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ABSTRACT

In this paper, we develop a theory of the lattice structure
of pseudorandom sequences from shift register generators, i.e.,
Tausworthe sequences and GFSR(Generalized Feedback Shift
Register) sequences. First, we define an analog of linear congru-
ential sequences in GF {2, z}, the field of all Laurent series over
the Galois Field of two elements GF(2), and show that this class
of sequences contains as a subclass the Tausworthe sequence.
We then derive a theorem that links the k-distribution of such
sequences and the successive minima of the k-dimensional lat-
tice over GF{2,z} associated with the sequences, thereby lead-
ing to the geometric interpretation of the lattice structure in
the k-dimensional unit space of these sequences. By generaliz-
ing this result, we define the successive minima for the point set
of k-dimensional vectors each consisting of k consecutive terms
of GFSR sequences, and show that GFSR sequences have a sim-
ilar structure to that of Tausworthe sequences. Finally, we give
an example of a simulation problem in which shift-register-type
pseudorandom sequences yield useless results due to such lat-
tice structures.

1. INTRODUCTION

Pseudorandom sequences from shift register generators have
long been used for Monte Carlo simulations, since the sequences
can be quickly generated in a computer. Two typical types
of sequences are currently used: the Tausworthe sequence and
the GFSR(Generalized Feedback Shift Register) sequence. Al-
though a theory on the randomness, in particular the k-dimen-
sional distribution(henceforth, k-distribution) of these sequences
has just recently been developed {Fushimi 1988; Fushimi and
Tezuka 1983; Niederreiter 1987, 1988; Tezuka 1987a, b, 1988],
there still remains a major open problem: What kind of struc-
ture underlies these sequences? Some researchers [Fishman 1978;
Marsaglia 1976; Ripley 1987] have suspected that these se-
quences have a structure similar to the lattice structure of lin-
ear congruential sequences discovered by Marsaglia[1968], and
have pointed out some examples of irregular patterns in the two
dimensional plot of the points produced from the consecutive
terms of this type of sequence, for example, see Figure 1.

The objective of this paper is to give a solution to this
long open problem in the field of random number generation
for discrete-event simulations. The paper is organized as fol-
lows. Section 2 briefly overviews the definitions of pseudoran-
dom sequences from shift register generators, i.e., Tausworthe
sequences and GFSR sequences. In Section 3, first, we de-
fine an analog of linear congruential sequences in GF{2,z},
the field of all Laurent series over the Galois Field of two ele-
ments GF(2), and show that it contains Tausworthe sequences
as its special case. Then we give the key theorem that links the
k-distribution of such sequences and the successive minima of
the k-dimensional lattice over GF{2,z} associated with the se-
quences, thereby leading to the geometric interpretation of the
lattice structure of these sequences. In Section 4, on the basis of
the results obtained in the foregoing sections, we define the ‘suc-
cessive minima’ of the point set produced from the consecutive
terms of GFSR sequences, and show that GFSR sequences have
a similar structure to that of Tausworthe sequences. Section 5
discusses an example of a simulation problem for which these
kinds of pseudorandom sequences produce completely useless
results due to their intrinsic structure.
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2. DESCRIPTION OF SHIFT-REGISTER-TYPE
PSEUDORANDOM SEQUENCES

First, we introduce the definition of shift register sequences.
A binary sequence {a;} is called a (p-th order) linear feedback
shift register sequence if the sequence is generated by a linear
recurrence relation

(mod 2)

where ¢; is 0 or 1, for ¢ = 0,...,p — 1, and {a;} is a binary se-
quence. Note that ay,...,d, are initial values for the recurrence.
The polynomial,

fl=) =

is called the characteristic polynomial of the shift register se-
quence. If the characteristic polynomial is chosen to be a prim-
itive polynomial over GF(2), then the period length of the se-
quence becomes 27 — 1, provided that the initial values are not
all zero. Therefore, we assume hereafter that f(z) is primitive
and that the initial values are not all zero.

A Tausworthe sequence {u;}, a sequence of numbers in
(0, 1)], is constructed as follows [Bratley et al. 1987; Tausworthe
1965]:

a; = Cp10i-) +-- 4+ CoQi—p,

z?f -0—«:19_,:5"'_1 + -+ caz+ ¢,

— -1
U= ) 4,427,

M=

I

1

where L is an integer, usually chosen to be the word size of a
computer, and s is an integer 0 < s < 27 — 1 with ged(s,2? —
1) = 1. Note that the digital multistep pseudorandom numbers
over GF(2) defined by Niederreiter[1988] are a special case of
Tausworthe sequences, ie., 0 < s =L < p.

