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ABSTRACT

Simulation is often used to study and make predictions
about dynamic stochastic processes. We consider the special-
ized problem of analyzing simulations in a single (short) repli-
cation. This type of analysis would facilitate efficient exami-
nation of a number of simulated process control strategies over
a short horizon. For instance, a manager might want to know
whether or not expediting a certain “hot” order will badly up-
set the schedule over the next few hours. For such problems,
a detailed simulation study would not be feasible, and ide-
ally a single simulation replication per alternative would be
desired. We ultimately seek to establish a methodology for
single-replication simulation using control or alteration of the
underlying stochastic processes.

1. INTRODUCTION

In a modern computer-controlled manufacturing environ-
ment, a wealth of information about current and past behavior
of the operation is available. It is often possible to use this
information to make predictions about future behavior of the
system under various alternative control strategies. These pre-
dictions could be made on the basis of a simulation model that
uses (i) the current state and schedule of the system, (ii) param-
eter estimates derived from past behavior, and (iii) the struc-
ture of the system. For short-term predictions, particularly
when several alternatives are to be compared, the premium is
on short computing times, ideally one simulation replication
for each alternative.

We investigate methodologies for designing
replication simulation experiments which provide information
about the reasonable behavior of the system. The method-
ologies consist of two approaches for altering the simulation
model while adequately modeling the likely (or reasonable) be-
havior of the real system. The first approach eliminates certain
sources of variation; for instance, events of low probability that
have substantial effect on the system output (e.g., machine fail-
ures) are ignored. (These rare but important events will be
treated as initial conditions.) The second approach simply al-
ters other sources of variation; for example, the experimenter
might restrict the variation of some probability distributions.
An additional goal is to provide statistical analysis from single-
replication experiments; here, several procedures are examined.

The classical direct simulation approach would be to per-
form multiple simulation replications for each alternative con-
trol strategy. Standard output analysis approaches almost al-
ways require some form of multiple replication, either directly
or implicitly, as in the method of batch means. The reason one

single-

387

David Withers

CIM Application Architecture
Industrial Sector Division (ISD)
IBM
Atlanta, Georgia 30328

uses replications is to obtain meaningful variance estimates of
the point estimator for some parameter of interest (e.g., the
mean or the variance of a distribution, or even the entire dis-
tribution itself). Such an approach is asymptotically exact (as
the number of replications increases) and provides arbitrarily
accurate views of the statistical parameters of a process. How-
ever, the direct simulation approach is not always efficient and
is therefore somewhat naive. One could also use specialized
variance reduction techniques to reduce the number of required
simulation replications to achieve a specified sample variance.
Nevertheless, for the environment this article addresses, multi-
ple replications may be too costly or take too long to complete.

In addition, the standard approaches are heavily weighted
towards marginal information, that is, information about all
possible cases. But from a manager’s perspective, conditional
information might be of much greater importance. For exam-
ple, we might seek information conditioned on the absence of a
machine breakdown and given a specific number of customers
in the queue, or perhaps conditional on the current situation
plus some specified disturbance.

Finally, the conventional simulation literature usually fo-
cuses on statistical measures such as average waiting time or
mean number of customers in a queue, together with methods
for forming confidence intervals about the appropriate point
estimator used. The manager may well be interested in differ-
ent measures, the choice of which will be particularly critical
in his decisions. For instance, Wu and Wysk [1989] suggest
study of primary measures of interest such as maximum com-
pletion time (make span), mean product flow time, maximum
flow time, number of tardy jobs, mean tardiness, and maximum
lateness of jobs. Some of these measures (e.g., the maximum
lateness of jobs) have distributions which are highly skewed and
variable. However, since confidence intervals are usually not
desired, less sophisticated estimates of variability than those
which cope with the skewness may suffice.

The organization of the remainder of the article is as fol-
lows. §2 describes two typical manufacturing systems and the
output measures that are of interest in these systems. §3 exam-
ines how input distributions can be altered to reduce variance
in the output, while §4 discusses methods for interval estima-
tion when only one replication is run. Conclusions and further
work are outlined in the final section.

2. REPRESENTATIVE SYSTEMS

Single-replication simulations differ from other simulations
significantly with respect to the kinds of information that are
desired from the program execution. For our purposes, a typ-
ical environment is a manufacturing production line, the user
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is the production supervisor, the simulation horizon is a few
hours, and the performance metrics of interest are often ex-
ception conditions from normal operation. We have chosen
to classify the problem domain according to production dis-
patch strategy since the metrics of interest vary considerably
between so-called “pull” and “push” systems. Key metrics for
the two types of systems are described below. A simple ex-
ample consisting of three operations (kitting, soldering, and
testing), together with some rework, is used to illustrate the
two production strategies. See Figure 1.

