Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

A UNIFIED DISTRIBUTED SIMULATION SYSTEM 1

Jeff McAffer

Defence Research Establishment Ottawa, Ottawa, Ontario, K1A 0Z4

and

School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6

ABSTRACT

We propose a method for generalizing existing distributed sim-
ulation algorithms such as, Time Warp and Chandy-Misra to create
a Unified Distributed Simulation algorithm. By explicitly defining
risk and aggressiveness parameters for each model, models with
different behaviours can be mixed within one simulation. We il-
lustrate how this results in a more powerful environment for creat-
ing complex simulations. Current distributed simulation techniques
are presented and contrasted. We relate computational reflection
and speculation to the Unified Distributed Simulation algorithm and
detail the concurrent object-oriented programming environment
created to support Rival, its implementation.

1. INTRODUCTION

Simulation is an increasingly important computational tool.
Computer simulation has been characterized by Nobel laureate Ken
Wilson as the third branch of science, which complements theory
and experimentation [Bell 1989]. This view was also voiced by
several speakers at the recent Grand Challenges to Computational
Science conference [Levin 1989]. As the size and complexity of
experimental systems increases, scientists are unable to provide ad-
equate formal specifications for these systems because component
interactions appear random and complex, and system topologies
highly dynamic. Simulation mechanisms must be more flexible and
take better advantage of available computing resources.

Distributed computing is becoming recognized as a good ar-
chitecture for attacking large computational problems [Bell 1989;
Bézivin 1987]. It offers high performance, flexibility and
scaleability at a reasonable cost. Unfortunately, distributed com-
puting concepts cannot be immediately applied to the simulation of
complex systems. Current simulation technology is either inade-
quate for modelling complex systems or cannot utilize the power of
distributed computers. The main goal of this work is to create a
tool for building logical, flexible simulations which can be run effi-
ciently on a distributed computer system.

1.1 Models

A model is a description of a real-world, or proposed system.
A model can be expressed in different ways depending on its in-
tended use. For example, a model of a bank from the point of view
of customer service would describe the behaviour of the various
queues and servers in the bank. A transaction bank model, on the
other hand, models the bank as a series of transactions, each of
which must be processed atomically as in the real transaction sys-
tem. Combining the two bank models into one simulation is diffi-
cult because their components are behaviourally dissimilar. The
interaction in the service view is predominantly sequential and ser-
vices are not interrelated. The transaction model, on the other hand,
is a highly asynchronous, distributed system which requires a

+ The algorithms and intellectual property contained in this docu-
ment may be subject to the applicable patent laws of Canada,
the United States, and other countries in the name of Her
Majesty the Queen in the Right of Canada as represented by the
Minister of National Defence.

415

detailed description of the processing system's operations and con-
currency control. Currently, the simulation system best suited to
the service model is not well suited to the transaction model and
vice versa. Therefore, combining the models requires that one or
the other be re-implemented in an inappropriate environment and
subsequently reverified and revalidated.

The cost of verification and validation increases rapidly as the
quantity and complexity of models and their interactions rises. The
capability to combine behaviourally different models will lower
these costs by allowing more model reuse and reducing the re-
quirement for reimplementation. Costs can also be reduced by in-
creasing the separation between the simulation specific code and
the model specific code.

1.2 Time

Directly or indirectly, time plays a significant role in almost all
systems. It is hard to conceive of an entirely time independent sys-
tem. The role of time may be anything from that of a simple history
ordering mechanism (e.g., something happened at time T), to a con-
straining sequencer (e.g., event A must occur before event B), to a
proactive agent in the system (e.g., at time T some event occurs).
Therefore, the timing mechanisms used in a simulation are of the
utmost importance, affecting not only a model's design and imple-
mentation, but what models can be simulated and the performance
of the simulation.

Uniprocessor time maintenance (e.g., time- and event-driven
simulation) is straightforward because the entire system is central-
ized and only one object can be simulated at any given time. In
these, systems time is implemented as a global variable. This is un-
acceptable for distributed simulation.

1.3 Distributed Simulation

The introduction of multiprocessing and communication be-
tween concurrent components complicates time maintenance.
Throughout the simulation, communicating objects must be explic-
itly synchronized in simulation time. Uniprocessor simulation
methods (e.g., centralized event queueing and single stepping
clocks) rely on shared global memory and do not exploit paral-
lelism inherent in the models. We show that for a powerful and
flexible distributed simulation system, a sound model of concur-
rency is more important than the use of actual multicomputer hard-
ware. Further, such a model of concurrency is inherently specula-
tive and is best implemented in a computationally reflective envi-
ronment.

The goal of this work is to continue work done previously
[McAffer 1989a, b] and create a distributed simulation algorithm
which unifies current techniques (e.g., Chandy-Misra and Time
Warp) and results in a scaleable, flexible and responsive simulation
system. Although we believe that such a Unified Distributed Sim-
ulation [McAffer 1990] system will be faster for many simulations,
our main goal is to develop a simulation system in which a model's
behaviour can be changed dynamically either through reflection or
external intervention and models can use whatever simulation tech-
nique and time coordination mechanism best suits their structure
and behaviour.

J. McAffer

1.4 Layout

The remainder of this paper is organized into four sections.
Section 2 contains a brief review of current distributed simulation
concepts and technology. Section 3 presents the Unified Dis-
tributed Simulation algorithm. Section 4 discusses reflective com-
putation and speculation relative to UDS and Rival, a realization of
UDS. Section 4 also includes a simple example which highlights
the features of UDS. The final section summarizes our findings,
presents some preliminary results, and provides some directions for
future work.

2. DISTRIBUTED SIMULATION SYSTEMS

A distributed simulation system must explicitly coordinate the
advance of time in order to maintain temporal consistency between
the components. The system must define how time is advanced
when, according to the models, it should be advanced. Thus, time
maintenance can be divided into two distinct tasks; the movement
of time and the coordination of time movement. In this paper we
are concerned with the coordination of time advances between con-
current simulation components. We believe that each component in
the system should specify its own method of synchronizing with the
rest of the simulation.

