Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

MODEL GENERATION ISSUES IN A SIMULATION SUPPORT ENVIRONMENT

Osman Balci
Richard E. Nance
E. Joseph Derrick

Ernest H. Page
John L. Bishop

Department of Computer Science
and Systems Research Center
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT

This paper provides an overview of a simulation support envi-
ronment and presents a discussion of a number of issues related to
the generation of a simulation model. The need for automated, com-
puter-based assistance in the generation of simulation models of
large, complex systems is undeniable. The required support goes
beyond the programming process and extends to all phases of the
simulation model development life cycle. In the last several years,
we have been developing a domain-independent simulation support
environment with four layers on a Sun computer workstation. The
software tools of the environment are briefly described. The most
challenging tool of the environment has been the Model Generator;
the tool with which a modeler creates a simulation model specifica-
tion under a conceptual framework. Our experience and a discus-
sion of issues in developing the Model Generator software tool are
presented.

1. INTRODUCTION

The ever-increasing complexity of systems being simulated
mandates cost-effective, integrated and automated support of simu-
lation model development throughout the entire model development
life cycle. A simulation programming language supporting just the
process of programming is not sufficient for complex, large sys-
tems. The required computer-aided assistance goes beyond the pro-
cess of programming and extends to all phases of the simulation
model development life cycle starting with system and objectives
definition and culminating with integrated decision support.

Support of all phases of the life cycle is achieved in the form of
an environment. An environment is an integrated set of hardware
and software tools that provide cost-effective, automnated support
throughout the entire development life cycle. A collection of tools
that is not integrated does not constitute an environment. A set of
integrated tools not supporting all phases of the life cycle consti-
tutes an incomplete environment. The supporting hardware tools
could be a scanner, optical character recognizer, video digitizer,
CD-ROM player, sound digitizer, laser printer, etc. The supporting
software tools could be the ones described in Section 2.2.

In the last several years, we have been developing a simulation
support environment on a Sun computer workstation. Among the
tools that have been prototyped, the Model Generator tool has been
the most challenging. The purpose of this paper is to provide an
overview of the environment and to discuss the issues related to the
development of the Model Generator tool. Section 2 presents the
overview of the simulation support environment. Section 3 discuss-
es the methodology, conceptual frameworks, automated assistance,
automatic translation, human-computer interface, visualization, in-
teractive multimedia technology, and rapid versus evolutionary pro-
totyping issues in the generation of simulation models. Conclusions
are given in Section 4.

2. AN OVERVIEW OF THE SIMULATION SUPPORT
ENVIRONMENT

The Simulation Model Development Environments (SMDE)
research project at VPI&SU has been developing an environment

257

that can be characterized as a simulation support environment or a
computer-aided simulation engineering environment. The SMDE
project has addressed a complex research problem: prototyping a
domain-independent discrete-event simulation support environment
to provide a comprehensive and integrated collection of computer-
based tools to:

eV
(03]
3
O]

Guided by the fundamental requirements identified by Balci
[1986), prototyping techniques have been used to develop the proto-
types of SMDE tools on a Sun 3/160 computer workstation. The
object-oriented paradigm enunciated by the Conical Methodology
(Nance 1987] has furnished the underpinnings of the SMDE
research prototype [Balci and Nance 1987a].

offer cost-effective, integrated and automated support of
model development throughout the entire model life cycle;
improve the model quality by assisting in the quality assu-
rance of the model;

significantly increase the efficiency and productivity of the
project team; and

substantially decrease the model development time.

2.1 SMDE Architecture

Figure 1 depicts the architecture of the SMDE in four layers:
(0) Hardware and Operating System, (1) Kernel SMDE, (2) Mini-
mal SMDE, and (3) SMDEs.

2.1.1 Layer 0: Hardware and Operating System

A Sun 3/160 computer workstation running under MC68020
CPU with 8 megabytes of main memory, 380 megabytes of disk
subsystem, a 1/4-inch cartridge tape drive, and a 19-inch color mon-
itor with 1152-900 pixel resolution constitute the hardware of the
prototype SMDE. A laser printer and a line printer accessible via an
Ethernet local area network serve the SMDE for producing high
quality documents and hard copies of Sun screens and files.

The UNIX SunOS 4.0 operating system and utilities, a graphi-
cal human-computer interface (SunView), device independent
graphics library (SunCore), computer graphics interface (SunCGI),
Sun programming environment (SunPro), and INGRES relational
database management system (SunINGRES) constitute the software
environment upon which the SMDE is built.