1973‘? GFSR sequence is defined as follows [Lewis and Payne

L
—_ E : -1
U; = a]-,+;2 .
=1

Note that I < p (otherwise, a linear dependence relation ap-
pears between the column bits of ;). Originally, Lewis and
Payne set j; to be - d, where d is a constant, and suggested
that d should be greater than 100p. In addition, they employed
a primitive trinomial for the characteristic polynomial of {a;}
in order to realize a fast generation scheme for the sequence in
the following way: Let f(z) = z” + 29+ 1. Then the sequence
can be generated by the scheme

u;, = Ui—g .XOR. Ui—p-

In this paper, we assume that 5,/ = 1,..., L, are integers be-
tween 0 and 27 — 1 and that f(z) is a primitive polynomial.

The matrix representation of GFSR sequences is very useful
for the analysis to be carried out in Section 4. Let C be the
companion matrix of the polynomial f(z), namely,

0 1 0 0

0 0 1 0
c= . ,

0 0 0 1

co ¢ -1 1
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and let a be a non-zero binary column vector. Then the GFSR
sequence is written as follows:

Ga,GCaq,...,GC'a, ...,

where G is a L » p matrix over GF(2) whose i-th row vector,
denoted by G;, is uniquely determined by the equations

a4i = (G, C" '), fori=1,..,p.

Here (a,3) means the inner-product of binary vectors a and 3
over GF(2). Note that Tausworthe sequences can be written as
a special case of GFSR sequences.

3. LATTICE STRUCTURE OF TAUSWORTHE
SEQUENCES

3.1 Definition of Linear Congruential Generators
in GF{2,z}

Here we define an analogous version of linear congruential
sequences in GF{2,z}. This generator is formulated as follows:
let o be a mapping from GF{2,z} to the real field defined as

m

z a,-Z‘,

i=—oco

a( i a;z') =

1=—o00

where a; is in GF(2). Then a pseudorandom sequence u,,1 =
1,2,...,in [0,1) is given as

fi(=) 9(z)firr(z) + h(z)  (mod M(z))
Y o(fi(z)/M(z)), (1)

where g(z), h(z), M(z) and f,(z) are polynomials in GF{2,z}.
In practical situations, u; is expressed approximately by its
truncated value due to the word-size limitation.

In what follows, we show that Tausworthe sequences are a
special case of the above general class. Let M (z) be a primitive
polynomial, g(z) = z’ (mod M(z)) with 0 < 5 < 27 — 1,
h(z) = 0, and L be the word-size. Then, for ¢ = 1,2,..., the
sequence is given as

-1
u; = a;, 4127,

Me

1

1

where {a,} is a binary sequence generated by a linear recurrence
relation whose characteristic polynomial is M(z). Clearly, this
is equivalent to the definition of Tausworthe sequences.

3.2 A Theorem on the K-distribution of Linear
Congruential Sequences in GF{2,z}

In this subsection, we present a theorem that links the
k-distribution of the sequences defined in (1) with the suc-
cessive minima and reduced basis of a lattice in the vector
space over GF{2,z}. The k-distribution of a sequence {w:}
is concerned with the uniform distribution of the_e d-bit k-tuple
([wildy «--» [(wisk=1]a), where [w]]q is the leading d bits of u,.

Definition 1 A sequence {u;} with period 27 —1 is Ic—disktdrib?tted
with d-bil resolution if every d-bit k-iuple appears 27~ times
over the whole period, ezcepl for one d-bil k-tuple, which appears
one time less.

Consider the k-tuples (fi(z)/M(z), ---, or—1(z)/M(2)), e = l,/%,
..., produced by (1). These are expressed by the lattice Ly + A,
where the basis of Ly is given as

ﬁ(l,gm,g?m gt (@),
(0,1,0, ..., 0),

e =

€2

ex = (0,0,0,...,1),

and A = l{'l‘(?)(o, 1,1+ g(z),...). Hereafter, we call L, the lattice

associated with a sequence defined in (1). Let L; be the dual
of Li. Then the basis for L} is given as

(M(z),0,0,...,0),
(9(),1,0,...,0),

€
e

e; = (¢7%(z),0,0,...,1).

Define the norm |a| of a vector a = (ay, ..., ax) as max{deg(a;) :
1 < i < k}. The notions of reduced basis and successive minima
of a lattice L in a vector space over GF{2,z} are defined as
follows [Lenstra 1985):

Definition 2 For 1 < j < k, a j-th successive minimum |b;|
of L is recursively defined as the norm of a vector of a small-
est norm in L that is linearly independent of by, b,, ..., b;_y over
GF{2,z}, and the basis by, by, ..., by is called a reduced basis of
L.