2.1 Pull Systems

When it is desired to reduce cycle time and work in pro-
cess, an attractive control strategy is to pull work through the
system as production and materials handling resources become
available. Pull systems are frequently used where modern man-
ufacturing concepts and objectives are the subjects of manage-
ment focus. Small or no buffers are placed before and after each
resource. The metrics of particular interest for short-horizon
simulations of pull systems include:

e Starvation. Production managers need to know if crit-
ical (bottleneck) equipment will be idle due to lack of
materials or work to process.

Blockage. The possibility that output is blocked from
critical production equipment is another consideration to
production management. This condition is common in
pull systems since output buffers are typically small or
non-existent. Also, if input buffers at the next work sta-
tion are small, then minor disturbances at that station
in operations might cause massive disturbances in overall
system performance.

Number of completions. An obvious short-term met-
ric is the number of units of work that will be completed,
particularly as output from a line or sector. This metric
is not unique to the pull strategy.

Lateness. Similarly, this metric is not unique to the
pull strategy, but is an important measure of the facility’s
ability to meet customer requirements and commitments.
The maximum tardiness and the number of units that are
late are two examples.

Figure 2 illustrates the pull version of the simple three-
operation system. In this production strategy, “tokens” are

used to pull units forward into a server or buffer when a unit is
required by a succeeding station. For example, pulling a unit
forward from the soldering operation causes a unit from the
soldering buffer to be pulled forward, which pulls a unit from
the kitting operation, and so forth.

2.2 Push Systems

Push systems use the more typical dispatch strategies for
existing manufacturing systems. Work is loaded into the sys-
tem at a defined rate or schedule, and pushed as far forward
as possible. Traditional measures for queueing systems are of
interest, but estimates of average performance are not very
valuable. These statistics are usually already known from ex-
perience. The important metrics for short-horizon simulations
of these systems include:

e Maximum queue size. Even with large buffers in the
manufacturing line, there are always physical limits that
cannot be exceeded. Additionally, production manage-
ment may be trying to lower in-process work levels with
an existing planning and dispatch system in order to si-
multaneously capture some of the advantages of the pull
strategy.

Idle resources. If a production resource is predicted to
be idle due to lack of material, work, or operator, the
production manager can take steps to reallocate jobs or
people as necessary.

¢ Number of completions. As in pull systems.

o Lateness. As in pull systems.

The push version of the three-operation line is illustrated in
Figure 3. In this production strategy, units proceed forward as
they are completed unless the succeeding buffer is full or the
succeeding server is busy. In contrast to the pull system, more
than one unit can accumulate in the buffers between stations.

While the above lists of output metrics are not complete,
they point out some diflerences and similarities in terms of
output requirements for short-horizon, single-replication sim-
ulations. Traditional queueing and simulation literature does
not seem to provide adequate treatment of these output statis-
tics, particularly for transient, short-horizon models.

KITTING KITTING SOLDERING SOLDERING TESTING TESTING |good
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Figure 1.A Simple Production Process
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Figure 3.Push Strategy for Production System. Buffers Have Unlimited Capacity, Work Stations
Have Unit Capacity, and p is the Probability of a Unit Being Acceptable

3. ALTERATION OF INPUT DISTRIBUTIONS

An inherent problem of the direct simulation approach is
that the statistics garnered from this approach attempt to re-
flect all possible system behavior; however, the decision-maker
might only be interested in a “likely” subset of all possible
system realizations. To concentrate on likely realizations, the
analyst faces two general classes of rare behavior - those events
that have relatively large influence, and those that have rela-
tively small influence on the system output. We argue that
the former be excluded from the model, since their occurrence
would probably force the manager to change the set of alter-
natives under study. For example, when a key machine breaks
down, the manager would very likely re-evaluate the situation
from that point. The machine breakdown now becomes the
initial condition for a subsequent simulation run. So in effect,
our approach treats infrequent but influential events as initial
conditions; in contrast, such events are usually sampled in di-
rect simulation. Similarily, the interarrival times at the source
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can be assumed known if either the dispatch algorithm or the
scheduled release times are known. In this case, a variance re-
duction occurs since a marginal variance in the direct approach
is replaced by a conditional variance in our approach (e.g., con-
ditional on the occurrence of the rare event). We mention that,
when they are included, the effects of rare but influential events
are “averaged out” over multiple replications. This averaging
is ruled out when performing only a single replication of the
model per alternative.