In the following sections we present two distributed simulation
algorithms which typify the state-of-the-art in distributed simula-
tion. We do not attempt to summarize the entire technology but
rather illustrate the diversity of the approaches. Both of these tech-
niques use the same notion of local and global virtual time. The lo-
cal virtual time, LVT, of an object is defined as the time up to
which that object has simulated. So, for example, if an object has
completed all of the operations assigned to it up to time 238 then its
LVT is 238. Depending on the time coordination technique used, a
particular LVT may be monotonic or non-monotonic. The global
virtual time, GVT, of a simulation is analogous to the LVT of a
component. It is the point in simulation time up to which all com-
ponents have successfully simulated. The GVT at a particular point
in the simulation is equal to the minimum of all the LVTs in the
system. If some component, M, has LVT equal to the GVT then it
is said that M defines the GVT.

2.1 Chandy-Misra

Chandy-Misra (CM) simulation was the first distributed simu-
lation algorithm and is the result of work by several different
groups [Peacock, Wong and Manning 1979; Chandy and Misra
1981]. For convenience we use the name Chandy-Misra even
though some of the properties expressed did not originate from their
work.

Chandy-Misra is a form of pessimistic simulation. The mecha-
nism holds back processing because it assumes that components
will communicate out of sequence. CM can be viewed as a token
passing mechanism in which an object with a token is free to com-
municate with any other object in the simulation while those with-
out tokens may do only local processing. An object gets a token
when it defines the GVT (i.e., when its LVT equals the GVT).
Since more than one object can define the GVT, more than one ob-
ject can have a token. When there are no more objects with tokens,
the GVT is updated to be the minimum LVT of all objects in the
simulation and the tokens are redistributed. In this way, the GVT is
guaranteed to equal the least LVT of all interacting objects in the
simulation.

In CM, synchronous message passing is used to coordinate
concurrent components. Messages cannot be received until the re-
ceiver's LVT = GVT, that is, the message's sender remains blocked
until the receiver defines the GVT. This restriction guarantees that
messages are received in the correct order. However, forcing ob-
jects to wait for LVT = GVT is excessive. Since most objects in-
teract with a limited set of neighbors, a receiver need only wait to
process a message until its neighbor's times are greater than the
message time. Unfortunately, this requires all components to
maintair lists of neighbors. The use of such lists restricts the ability
of the simulation system to model complex dynamic systems. If the

416

list is static then it will contain all possible neighbors and will force
objects to do excessive synchronization. Maintenance of dynamic
neighbour lists is complicated and requires additional synchroniza-
tion whenever the graph topology is changed.

The basic Chandy-Misra algorithm does not prevent simulation
induced deadlock. That is, deadlock which is due solely to the sim-
ulation process. Deadlock detection, avoidance and recovery is a
difficult problem and has received much attention in both the sim-
ulation and general distributed/concurrent computing literature.
These methods include null message passing [Chandy and Misra
1979], demand-driven null message passing [Misra 1986] and a
detection-recovery scheme [Chandy and Misra 1981; Misra 1983;
Kumar 1986].

CM works best in tightly coupled simulations (i.e., simulations
in which objects are highly synchronous) which are highly con-
nected. In these systems, communicating objects are usually syn-
chronized and thus seldom have to wait for their messages to be
delivered. The performance of CM simulations is bounded above
by the critical path of concurrency present in the simulated model.
It is not possible for events which are synchronous in the real sys-
tem to be processed asynchronously in the CM simulation of that
system.

2.2 Time Warp

Time Warp (TW) [Jefferson 1985; Jefferson and Sowizral
1985; Jefferson, et al 1987], sometimes referred to as optimistic
simulation, relies on the ability of an object to rollback its present
state to that of some previous time. In contrast to Chandy-Misra,
objects using Time Warp simulate and communicate freely with
other components until they receive a message. When an object re-
ceives a message it must synchronize with the message's sender. If
the new message is from the receiver's future (i.e., if the message
timestamp is greater than the receiver's LVT) then the receiver in-
creases its LVT to the message timestamp value and processes the
message. If the message is from the component's past then the re-
ceiver must undo, rollback, any processing it did or messages it sent
between its current LVT and the new message's time.

One's initial reaction to the concept of Time Warp might be
that the simulation will continually take nine steps forward only to
take eight steps back. Jefferson and Sowizral [Jefferson and Sowiz-
ral 1985] postulated that the time spent projecting an object's future
is not really wasted since, in a scheme like Chandy-Misra, the inter-
action would be blocked for synchronization and the simulation
would not progress. In fact, only the objects involved in that par-
ticular interaction will be blocked and the processors simulating
those objects will still be available to run the other objects in the
simulation. In addition, since all message passing is asynchronous,
Time Warp is entirely free of simulation induced deadlock. This
simplifies algorithms and eliminates the overhead previously re-
quired to detect or avoid deadlock.

The rollback process can be improved through the use of lazy
cancellation [Gafni 1985; Gafni, Berry and Jefferson 1987]. Under
this model, antimessages are sent only when it is clear that the cor-
responding messages should never have been sent. Berry [Berry
1986] proved that the performance of Time Warp using lazy can-
cellation is not bounded by the critical path of synchronization.
This result is demonstrated in [Berry and Lomow 1987].

Time Warp is good for loosely coupled, highly asynchronous
systems but is inefficient when models have mixed time scales or
diverse interaction behaviours. The interested reader is referred to
[Lavenberg, Muntz and Samadi 1983; Gilmer 1988; Lomow et al
88] for performance analyses of Time Warp and heuristic rules for
optimizing snapshot frequency and rollback costs.