2.12 Layer 1: Kernel Simulation Model Development
Environment

Primarily, this layer integrates all SMDE tools into the soft-
ware environment described above. It provides SunINGRES data-
bases, communication and run-time support functions, and a kernel
interface. There are three SunINGRES databases at this layer
labeled project, premodels, and assistance, each administered by a
corresponding manager in Layer 2. All SMDE tools are required to
communicate through the kernel interface. Direct communication
between two tools is prevented to make the SMDE easy to maintain
and expand. The kernel interface provides a standard communica-
tion protocol and a uniform set of interface definitions. Security

0. Balci, R.E. Nance, E.J. Derrick, E.H. Page, and J.L. Bishop

T T
333333384
666664 [™
22000e e
4 Model :::)'¢
An A
e alyzer 5.¢ e o)
? &S Model L&
tﬁ > {¢X Translator 5
N 1 A A o
AN / CX XXX
AN X
AAANAL, o
BRRSS Model
% e Verifier
R
R
s s
AR
V1722720227277 77.0 227
S
AN T
272777 2227
77 fode 3%
222507 ! ARAA
Hardware and G e
Operating System BB i
L2520052255057
o2
7 XXX -
\ 200084 p o Electronic
Premodels &2 Mail
ada’
X2 ManageIAo_(2 Kemel Interface System
X RRRAR
IR
A0 0200000040220007.
sl P
A7 i Project 2250y Editor
72545775, Manager 5
t5505550 ager ;222
5500,
CAARARRARRRRRRRR
i
iiiaesy
%
Minimal SMDEs
SMD]
‘l/l//// Illlllll
22 e
2525 Ty
S55iss Ty
Preliminary Advanced
Progress Progress

Figure 1. The Architecture of the SMDE and Current Status of Each Minimal SMDE Tool

protection is imposed by the kernel interface to prevent any unau-
thorized use of tools or data.

2.1.3 Layer 2: Minimal Simulation Model Development
Environment

This layer provides a “comprehensive” set of tools which are
“minimal” for the development and execution of a model. “Com-
prehensive” implies that the toolset is supportive of all model devel-
opment phases. “Minimal” implies that the toolset is basic and gen-
eral. It is basic in the sense that this set of tools enables modelers to
work within the bounds of the minimal SMDE without significant
inconvenience. It is general in the sense that the toolset is generical-
ly applicable to various simulation modeling tasks.

Minimal SMDE tools are classified into two categories. The
first category contains tools specific to simulation modeling: Project
Manager, Premodels Manager, Assistance Manager, Command
Language Interpreter, Model Generator, Model Analyzer, Model

258

Translator, and Model Verifier. The second category tools (also
called assumed tools or library tools) are expected to be provided
by the software environment of Layer 0: Source Code Manager,
Electronic Mail System, and Text Editor.

The current prototypes of the minimal SMDE tools are
described in Section 2.2.

2.14 Layer 3: Simulation Model Development Environments

This is the highest layer of the environment, expanding on a
defined minimal SMDE. In addition to the toolset of the minimal
SMDE, it incorporates tools that support specific applications and
needed either within a particular project or by an individual model-
er. If no other tools were added to a minimal SMDE toolset, a mini-
mal SMDE would be a SMDE.

. The SMDE tools at layer 3 are also classified into two catego-
ries. The first category tools include those specific to a particular
area of application. These tools might require further customizing

Model Generation Issues in a Simulation Support Environment

for a specific project, or additional tools may be needed to meet
project requirements. The second category tools (also called
assumed tools or library tools) are those expected to be available
due to their availability and use in several other areas of application.
A tool for statistical analysis of simulation output data, a tool for
designing simulation experiments, a graphics tool, a tool for anima-
tion, z;nd a tool for input data modeling are examples of tools in
layer 3.

An SMDE tool at layer 3 is integrated with other SMDE tools
and with the software environment of layer O through the kernel in-
terface. The provision for this integration is indicated in Figure 1 by
the opening between Project Manager and Text Editor.

2.2 Description of Current Prototypes of Minimal SMDE Tools

Figure 1 shows the current status of each minimal SMDE tool
on a scale from preliminary progress to advanced progress. Each
tool with its current status is described below.

Project Manager is a software tool which: (1) administers the
storage and retrieval of items in the project database; (2) keeps a re-
corded history of the progress of the simulation modeling project;
(3) triggers messages and reminders (especially about due dates);
and (4) responds to queries in a prescribed form conceming project
status. Other than the preliminary design decisions, little work has
been done on the Project Manager. Its development is dependent on
design decisions taken for the other minimal SMDE tools; there-
fore, high-level design is being delayed until sufficient progress is
achieved on the other tools.

Premodels Manager is a software tool intended to facilitate
the reusability of earlier developed models or model components.
Using this tool, a modeler searches the premodels database to iden-
tify earlier developed model components for reuse in the develop-
ment of a new simulation model. An early prototype has been de-
veloped by Box [1984]. An advanced prototype of the Premodels
Manager software tool is being developed.