We obtained the following theorem|[Tezuka 1989].

(For the
reader’s convenience, the proof is added.)

Theorem 1 A sequence with the mazimum possible period 27 —
1 defined by (1) is k-distributed with d-bit resolution if and only
if the k-th successive minimum of the lattice Ly is at most —d.
Proof. From the theory of uniform distribution of sequences in
GF{q,z} [Kuipers and Niederreiter 1974], a sequence defined
in (1) of length 27 — 1 is k-distributed with d bit resolution if
and only if, for any nonzero (s,(z), ..., se(z)) with deg(s;) < d,

Z n#_le(si(x)w)

deg(n) <p - M(z)
_ (o Bt 0 (@)si()
- deg(§:<P ( ( ) Al(l) )
= 0.

Here e(a) denotes the character of a in GF{2,z} defined as
e(a) = (-1)*,

where a; is the coefficient of 2~ in the expression for a. Let [ be
the norm of a nonzero shortest vector of the lattice L;. Then,
from the definition of L;, ! is given as the minimum norm of
the nonzero solutions of

Z:g"’(a:)s,(z) =0 (mod M(z)).

This is equivalent to the following: for any nonzero (s, (z)

(z)) with deg(s,) < d < 1, ok

Y97 (2)si(2) #£ 0 (mod M(a)).

Recall Mahler’s[1941] theorem that |B;| + |ay_,41| = 0, for i =
1,..., k, where ay, ..., e, and fi, ..., B; are reduced bases of a lai-
tice in a vector space over GF{2,z} and of its dual, respectively.
From this theorem it follows that ~Iis equal to the k-th succes-
sive minimum of the lattice L;. Thus the proof is complete.O

Lenstra[1985] presented a basis reduction algorithm in GF{q,z}
t!-lat runs in time poly.nomial in the size of data and the dimen-
sions. Since this algorithm works with respect to the maximum

norm of a vector over GF{g,z}, it can be applied to examinin
the k-distribution of the seq’uen,ces defined 1n (1) &
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3.3 Geometric Interpretation of Theorem 1

For brevity, we consider the two-dimensional case. Let S(I)
be an equidissection of the two-dimensional unit space defined

as
S() = {300, Mo < ivj < 2,

where J(1,1,7) is a subinterval [:27%,(i + 1)27') x 727, (; +
1)27Y), for 0 < 4,5 < 2. Let aj,a; be the reduced basis of
the lattice L;. Since |a;| < |ay|, each cell of the equidissection
S(—|oz| = 1) contains 27+2*2l quadrilaterals, each consisting of
four lattice points Py, P;, Py, P specified as P, = P, & o(a;),
Py = P®o(a;), Py = P, & o(a;) ® o(az), where @ is the
bit-wise exclusive-or operation of the corresponding coordinates
and o(a) means a point (o(a. ), o(ey)) for a vector a = (o, ).
Theorem 1 claims that every cell of the equidissection S(—|a,|)
contains an equal number of points, namely, 2?*2l%:l and that
the point set cannot be evenly distributed into smaller cells of
the equidissections S(k) for k > —|a|.

Figure 1 shows the point set produced by the Tausworthe
sequence, u; = Zf:x a4:4+;277, where {a;} follows the recurrence
relation a; = a;_s + a;—¢ (mod 2), and Figure 2 gives an ex-
ample of the equidissection 5(2) of the unit space. As is easily
seen, each cell of 5(1) contains four quadrilaterals consisting of
16 points in the point set, and each cell of the equidissection
S(2) contains four points. Furthermore, none of the equidis-
sections S(k),k > 2, can evenly divide the point set. Here,
a; = (.0001,.000011) and a, = (.000001,.01) in the binary rep-
resentation.

4. LATTICE STRUCTURE OF GFSR SEQUENCES

In this section, we show that the result obtained in the
preceding section can be extended to GFSR sequences. First,
we define the successive minima of the point set produced by
the consecutive terms of GFSR sequences. Let L(m,,...,m;) be
the set of row vectors, {G;C7 Y1 <i<m;,1 <<k}

Definition 3 The first successive minimum l; is defined as the
smallest I such that L(I+1,...,l+1) is not of full rank. The j-th
successive minimum l; is defined as the smallest I > 1;_,, if any,
over all permutations (my,...,my) of (..., oy, 1+ 1,1+ 1)
such that L(m,,...,m;) is not of full rank; otherwise I; =1;_,.