2.3 The Optimism Spectrum

Simulations written using optimistic techniques are quite dif-
ferent from those written using pessimistic methods. There are sev-
eral systems for example, Moving Time Window (MTW) [Sokol,
Briscoe and Wieland 1988] and Bounded Lag (BL) [Lubachevsky
1988, 1989]) which attempt to address the middle ground between
optimism and pessimism. Unfortunately, they have not been fully

A Unified Distributed Simulation System

successful. We agree with Reynolds [Reynolds 1988] when he says
that there is a range or spectrum, "of different possibilities and that
it is worth considering points in this range which are between the
two extremes". Furthermore, we believe that transitions between
points in this spectrum should be seamless and that components
functioning at different points should be compatible. That is, opti-
mistic and pessimistic simulation should be unified.

Reynolds [Reynolds 1988] presents nine design variables
which can be used to characterize current distributed simulation
systems. These variables are; Partitioning, Adaptability, Aggres-
siveness, Accuracy, Risk, Knowledge embedding, Knowledge dis-
semination, Knowledge acquisition and Synchrony. In this paper
we will consider only risk and aggressiveness, and add one of our
own, compatibility. Aggressiveness is the property of processing
messages based on conditional knowledge. That is, relaxing the re-
quirement that messages be processed in a strict monotonic order
with respect to message times. Risk is passing messages which
have been processed based on aggressive or inaccurate processing
assumptions in a simulation component. Compatibility is the abil-
ity of components in a simulation to have different bindings for
their design variables. For example, can one model be aggressive
while there are others in the simulation which are not?

In light of this we see that Chandy-Misra simulations are non-
aggressive while Time Warp simulations are maximally aggressive.
Similarly, Chandy-Misra and Time Warp treat risk as a discrete
variable with one of two values, O or o, respectively. While MTW
and BL are partially aggressive and admit a certain amount of risk
depending on their aggressiveness, the variable values are not dy-
namic and cannot be defined for each object. Furthermore, none of
these systems is compatible.

‘Current technology is incapable of simulating dynamic, com-
plex systems which contain a mixture of- synchronous and asyn-
chronous components. Consequently, simulationalists are forced to
work around the simulation tools to implement their models. Much
of this effort can be avoided by unifying the simulation techniques.
That is, by creating a system which is adaptable, which allows con-
tinuous and infinite levels of aggressiveness and risk, is 100% accu-
rate and allows individual models to determine how they will inter-
act. In addition, the simulation system must include a sound model
of concurrency and all models must be compatible. Our goal is to
develop such a system.

3. UNIFIED DISTRIBUTED SIMULATION

The Unified Distributed Simulation algorithm (UDS) [McAffer
1990] is loosely based on the Time Warp algorithm. UDS can con-
sistently model both optimistic and pessimistic components as well
as models with limited bidirectionality. UDS parameterizes' each
component's level of optimism by its aggressiveness and risk.

The aggressiveness, Aj, (0 < A; < o0) of a component, M;, is the
number of time units M; is capable of looking ahead. The range
[GVT, GVT + A;] defines a receive window within which M, is ca-
pable of receiving and processing messages. Therefore, M; is re-
sponsible for rolling back any non-committed actions taken during
this period (i.e., simulation for times after GVT).

The risk, R;, (0 <R; <) of a component, M, is the number of
time units into the global future M; is capable of sending messages.
The range [GVT, GVT + R;] defines a send window within wl;ich
M; is capable of sending messages although it is up to the destina-
tion to determine if the message will be received.

The aggressiveness and risk parameters allow UDS to use vari-
ably asynchronous message passing. That is, the message (Tgeng,
Tariver M M;), where M and M; are the sender and receiver re-
spectively, can only be sent if Tgeng is in Mj's send window and re-
ceived if Topive 15 in Mj's receive window. Otherwise, M will
block on eit?xmr the send or receive of the message. The reader will
note that UDS is similar to the Moving Time Window concept
[Sokol, Briscoe and Wieland 1988] in which there is only one re-
ceive window for all components and no send windows.)

Figures 1 through 3 show message queues for models with dif-
ferent sized time windows. In these figures, the arrow indicates the
next message to be read from the queue. Messages have three
states; processed (white), received (shaded) and sender blocked

(black). Notice that as the aggressiveness increases so does the
number of messages processed in the projected future.

In UDS, a model's processing capabilities are regulated by the
size and position of its send and receive windows. Each model, M;,
is provided with a continuously updated estimated GVT, or EGVT
(M), which defines the origin of its windows. The inequality
EGVT (M;) < GVT always holds. In figure 2 we see that the mes-
sage at time 49 is blocked. This is due to the inaccuracy of EGVT
(Y). If EGVT (Y) = GVT = 20, then the message would be re-
ceived. The UDS algorithm allows A; and R; to vary dynamically
and has the property that as the A; and R; decrease, the required ac-
curacy of EGVT (M) increases. if EGVT (M) is sufficiently inac-
curate then it is possible that M;'s message queue will be erro-
neously empty and M; will stop processing. Simulation induced
deadlock can occur if this were to happen to all of the models si-
multaneously.

Figure 3. Snapshot of Message Queue Where A = oo

If at all times the origin of all time windows is equal to the
GVT (e.g., EGVT (M;) = GVT, for all i) and there exists no mes-
sage, (Tsend> Tarrives lvis urces Mesp)» Such that Moyrce # Mdesé and

arrive ™ Lsend > A?est where A, 1s the aggressiveness of the desti-
nation, then fatal simulation induced deadlock cannot occur
[McAffer 1990].