To make inferences in a single replication, random varia-
tion must be carefully controlled. We control events that are
infrequent but significant in their contribution to system re-
sponse variation. But even after these events are controlled,
there may still be significant variation present due to the re-
maining “reasonable” randomness. Of course it is not desirable
to eliminate all of the system’s randomness, since variation is
often a factor in the response of the system. For instance, the
maximum tardiness is dependent upon both the mean and vari-
ance of the service time distributions. So we seek methods that
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reduce the variability of the response without unduly altering
the general behavior of the response.

We have considered several methods to alter the random
sampling in a simulation.

¢ Truncate the sampling distributions, especially the upper
tails for service times. A particular distribution may have
to be altered in other ways in order to preserve the mean
of the original distribution.

o Another way to control the random variation in a simula-
tion response is through the use of conditional sampling.
For instance, we can form a random sample conditional
upon some specified mean. Such a conditional sample
has less variability than an unrestricted sample. Cheng
[1981] describes how to form conditional samples for a
variety of popular distributions.

Selective alteration of the distributional parameters. For
example, in a queueing problem, one might increase the
mean of the service-time distribution in order to compen-
sate for decreases in the variance of the distribution.

In the remainder of this section, we present some empiri-
cal results concerning how the output of a single-server queue
varies as the variance of the service distribution is reduced.
During the course of our experimentation, we assumed that
the service distribution is chosen so that the output mean is
preserved.

For example, suppose we want to preserve the mean wait-
ing time while reducing variation in the output. Let so and ao
denote the mean service and interarrival times, respectively, for
an M/M/1 queue; let s and ¢ denote the service time mean
and variance, respectively, for the M/G/1 queue. Then if the
steady-state mean waiting time is to be preserved between the
two systems, we must set

1/2
2 (202 + s% — 2a¢s0) — o’

2 2
) + 50

ag — So ((10 - So)

For the cases of interest (i.e., ¢ < so), these solutions have
the property that s > s, with equality in the case that o = s¢
(which occurs for exponential services). The mean service time
is maximized for the M/D/1 case, for which & = 0. Obviously,
the increase in the mean service time compensates for the de-
crease in the service variance.

We have conducted experiments initialized empty and idle,
in which we sample a fixed number of completed customers.
For instance, suppose that the interarrival rate is 1.0 per unit
time, and let the mean service time be 0.8. For the M/M/1
queue, the steady-state mean waiting time can be shown to
equal 3.2 units. We compared the results from the M/M/1
queue to those of various M/E,/1 (Erlang-k) queues, taking
the k = 12 system to be approximately normal, and the k = oo
to be the M/D/1 system. Each of the Erlang systems’s param-
eters are adjusted so that the expected waiting time matches
that of the M/M/1 system (3.2). See Table 1, where we denote
the waiting time of the ith customer as W;. By direct observa-
tion, we found the transient response function for the M/M/1
system to be close to 3.2 for the 100th completed customer
(over 400 replications, E[Wiqo] was estimated to be 3.2, with
a standard error of 0.2). Table 1 compares the match between
the transient response and the variance of the output.

We see that the transient responses of the non-M/M/1
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Table 1. Response for Wy-Equivalent Systems

Case Time to 50% Time to 90% V[Wzo] V[Wao]
E[WIOO] E[WIOO]
M/M/1 12.5 59.5 55 13.7
M/E,/1 15.5 61 3.5 12.6
M/E,4/1 16 76 3.2 9.3
M/Es/1 16.5 61 2.8 9.6
M/Nor/1 16 80 2.9 8.6
M/D/1 18 96 2.4 8.2

systems are slower than that of the M/M/1 system. The less
variable systems take longer to reach the 90% point; that is,
the point i at which the system obtained E[W;] = .9E[Wio].
On the other hand, the variance of the response is reduced.
This suggests that at least in the single-server case the mean
response pattern was approximated with decreased variance
by the substitution of a lower-variance service distribution. It
remains to be seen whether this effect can be produced in a
more complicated queueing network.

4. INTERVAL ESTIMATION

Having obtained an estimate of an output measure from
a single replication of a simulation, we might desire an inter-

val estimate bounding our uncertainty of that measure. When
there is only one replication, the method of independent repli-
cations cannot be used (as illustrated below), but Bayesian
methods and the method of Machol and Rosenblatt [1966] can
be used for this purpose. For now, suppose that we denote
the sample (replicate) means from b independent replications
of the same simulation by Y;,...,Y;. We assume that the run
lengths of the replications are long enough so that the Y;’s are
approximately independent and identically distributed (i.i.d.)
normal random variables.

4.1 Method of Independent Replications

Suppose the Y;’s are approximately i.i.d. normal with un-
known mean g and variance o2, One of the most popular ways
to estimate p is to use a confidence interval estimator of the
form

P(p €Y £ty 142(S?/0)1?) =1~ q,

where Y and 5? are the sample mean and variance, respec-
tively, of the b Yi’s, 1 — « is the confidence level, and t,_1,4/2
is the 1 — a/2 quantile of the t-distribution with b degrees of
freedom. Of course, this method requires b > 1 in order to
estimate the variance of the sample mean; so we have tem-
porarily begged the question of single-replication simulation.
To overcome this problem, we can use Bayesian techniques, as
described below.

