problem.
Therefore, the validation of the GBM architecture was accomplished
with minimal difficulties.

4. RESEARCH IMPLICATIONS
The GBM framework outlined above has been implemented in a

variety of languages. Each implementation utilized similar architec-
tures, even though the paradigm of each language was substantially

475

different. This illustrates the flexibility of the framework. Not only
isit adaptable to a variety of language paradigms, it also provides an
excellent architectural basis for a variety of research problems.

4.1 Reusability Studies

The GBM framework provides an excellent testbed in which
studies examining the productivity benefits of reuse may be per-
formed. Although simulationists are not as interested in productivity
studies as are software engineers (as demonstrated by the lack of
published research in the simulation community), this framework
readily supports studies which might be performed. It would be
interesting to determine the relative productivity of 2 modeler devel-
oping code independently versus one functioning in this framework.

4.2 Behavorial Specification Techniques

The investigation of behavioral specification techniques for
model components is a very interesting extension of this research
environment. Admittedly, digital circuit components have relatively
simple behavioral specifications. Truth table evaluations generally
occur via pattern matching. Components which represent more
complex servers such as routers and machines with breakdowns have
more complicated behavioral specifications than have currently been
demonstrated. However, itis believed that this framework is designed
such that behavioral specification techniques may be investigated
withrelative ease. Afterdefining a particular behavorial specification
technique suitable for the application domain, the structure of compo-
nents in the component base must be modified and an evaluator which
interprets the specification must be written. The clean separation of
subsystems makes this task less painful than it might otherwise be.
Plans exist for developing more complex component behaviors in
other application domains in the near future.

4.3 Graphical Interfaces

This framework for graph-based models provides an excellent
setting for the investigation of graphical interfaces strategies for
defining simulation models. It provides an environment in which
techniques for specificating behavior can be combined with their
graphical interfaces to determine which provides the modeler with an
friendly and flexible conversation mechanism. The use of graphical
output may be investigated with similar efficiency.

4.4 Embedded Expert Systems

Finally, this framework supports the inclusion of embedded
expert systems as defined by O’Keefe [O’Keefe 1986]. The original
Lisp implementation of the digital circuit simulator has an expert
systemembedded in it which monitors the eventlistand Active Model
Graph area to determine if a behavioral phenomena condition might
occur. Although missing on the current versions of the digital circuit
simulator, it is scheduled for inclusion. This inclusion will open the
doors for further research on how Al reasoning can assist simulators
and on how this knowledge might be shared between models.

5. SUMMARY

A framework has been proposed in this paper for graph-based
models which supports the reuse of simulation model components.
Because of its utility for all problems in which graph-based models are
appropriate, the potential application domains for GBM are wide-

A Framework for Reusability Using Graph-Based Models

spread. By allowing the modeler to define a reusable library contain-
ing behavioral characteristics of model components, this system has
amuch greater level of flexibility over similar commercial packages
which provide the modeler with a standard set of components that are
tailorable at best.

In addition, the GBM architecture provides an excellent frame-
work for a variety of research problems which are of ineterst.
Behavorial specification techniques, graphical interfaces, and Al
integration are interesting and useful research problems. Often, in a
academic research environment, it is difficult to investigate specific
protlems without developing a specialized simulation shell, or proto-
type, which includes only minimally acceptable features of a simula-
tion environment. This framework attempts to overcome this prob-
lem by providing a small architecture which readily supports the
modeling of graph-based systems.

ACKNOWLEDGEMENTS

This work was supported in part with Faculty Research Oppor-
tunity Grants from the University of North Texas and with ACM
SIGDA /IEEE DATC scholarship grants. I would like to acknowl-
edge the contributions of John Benavides for his design of the original
knowledge-based digital circuit simulator (SWIM), Blair Copeland
for his work on the behavorial specifications of digital components,
George Dupre for his work on the C implementation, and Bill Turney
for his endless contributions and relentless work on many versions of
the system reported herein. In addition, I am grateful to Dr. Mahir Ali
for his efforts in procuring funds from ACM/IEEE.

REFERENCES

Ali, M. and D.L. Wyatt (1990), “An Object-Oriented Approach to
Knowledge-Based Digital Circuit Simulation,” In Proceedings
of the 1990 SCS Conference on Object-Oriented Simulation, A.
Guasch, Ed. SCS, San Diego, CA, 38-42.

Balci, O. (1989), “How to Assess the Acceptability and Credibility
of Simulation Results,” In Proceedings of the 1989 Winter
Simulation Conference, E.A. MacNair, K.J. Musselman, and P.
Heidelberger, Eds. IEEE, Piscataway, NJ, 62-71.

Balci, O. and R.E. Nance (1987), “Simulation Support: Prototyping
the Automation-Based Paradigm.” In Proceedings of the 1987
Winter Simulation Conference, A. Thesen, H. Grant, and W.D.
Kelton, Eds. IEEE, Piscataway, NJ, 495-502.

Balmer, D.W. (1987), “Modelling Styles and Their Support in the
CASM Environment,” In Proceedings of the 1987 Winter
Simulation Conference, A. Thesen, H. Grant, and W.D. Kelton,
Eds. IEEE, Piscataway, NJ 478-485.

Benavides, J. and D.L. Wyatt (1988), “Improving Digital Circuit
Simulation: A Knowledge-Based Approach,” In Proceedings of
the 1988 Winter Simulation Conference, M.A. Abrams, P.C.
Haigh, and J. Comfort, Eds. IEEE, Piscataway, NJ, 362-371.

Copeland, M.B. and D.L. Wyatt (1990), “Behavorial Specification
Techniques for Digital Circuit Simulation,” Technical Report,
Department of Computer Science, University of North Texas,
Denton, TX.

Derrick, E.J., O. Balci, and R.E. Nance (1989), “A Comparison of
Selected Conceptual Frameworks for Simulation Modeling,” In
Proceedings of the 1989 Winter Simulation Conference, E.A.
MacNair, K.J. Musselman, and P. Heidelberger, Eds. IEEE,
Piscataway, NJ, 711-718.

Kaplan, D.J. (1987), “The Process Graph Method: An Iconic Method
of Controlling Networks of Processors,” In Proceedings of the

476

1987 Summer Computer Simulation Conference, J. Clema, Ed.
SCS, San Diego, CA, 219-227.

O’Keefe, R. (1986), “Simulation and expert systems - A taxonomy
and some examples,” Simulation 46, 1, 10-16.

Pritsker, A.A.B. (1989), “Why Simulation Works,” In Proceedings
of the 1989 Winter Simulation Conference, E.A. MacNair, K.J.
Musselman, and P. Heidelberger, Eds. IEEE, Piscataway, NJ, 1-
8.

Reese, R. and S. Sheppard (1983) , “A Software Development
Environment for Simulation Programming,” In Proceedings of
the 1983 Winter Simulation Conference, S. Roberts, J. Banks,
and B. Schmeiser, Eds. IEEE, Piscataway, NJ, 419-426.

Reese, R. and D.L. Wyatt (1987), “Software Reuse and Simulation,”
In Proceedings of the 1987 Winter Simulation Conference, A.
Thesen, H. Grant, and W.D. Kelton, Eds. IEEE, Piscataway, NJ,
185-192.

Thesen, A. and L.E. Travis (1989), “Simulation For Decision
Making: An Introduction,” In Proceedings of the 1989 Winter
Simulation Conference, E.A. MacNair, K.J. Musselman, and P.
Heidelberger, Eds. IEEE, Piscataway, NJ, 9-18.