Because the GVT is dynamic and distributed, the algorithm for
calculating the EGVT cannot guarantee that EGVT (M;) = GVT at
all times. In practice it is enough that the EGVT algorithm be ca-
pable of calculating the exact GVT when deadlock occurs. In gen-
eral, EGVT (M) can be inaccurate by as much as (GVT + A;) - Ty

.ve and messages at time T,y Will still be received and processed
y Mi'

4. IMPLEMENTATION

We have implemented UDS in ENVY™/Actra, [OTI 1990;
Thomas, Lal.onde and Pugh 1986] a multiprocessor Smalltalk/V™

417

J. McAffer

[Digitalk 1986] system running on MC680x0 processors on a
VMEBus system. Actra runs on top of the Harmony Real-Time
Operating System (RTOS) [Gentleman 1985] which provides basic
facilities for interprocessor communication and multiprocessing.
The current system runs with four processors however, the UDS al-
gorithm allows for any number of processors to be used. A unipro-
cessor implementation of UDS has also been done using
Smalltalk/V on a PC.

4.1 Smalltalk

We have used the Smalltalk/V object-oriented programming
system to implement the UDS algorithm. In Smalltalk everything is
an object. Every object is an instance of some class which is also
an object. Classes describe the structure and behaviour of their in-
stances while the instances contain the data. An object's behaviour
is the set of methods or procedures which the object can execute.
Methods are invoked by sending a message containing the method's
selector, the method name, and any required arguments, to an ob-
ject. If the behaviour of the object receiving the message defines
that method then the message is processed, otherwise an error oc-
curs. Since messages are sent to objects rather than sending objects
to procedures, a variable's class is irrelevant as long as it can under-
stand the specified message. Another important part of Smalltalk is
the inheritance or subclassing mechanism. Subclasses inherit and
refine the structure and behaviour of their superclasses. The struc-
ture of a subclass is the accumulation of the structures defined by
itself and its superclasses while the behaviour of a subclass is given
by the union of the methods defined by itself and its superclasses.

4.2 Speculative Computation

The UDS algorithm belongs to a class of computation known
as speculative computation. Speculative computation is computa-
tion which is initiated before it is known that the result will be re-
quired [Burton 1985; Halstead 1986; Baker and Hewitt 1977; Os-
borne 1989]. Conversely, mandatory computation is computation
which is known to be required. Using speculation, idle processor
time found in non-speculative systems is used to compute possible
future results. Unified Distributed Simulation is a speculative algo-
rithm in which the amount of speculation possible is proportional to
the aggressiveness and risk of the various objects. Similarly,
Chandy-Misra is non-speculative and Time Warp is fully specula-
tive.

Speculative systems fall into one of three categories; algorith-
mic, code-based and system-based. The UDS system performs al-
gorithmic speculation. Code- and system-based speculation can be
used in UDS but they are not essential to the algorithm. In effect,
each object in a UDS simulation is a separate algorithm which pro-
jects its own future based on the common data set provided by the
other components. Therefore, each algorithm speculates and con-
tributes to the final result of the simulation. The main problem is
that the data set is dynamic and all components have global side-ef-
fects. UDS can limit the number of side-effects by restricting the
spread of speculation (i.e., reducing the risk) or limiting the initia-
tion of speculation (i.e., reducing the aggressiveness). However, a
reduction of either parameter will also reduce the potential for par-
allelism.

The literature contains little on the use of general algorithmic
speculation. We surmise that this is because of the difficulty of un-
doing the widespread effects of interacting speculative computa-
tions. It is beyond the scope of this paper to explore the possible
contributions of UDS to general speculative computation.
However, we envisage a distributed speculative scheduler which
uses the risk and aggressiveness parameters to control task
scheduling and parallelism at an algorithmic level. The scheduling
duties could be distributed to the tasks by increasing their reflective
capabilities and allowing them to adjust their own synchronous be-
haviour as required. We must look at the effects of risk and aggres-
siveness settings with respect to processor use before such a sched-
uler could be deemed feasible or useful.

418

4.3 Computational Reflection

Computational reflection is the process of doing computation
about computation. Typical computations model some real or ab-
stract entity, say a database, which we call the application. The ap-
plication in a reflective system is the computation itself. That is, re-
flection is the capability to look at the computation from the level
of the machine which is running it. This capability can be used to
dynamically modify the behaviour of the system. There are several
systems which have reflective capabilities including; 3Lisp [des
Rivieres and Smith 1984] and ABCL/R [Watanabe and Yonezawa
1988].

ABCL/R is a concurrent object-oriented language which sup-
ports the notion of meta-objects. For each object, A, there is an
one-to-one mapping to a meta-object, TA. That is, A describes A,
just as A describes some entity in the problem domain. A is called
the denotation of TA. Meta-objects are similar to Smalltalk classes,
in that they define both the structural and computational aspects of
their denotation. However, they differ in that A and TA execute in
parallel and there is a unique meta-object for each object. As a re-
sult, TA can change the behaviour of A while A is executing. Be-
cause both A and TA are objects, there also exists an | TA, the
meta-object for TA. This infinite chain of meta-objects is similar to
the infinite tower of interpreters found in 3Lisp. Level shifting be-
tween the interpreters is done automatically when a meta-object re-
ceives a message. Thus, reflective procedures for an object are im-
plemented in its meta-object. The utility of computational reflec-
tion is demonstrated in [Watanabe and Yonezawa 1988], in which a
simple implementation of Time Warp in ABCL/R is described. The
entire mechanism is implemented by redefining, in the meta-object,
the way an object receives messages.

4.4 Rival

Rival, the Smalltalk implementation of UDS is motivated by
ideas from computational reflection and actor theory [Agha 1986;
Agha and Hewitt 1987]. Our definition of the term actor deviates
from its original use. For our use, an actor is a group of cooperating
objects which functions independently of, and asynchronously to
the other actors in the system. In Actra, an actor is a Smalltalk ob-
ject with additional mechanisms for multiprocessing and communi-
cations. The message passing protocol used is based on the send,
receive, reply primitive set found in Harmony. The behavioural
similarities of actors to objects and the simplicity of their protocol
results in a powerful programming environment which can be used
to create an ABCL/R style model of concurrency.