4.2 Normal Bayesian Method

Now suppose that the Y;’s are approximately i.i.d.
normal(p, o?), where we assume that o2 is known and p is it-
self a random variable with a normal(fy, 77) prior distribution
and 6y and 7¢ are known. (In a real application, an experi-
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enced analyst might choose “reasonable” 6, and 72 based on
prior knowledge.) Then (cf. Degroot [1975, p. 269)), the pos-
terior distribution of u given that Y; = v, ¢ = 1,...,b, is
normal(8;,72), where

o0y + byt
g, = Tt 0

ot +big
2,2
72 0 Ty
1T et b’

and § = %, ¥i- Notice that the posterior mean 6, is simply
a weighted average of the prior mean 6p and the sample mean ;
further, the special case b = 1 is allowed. Let yy = ¢ | Y; = g,
i=1,...,b. We can derive the following probability statement
for u. (This statement is functionally similar to a confidence
interval, but philosophically quite different, since g is a random
variable.)
P(py € 0y £20p2m) =1—q,

where 24/ is the 1 — a/2 quantile of the normal(0,1) distribu-
tion. One problem with this Bayesian formulation is that o is
usually not known in practice. This problem is addressed in a
more complicated Bayesian technique, which we present next.

4.3 Normal-Gamma Bayesian Method

We consider here the more realistic case in which neither
the mean nor the variance of the replicate means are known.
Suppose that the Yi’s are approximately i.i.d. normal(g,1/7),
where g and the precision T are unknown. Also, suppose
that the conditional distribution of x| 7 is normal(po,1/XeT),
where A¢ > 0 is a constant, and the marginal distribution
of 7 is gamma(ag,B), where ag and fp are positive con-
stants, i.e., the probability density function of 7 is f(t) =
Bo(Bot)*~1e~Pt /T () for t > 0. (The experimenter must
supply Mo, o, and fo based on prior knowledge.) Then (cf.
Degroot (1975, p. 341]), the posterior distribution of u given 7
and Y; =y;, i =1,...,b, is normal(g;,1/A;7), where

_ Aotto + by
b1 = ——)\0 b
and
A =)o+ b

Further, the distribution of 7 given Y; = y;, ¢ =
gamma(a;,f;), where

(o731 =ao+b/2
and s bhof o
= gt Ly gy 4 220l — po)”
Br=Bo+ 2;(% 7%+ 20+ 0)

One can then show that (Ajoq/B;)Y%(¢ — po) has a t-
distribution with 20; degrees of freedom. This results in
the following probability statement for p, plY = u,
i=1,...,b

P(py € p1 £t5q, .a/2(ﬂ1//\1&1)'/2) =l-oc

4.4 Method of Machol and Rosenblatt

Machol and Rosenblatt [1966] give a surprisingly simple
technique for estimating confidence intervals for u = E[Vi],
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where the single-replicate mean Y; is normal(g,0?), with o?
unknown. The confidence intervals are of the form

PlpeVtc|Yi—al)21-q,
where ¢ > 1 solves

/(c—1)
/ KV L erg o <08,
c/(c+1) / 2T

and a represents the user’s “best guess” for y. For instance, to
obtain approximate coverage of at least 90%, we require ¢ = 5.
Notice that 2 is never explicitly estimated. However, the price
that must be paid is that the confidence intervals are very wide

unless the user’s guess a happens to be close to the realization
of Y;.

5. CONCLUSIONS AND FURTHER WORK

To obtain useful outputs from manufacturing simulations
quickly, single replications of a simulation providing “represen-
tative” outputs (rather than steady-state means, for instance)
are proposed. Our approaches alter the model of the origi-
nal system and replace it with an approximation that might
be more interesting for the restricted problem at hand. A re-
search question is to determine the extent to which such strate-
gies are useful, in particular, the extent to which they are more
informative (or less variable) than the uncontrolled, unaltered
model used with the direct approach. A related research ques-
tion is to determine how to alter the sampling in the best way,
if sample modification turns out to be a useful strategy for
analysis.

Because only a single simulation replication will be run per
alternative control strategy, Bayesian methods or the method
of Machol and Rosenblatt can be used to provide interval es-
timates of a parameter. We illustrate how this can be done
when estimating the mean of a normal output process. Further
research will determine how these procedures can be applied
to nonnormal output metrics, such as the maximum lateness
(which is likely skewed).
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