We can then show that the above definition is a natural
extension of the successive minima of the dual lattice associated
with Tausworthe sequences. The following theorem describes it:

Theorem 2 The successive minima of the dual lattice associ-
ated with a Tausworthe sequence are identical with those of the
GFSR sequence that is defined as a sequence of the leading p
bits of each term of the Tausworthe sequence.

Proof. This follows from the fact that p-bit Tausworthe se-
quences constitute a subclass of GFSR sequences. O

Note tha.t t.he. theorem on the k-distribution of GFSR se-
quences obtalngd in [Fushimi and Tezuka 1983; Tezuka 1987a]
can be restated in terms of the successive minima defined above.

Proposition 1 4 necessary and sufficient condition for GFSR
sequences 1o be k-distributed with | bi{ resolution is that L >0

We should notice the following difference of the successive min-
ima defined above from the original ones:

Proposition 2 For GFSR sequences, we have I, +---+4 1, < P,
whereas the equality always holds for Tausworthe sequences.

The above considerations lead us to the conclusion that
GFSR sequences also have a lattice structure similar to that of
Tausworthe sequences. For GFSR sequences, the basis vectors
corresponding to the successive minima are defined as follows:
Denote L =10, +---+ 1, —k,let Abea L x P binary matrix,
and define the i-th row vector of 4 as G,,C*, where m = i —

Uit

1.0

1.0

Figure 1. A set of two-dimensional points, (u;, 4;41),5 = 1, ...,
6

63, produced by the Tausworthe sequence, u;
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Figure 2. Sixteen quadrilaterals from the same point set as in
Figure 1 divided by the equidissection 5(2)
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TG - H S - <i < (- 1) for 1< A < k.
Assume I, + --- + I, = p, and denote the linearly independent
nonzero solutions of the linear equation Az = 0 by z,...,z,
such that the successive minimum [; corresponds to the norm
of the k-dimensional vector defined as (GCz;,...,GC*z;), for
i=1,..., k. These k-dimensional vectors can be regarded as the
basis vectors for the lattice associated with GFSR sequences.
Note that when l; + - -+l < p, multiple vectors correspond to
each of the successive minima.

Consider, for example, the two-dimensional case. Since C
is the companion matrix of a primitive polynomial, we can put
one of nonzero solutions as z, = C*"'z,, where z4 is a fixed
nonzero binary vector and s, is a properly chosen integer. A
point (GC'zy, GC'*'z,) from a GFSR sequence has as one of
its neighbors (GC'zq, GCM'zo) + (GCzy, GC?xy) = (G(C'™* +
C")Cxy, G(C'™1+C")C?2¢) = (G(C?)Czo, G(C?)C?zy), where
d is uniquely determined because the characteristic polynomial
of C is primitive. Since the point (GC?*'zo, GC**?x,) is a dif-
ferent point from the same GFSR sequence, it becomes clear
that GFSR sequences have a similar structure to that of Taus-
worthe sequences.

5. DISCUSSION

From the results obtained in the foregoing sections, we can
show that in the following simulation problem shift-register-
type pseudorandom sequences produce completely useless re-
sults because of their lattice structure. Consider a problem
of distributing n points P;,¢ = 1,..,mn, randomly in the k-
dimensional unit space. Define the distance of two points as
d(P,,PJ) = maX;i<k I-Xil XOR X_,[l, 'where P.' = (X,'l, ...,X.k)
and | X|is defined to be iif 2* < X < 2*'. If the point set is uni-
formly and independently distributed in the k-dimensional unit
space, then the minimum distance d, = min;iz<n (P, P;) has
the following distribution for small ¢:

Pr(d, <t) = 1-—Pr(d.>1)
= 1= Pr(da_y > 1) x (Pr(dz > t))*!
n—1
- 1- H(l _ 2"‘)‘
i=1
n—1

1- (1 -i2")

1=1

u

n(n — 1)2"‘)(1 N (2n - 1)2’")).

~ 1-ezxp(—( 3 5
In other words, the probability of d, being small for large n
is non-negligible. Nevertheless, when the k-consecutive terms
from a shift-register pseudorandom sequence with period 27 —1
constitute the k-dimensional points, the distance d, is always
no smaller than —[p/k], assuming that their k-distribution is
good(i.e,ly+-- -+l =pand , = (p/k]). For instance, if p = 30
and k£ = 5, then d, > —6, for any = > 1, in the case of the
points from shift register generators with good k-distribution,
whereas Pr(d, < —6) = 1, for n > 50000, in the case of gen-
uinely random points. Therefore, we can say that the use of
shift-register-type pseudorandom sequences with med{um-slzed
period lengths should be avoided in this kind of simulation prob-
lem.
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