Figure 4 shows a concurrent meta-object structure implemented
using actors. Every component in a Rival simulation is an actor.
Figure 4 shows two objects, their associated meta-objects and their
communications patterns. Objects communicate by sending syn-
chronous actor messages to each other's meta-objects. The meta-
object dictates how objects send and receive messages. All interac-
tions between components of the simulation can be described in this
way. Notice that a single message from B to A requires three actor
messages, one from B to TB, one from TB to TA and one between
A and TA. This overhead would be unacceptable in a production
system but for our purposes it is more important that we have con-
trol over the interprocess communications.

Messages to A
are buffered by TA
then processed by A

< Actor message
=== Implied message

Figure 4. Objects and Meta-Objects

A Unified Distributed Simulation System

Unlike fully reflective systems, Rival's reflective capabilities
are limited to inter-object communication and thus a level shifting
interpreter is not required. Components are highly reusable because
each can define its own concurrent behaviour and external protocol.
Models can be exchanged between simulations even if their internal
definitions are vastly different.

The class hierarchy of the complete Rival system is shown in
figure 5. Classes in izalics are new and are required for actors while
those in boldface implement the Unified Distributed Simulation
system. All other classes are supplied by Smalltalk. The discussion
below details only those classes specifically related to the UDS al-
gorithm (i.e., those in boldface).

Object
Collection

SortedCollection
IndexedSortedCollection
Process
Task
Actor
GVTEstimator
MetaObject
SimulationObject
SimulationMessage

Figure 5. The Rival Class Hierarchy
4.4.1 SimulationMessage

The instance variables in SimulationMessage are: source,
destination, kind, body, sendTime, arrivalTime, start-
Time and endTime. To interact in a simulation, objects send re-
quest messages (i.e., SimulationMessages with kind = #request)
to each other. The startTime of a request is the time, local to the
destination, at which processing of the request began. Similarly,
the endTime is when the destination finished processing the re-
quest. Accordingly, if the request has not been processed, the start
and end times are undefined. These time fields are used by compo-
nents to detect if a rollback is required and if so, the time to which
they should rollback.

4.42 IndexedSortedCollection

Instances of IndexedSortedCollection (ISC) are used to imple-
ment the time-bounded infinite message queues in which request
messages are stored in ascending arrivalTime-order. An ISC's
index points to the next request to be read. The protocol of the ISC
add: method is very important here. add: should return true if the
new element is inserted before (in time) the ISC's next element in-
dex. Also, the algorithm used to insert elements guarantees that
when a duplicate element (e.g., a message with an arrivalTime
the same as a message already in the queue) is added, it will be
added after those elements to which it is equal. Figure 6 shows an
example where a message, E, having timestamp 25, is added to a
queue. Its sorted position is immediately following message B
which also has timestamp 25. This positioning is guaranteed by the
algorithm. Notice that the queue's index or next element has been
moved to point to E, making it the next message in the queue. In
this example, add: will return true.

4.4.3 GVTEstimator

The GVTEstimator is an actor which polls the components in
the simulation for estimates of the current GVT and sets each com-
ponent's EGVT to the minimum of these values. This technique is
suitable because the UDS algorithm requires only that the EGVT be
less than or equal to the real GVT. The accuracy of the GVTEsti-
mator's result is inversely proportional to the amount of simulation
which takes place during one round of polling. Additionally, the
simulation has the property that as the GVT estimate decreases in
accuracy, more components will suspend processing and more pro-

419

cessor time will be available to the GVTEstimator. These two
properties balance each other and keep the simulation running at a
reasonable rate while avoiding deadlock. If for some reason the
simulation does deadlock, the GVTEstimator is, by default, given
exclusive use of the processors and will generate an exact value for
the GVT and resolve the deadlock. It should also be noted that the
more optimistic a component is, the larger its time window and the
less accurate the EGVT must be to keep the simulation running.

next element

time [21] 25 87 96
body |A|B|C|D Before

next element

time [21]25[25]87] 9%
body [A|B|E|C|D| After

Figure 6. Insertion of a Duplicate Element
4.44 SimulationObject

SimulationObjects have the following instance variables: 1vt,
and stateQ. Each object in the simulation is modelled by an in-
stance of a subclass of SimulationObject (SO). A SimulationObject
describes the domain specific behaviour of a particular component.
Each SimulationObject has an associated meta-object which is an
instance of MetaObject. When the SimulationObject is ready to
process a request, it invokes the receiveRequest: method de-
fined by its MetaObject and processes the returned request. If there
are no requests, the object is blocked, otherwise re-
ceiveRequest: supplies the next request.

SOs support the Restoration phase of rollback by maintaining
the stateQ. Whenever its EGVT is updated, a SO garbage collects
the stateQ and ensures that the stateQ always contains an entry
with timestamp equal to the EGVT. When a rollback is triggered,
the SO restores itself from the snapshot with the latest timestamp
less than or equal to the rollback time.

4.45 MetaObject

In Rival, each SimulationObject has an associated MetaObject
(MO) through which all messages are sent and received. MOs are
also responsible for garbage collection, maintenance of the EGVT,
coordination of rollbacks and maintaining the receive and send
windows. The following are the instance variables of MetaObject
which are relevant to our discussion; requestQ, outQ, 1vt, egvt,
risk and aggressiveness. The protocol for MetaObject which
is of interest here is; gvtEstimate:, request:, requestAc-
cepted, sendRequest:, receiveRequest: and undoRe-
quest:.

When a MetaObject, say M, receives a request, R, its re-
quest : method first checks if the arrivalTime is within its re-
ceive window as defined in section 3. If so, M accepts R by send-
ing the requestAccepted message to request's sender, otherwise
the sender is blocked until M's receive window advances to include
R. Then M adds R to the requestQ, an instance of IndexedSort-
edCollection. If when R is added, it is inserted before the next re-
quest in the queue (i.e., if add: returns true) then R is out of se-
quence and should have been received and processed earlier in sim-
ulation time. M must rollback to the latest possible time for which
R can be processed consistently. Note that this rollback time is the
endTime of the previous request after the new request is added to
the requestQ, not necessarily the arrivalTime of R.

In the Cancellation phase of a rollback, MOs undo messages by
sending an undoRequest : message for each request in the outQ
which was sent after the rollback time. This may cause other com-
ponents to rollback. The cascade of rollbacks which may result, is
guaranteed to terminate if the rollback of one component cannot
cause a rollback of some other component to an earlier time. That

J. McAffer

is, the rollback of some object, A, to 30 cannot cause some other
object, B, to rollback to a time earlier than 30. This guarantee is
implicit in the UDS algorithm. If lazy cancellation is being used
then the requests to be undone are simply marked as cancelled and
are undone, if required, at a later time.

The MetaObject method, receiveRequest:, performs a
blocking receive waiting for a message to enter the receive window.
Under normal conditions the MO returns the next available request,
but if the MO has detected a rollback condition, it returns a rollback
request containing the rollback time. While the SO is restoring its
state, the MO carries out the cancellation phase. The object then
Coasts Forward by rewinding the requestQ to the appropriate time
and reprocessing the requests.

The MetaObject's sendRequest : protocol is used when SOs
want to send requests to other components. The request is first
logged in the out(and then, if the request's send time (i.e., the cur-
rent lvt) fits into the send window, it is sent immediately. Other-
wise, the request is marked as pending and is forwarded to the re-
ceiver when the send window advances to include the request's send
time.

A MetaObject's receive and send windows are kept up to date
by the GVTEstimator. The GVTEstimator supplies a new value of
the EGVT and requests the MO's estimate of the new EGVT. A
MO calculates its estimate based on the elements in its requestQ
and the state of its associated SO. The MO then uses the new
EGVT to move the receive window and accept more requests, un-
blocking their senders. It also moves the send window and sends
any pending messages. Note that in general there will be at most
one pending send because the SO must block until the message is
accepted by the destination.

Since a SimulationObject and its MetaObject are concurrent,
many of these operations can be carried out in parallel. Also note
that even if the SO part of a component is blocked, the correspond-
ing MetaObject is still available to send and receive messages and
contribute to the estimate of the GVT.

4.5 An Example: The Traffic System

In this example we present a simple system whose component
interactions are diverse and non-deterministic. It is presented to
illustrate the deficiencies of the current technology and show how
UDS can be used to eliminate the problems.

4.5.1 The System

Consider a traffic system which contains both highways and
city streets. The system model has the following basic properties.
There are thousands of simple cars which require littie processor
power to simulate. The roads cross at intersections which can con-
tain at most one car and allow cars to pass through in FIFO order.
As such, intersections synchronize cars. When two cars attempt to
enter an intersection at the same time, one is forced to wait. There
are many intersections in the cities and few on the highways. Cars
enter an intersection through one side and leave through any of the
other sides (i.e., no U-turns). Traffic may backup from one inter-
section into another and thus intersections may interact. Cross-
walks are a special kind of intersection which can contain both cars
and pedestrians, although not at the same time. Any number of
pedestrians may enter a crosswalk asynchronously and occupy it for
varying amounts of time. Cars cannot enter crosswalks occupied by
pedestrians and pedestrians have entrance priority over cars.

The traffic system has many different requirements for compo-
nent interaction. Cars and pedestrians are asynchronous while in-
tersections and road segments are synchronous. As the density of
intersections increases, so does the amount of synchronous be-
haviour. Within the city there are pockets of synchrony (e.g., inter-
sections containing cars) and each pocket interacts asynchronously
with its neighbor.

Using Chandy-Misra simulation, the bulk of the concurrency in
the system will be lost. The intersections dominate the CM simula-
tion because they define the synchronous behaviour. CM is effi-
cient for modelling a single intersection but will require each car to
be synchronized with all intersections in a full system model. This

420

will result in a highly connected system graph and high overhead if
null message passing is used. Cars in the busiest intersections will
hold back all cars, even those on the highways. In addition, CM is
not capable of exploiting the concurrency between distinct heavy
traffic routes within the city and between cars in the city and those
on the highways.

Time Warp is better able to take advantage of the available
system-wide concurrency but will perform poorly for intersections.
As the number of intersections increases, cars become more and
more synchronized and rollbacks more expensive. If, for example,
a late pedestrian steps into a crosswalk, the crosswalk and all cars
passing through it must be rolled back. In a city, these cars will
have gone on to interact with other intersections and thus more cars
and the rollback's cascade will be widespread. The cost of per-
forming rollbacks can easily dominate the relatively low cost of
simulating a car. A global multiprocessor load balancing scheme
would improve performance by ensuring that only the components
with the least LVTs are run by each processor. Unfortunately, such
a scheme does not exist and would be difficult to implement effi-
ciently on top of Time Warp because it would require global
knowledge and/or reflective capabilities.

The main difficulty is that the components behave both syn-
chronously and asynchronously depending on where they are in the
traffic system. Lowering a car's risk and aggressiveness in the city
will the number and extent of rollbacks. Increased aggressiveness
and risk on the highway will take advantage of the available paral-
lelism. Many of these problems can be overcome in this specific
case but not in general. The incorporation of reflective capabilities
allows models to adapt to changing requirements and resources.

4.5.2 The Results

The traffic system example is simplistic but its implementation
in Rival does illustrate the potential of variable synchronism. Our
example system contains Intersections and Cars. Figure 7 shows
the closed road network in which the cars travel. In this figure, the
nodes are intersections and the edges are roads. The numbers an-
notating the edges indicate the amount of time required to traverse
that edge.

112

Figure 7. Example Road Network

In a particular simulation run, some number of cars are injected
into the road network and allowed to roam randomly. When a car
comes to an intersection, it sends the carEntering: from: mes-
sage to the intersection. When the intersection is free, the car will
be sent the proceedAlong: message with a random edge as the
argument. The car will proceed along the edge, taking the appro-
priate amount of time and then begin the cycle again.

An abridged version of the source code for this example is
shown in figure 8. The reader will notice that the code is very sim-
ple and straightforward and that there is no simulation specific code
required. The risk and aggressiveness of the models is maintained
by the simulation system. This code is shown to give the reader an
idea of how Rival simulations are structured.

A Unified Distributed Simulation System

Object subclass: #Edge
instanceVariableNames:
classVariableNames: '!
poolDictionaries: ''

'start end length'

SimulationObject subclass: #Car
instanceVariableNames: ''
classVariableNames: "'
poolDictionaries: ''

proceedAlong: anEdge

lvt := 1lvt + anEdge length.
anEdge end

carEntering: self

from: anEdge start

SimulationObject subclass: #Intersection
instanceVariableNames: 'neighbors'
classVariableNames: ''
poolDictionaries: ''

carEntering: aCar from: anIntersection

lvt := 1lvt + 1.
aCar proceedAlong:
(self
randomNeighborExcept: anIntersection)

Figure 8. Source Code for Traffic System Example

This example has been used to perform preliminary perfor-
mance testing of the UDS algorithm. Tests were carried out on a
two processor system in which one processor was 30% faster than
the other. In each test the simulation was run until a constant sim-
ulation time while the number of cars and the component/processor
topology was varied from run to run. The risk and aggressiveness
was also varied from run to run but for a specific run all compo-
nents had the same risk and the same aggressiveness. In general,
the test results show that performance increased when risk and ag-
gressiveness values were between O and e. For instance, with risk
and aggressiveness = 20 the simulation ran 2.5 times faster than
with R and A = 0 and 2 times faster than with R and A = o, inde-
pendent of the number of cars. These initial results indicate that
varying the risk and aggressiveness can have a substantial effect on
the performance of the simulation. These results are quite informal
and a good deal of work must be done before any conclusive state-
ments can be made. To carry out a proper performance study
would require improved tools for monitoring and analysis. Even
with these tools, such a study would be labourious because of the
number of variable parameters (e.g., task/processor distribution,
risk and aggressiveness).

5. CONCLUSIONS

We have presented Unified Distributed Simulation, a system
which unifies optimistic and pessimistic distributed simulation
techniques. It has been shown that UDS extends the functionality
of the current distributed simulation techniques. UDS allows com-
ponents to describe how and when they are willing to receive and
process messages and as a result, gives the user more power and
flexibility. In particular, UDS allows the interaction of models with
explicitly different concurrent behaviours. Unified Distributed
Simulation is different from existing systems since it specifies the
model of concurrency as an integral part of the time coordination
mechanism. This provides support for the dynamic, varyingly
asynchronous, concurrent components which are required when
modelling complex systems.

We have also presented Rival, a prototype system which incor-
porates the UDS algorithm. Rival is implemented in Smalltalk and
uses ideas from computational reflection and actor theory to create
a sound and flexible model of concurrency. Rival has been quite
useful as an experimental tool for testing the ideas of UDS but seri-

421

ous use of Rival will require the addition of tools for building, run-
ning and monitoring simulations.

Since Rival integrates the optimistic and pessimistic method-
ologies, it is a good environment for performing efficiency com-
parisons between the two techniques. The mechanisms used are
based largely on those of Time Warp but allow fully pessimistic
operation. A good implementation of UDS should perform no
worse than Time Warp or Chandy-Misra simulations. In fact, al-
though extensive performance comparisons have not been con-
ducted, the experiments presented in section 4 indicate that the
UDS algorithm may be more efficient for some systems. Addition-
ally, we feel that Rival should be more efficient than other dis-
tributed simulation mechanisms simply because the communication
patterns more closely follow those found in the real system. This
eliminates unnecessary synchronization overhead. As with Time
Warp, the use of lazy cancellation allows simulations to exceed the
lower bound of concurrency, but unlike Time Warp, UDS also per-
mits this to occur in synchronous simulations.

The development and implementation of the UDS algorithm
has brought out some interesting ideas relating to distributed com-
puting in general. For instance, the use of coarse-grained specula-
tion in distributed applications and its mixture with code- and sys-
tem-based speculation. The use of finer-grained speculation
promises to reduce the cost of future projection by delaying com-
putations until they are required or there is idle processor time.
This work has not addressed several areas of general distributed
computing systems, for example, exception handling and applica-
tion deadlock. Solutions to these problems would allow the tech-
niques presented here to be generalized and used to create a specu-
lative distributed scheduler in which all tasks cooperate to make the
system more efficient. We believe that this is only possible through
the use of sound computational frameworks such as computational
reflection.

ACKNOWLEDGEMENTS

The author would like to thank Brian Barry (DREO) and Dave
Thomas (Carleton University) for their invaluable assistance and
advice throughout this project.

This work was carried out with the support of the Natural Sci-
ences and Engineering Research Council of Canada.

REFERENCES

Agha, G. (1986), ACTORS: A Model of Concurrent Computation in
Distributed Systems, MIT Press, Cambridge, MA.

Agha, G. and Hewitt, C. (1987), "Concurrent Programming Using
Actors”, Object-Oriented ~ Concurrent Programming,
Yonezawa and Tokoro Eds. MIT Press, Cambridge, MA, 36-

Baker, H. and Hewitt, C. (1977), "The Incremental Garbage Col-
lection of Processes”, MIT Artificial Intelligence Laboratory
Memo 454, Cambridge, MA, December.

Bell, G. (1989), "The Future of High Performance Computers in
Science and Engineering", Communications of the ACM 32(9),
1090-1101, September.

Berry, O. (1986), "Performance Evaluation of the Time Warp Dis-
tributed Simulation Mechanism", Ph.D. Dissertation, Univer-
sity of Southern California, Los Angeles, CA.

Berry, O. and Lomow, G. (1987), "The Potential Speedup in the
Optimistic Time Warp Mechanism for Distributed Simulation",
In Proceedings of the Second International Conference on
Computers and Applications, Beijing, China, 694-698, June.

Bézivin, J. (1987), "Some Experiments in Object-Oriented Simula-
tion", In Proceedings of OOPSLA ‘87, Orlando, FL, 394-405,
October.

Burton, F.W. (1985), "Speculative Computation, Parallelism, and
Functional Programming”, IEEE Transactions on Computers,
C-34(12), December.

Chandy, K.M. and Misra, J. (1979), "Distributed Simulation: A
Case Study in Design and Verification of Distributed Pro-
grams", /EEE Transactions on Software Engineering, SE-5,
440-452.

J. McAffer

Chandy, K.M. and Misra, J. (1981), "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations”, Commu-
nications of the ACM 24(4), 198-205.

des Rivieres, J. and Smith, B.C. (1984), "The Implementation of
Procedurally Reflective Languages”, Report CSLI-84-9, Center
for the Study of Language and Information, Stanford Univer-
sity, CA.

Digitalk (1986), Smalltalk/V is a trademark of Digitalk Inc.

Gafni, A. (1985), "Space Management and Cancellation Mecha-
nisms for Time Warp", TR-85-341, University of Southern
California, Los Angeles, CA, October.

Gafni, A., Berry, O., and Jefferson, D. (1987), "Optimized Virtual
Time Synchronization", Applied Mathematics and Perfor-
mance Models of Computer Systems, Rome, Italy, 229-244,
May.

Gentleman, M. (1985), "Using the Harmony Operating System",
ERB-966, NRCC No. 24685, National Research Council of
Canada, Ottawa, Ontario.

Gilmer, J.B. (1988), "An Assessment of Time Warp Parallel Dis-
crete Event Simulation Algorithm Performance”, In Proceed-
ings of Distributed Simulation 1988, San Diego, CA, 45-49,
February.

Halstead, R.H. (1986), "Parallel Symbolic Computing", Computer
19(8), 35-43, August.

Jefferson, D.R. and Sowizral, H. (1985), "Fast Concurrent Simula-
tion Using the Time Warp Mechanism", In Proceedings of
Distributed Simulation 1985, San Diego, 63-69, January.

Jefferson, D.R. (1985), "Virtual time", ACM Transactions on Pro-
gramming Languages and Systems 7(3), July.

Jefferson, D.R. er al (1987), "Distributed Simulation and the Time
;\garp Operating System", Operating Systems Review 21(5), 77-

Kumar, D. (1986), Ph.D. dissertation, Computer Science Depart-
ment, University of Texas at Austin, Austin, Texas.

Levin, E. (1989), "Grand Challenges to Computational Science",
Communications of the ACM 32(12).

Lomow, G., Cleary, J., Unger, B., and West, D. (1988), "A Perfor-
mance Study of Time Warp", Distributed Simulation 1988, San
Diego, CA, 50-55, February.

Lubachevsky, B.D. (1988), "Bounded Lag Distributed Discrete
Event Simulation", In Proceedings of Distributed Simulation
1988, San Diego, CA, 183-191, February.

Lubachevsky, B.D. (1989), "Efficient Distributed Event-Driven
Simulations of Multiple-Loop Networks", Communications of
the ACM 32(1), 111-131, January.

McAffer, J. (1989a), "A Simulation System Based on the Actor
Paradigm”, Technical Note 89-4, Defence Research Establish-
ment Ottawa, Ottawa, Ontario, February.

McAffer, J. (1989b), "Actor-based Simulation", Proceedings of the
Summer Computer Simulation Conference 1989, Austin, TX,
910-915, July.

McAffer, J. (1990), "Unified Distributed Simulation", M.C.S. The-
sis, School of Computer Science, Carleton University, Ottawa,
Ontario, March.

Misra, J. (1983), "Detecting Termination of Distributed Computa-
tions Using Markers", In Proceedings of the 2nd ACM Princi-
ples of Distributed Computing, Montreal, 290-293.

Misra, J. (1986), "Distributed Discrete-Event Simulation", Com-
puring Surveys 18(1), 39-65, March.

Osborne, R.B., (1989), "Speculative Computation in Multilisp",
Ph.D. Dissertation, Laboratory for Computer Science, MIT,
MIT/LCS/TR-464, December.

OTI (1990), ENVY is a trademark of Object Technologies Interna-
tional.

Peacock, J.K., Wong, J.W., and Manning, E.G. (1979), "Distributed
Simulation Using a Network of Processors", Computer Net-
works 3, North-Holland Publishing, 44-56.

Reynolds, P.F. (1988), "A Spectrum of Options for Parallel Simu-
lation", In Proceedings of the 1988 Winter Simulation Confer-
ence, San Diego, CA, 325-332, December.

Sokol, L.M., Briscoe, D.P., and Wieland, A.P. (1988), "MTW: A
Strategy for Scheduling Discrete Simulation Events for Con-
current Execution", In Proceedings of Distributed Simulation
1988, San Diego, CA, 34-42, February.

Thomas, D., LalLonde, W., and Pugh, J. (1986), "Actra: A multi-
tasking/multiprocessing Smalltalk”, SCS-TR-92, School of
Computer Science, Carleton University, Ottawa, Canada, May.

Watanabe, T. and Yonezawa, A. (1988), "Reflection in an Object-
Oriented Concurrent Language”, In Proceedings of OOPSLA
‘88, San Diego, CA, 306-315, September.

422