The Assistance Manager software tool has been prototyped
[Frankel and Balci 1989] to provide: (1) information on how to use
an SMDE tool; (2) a glossary of technical terms; (3) introductory
information about the SMDE; and (4) assistance for tool developers
in supplying “help” information.

Command Language Interpreter (CLI) is the language
through which a user invokes an SMDE tool. An early prototype,
based on the design by Moose [1983], is described in [Humphrey
1985]. Following the acquisition of the Sun workstation, the Sun-
View graphical user interface has served the CLI function.

Model Generator (the simulation model specification and doc-
umentation generator) is a software tool which assists the modeler
in: (1) creating a model specification in a predetermined form
which lends itself to formal analysis; (2) creating multi-level (strati-
fied) model documentation, and (3) performing model qualification.
Three research prototypes of the Model Generator have been devel-
oped. The first [Hansen 1984] implements the definition stage of
the Conical Methodology [Nance 1987]. The second builds on the
first by adding the specification stage of the Conical Methodology,
mostly based on the Condition Specification [Barger 1986; Barger
and Nance 1986; Overstreet and Nance 1985; Overstreet et al.
1986]. The third is based on a conceptual framework developed by
O. Balci and implemented by Bishop [Bishop and Balci 1990]). Im-
proved prototypes of the Model Generator are needed since it is the
most crucial tool of the SMDE. Prior research [Balci 1988; Derrick
1988; Derrick et al. 1989] and Derrick's ongoing Ph.D. investiga-
tion is intended to surface new ideas in this critical area. Achieving
the automation-based software paradigm [Balci and Nance 1987b)
in the simulation modeling domain relies heavily on improved un-
derstanding of contributions by conceptual frameworks to knowl-
edge extraction and model representation.

The Model Analyzer diagnoses the model specification creat-
ed by the Model Generator and effectively assists the modeler in
communicative model verification. The first prototype is described
by Moose and Nance [1987]. The current research prototype imple-
ments a control and transformation metric for measuring model
complexity [Wallace and Nance 1985], and provides diagnostic
assistance using digraph representations of simulation model speci-
fications [Nance and Overstreet 1987; Overstreet and Nance 1983,
1986].

259

Model Translator translates the model specification into an
executable representation after the quality of the specification is
assured by the Model Analyzer. Currently, a prototype of the Model
Translator is employed within the General Purpose Visual Simula-
tion System developed by Bishop and Balci [1990].

Model Verifier is intended for programmed model verification
[Whitner and Balci 1989]. Applied to the executable representa-
tions, it provides assistance in substantiating that the simulation
model is programmed from its specification with sufficient accura-
cy. Extensive groundwork [Balci 1987, 1990; Whitner and Balci
1989] has been conducted to prototype the Model Verifier, but
development is delayed until a standard executable model represen-
tation is adopted for the SMDE.

Source Code Manager is a software tool which configures the
run-time system for execution of the programmed model, providing
the requisite input and output devices, files and utilities. Its devel-
opment is being delayed until a standard executable model repre-
sentation is adopted for the SMDE.

Electronic Mail System facilitates the necessary communica-
tion among project personnel. Primarily, it performs the task of
sending and receiving mail through (local or large) computer net-
works. The Sun workstation's MailTool is currently used as the
Electronic Mail System of the SMDE. The Sun computer worksta-
tion is a node on the Internet computer network with the node name
of mdesun.cs.vt.edu.

Text Editor is used for preparing technical reports, user manu-
als, system documentation, correspondence, and personal docu-
ments. Currently, the vi editor serves as the text editor for the
SMDE.

3. MODEL GENERATION ISSUES
3.1 Methodology

Often used without a clear meaning or as an embellishing sub-
stitute for “method,” the term “methodology” is defined [Henry et
al. 1985, p. 4] as a problem-solving procedure that should:

(1) organize and structure the tasks comprising the (problem-
solving) effort to achieve global objectives,

(2) include methods and techniques for accomplishing individ-
ual tasks (within the framework of global objectives), and

(3) prescribe an order in which certain classes of decisions are
made and the ways of making those decisions that lead to
the desired objectives.

A methodology may presume a conceptual framework
(described below) or prescribe one. In fact, the relationship between
the two terms has become clouded, but the latter, in its original con-
text, connotes a passive explanatory guide to describing the system
(world) that is conducive to accomplishing (study) objectives. For
example, mathematical programming provides a conceptual frame-
work for solving optimization problems.

On the other hand, a methodology represents a more active,
prescriptive set of directions on “how to do it.” A methodology
includes either a (possibly implicit) conceptual framework. Struc-
tured modeling [Geoffrion 1987] is a methodology that utilizes a
mathematical programming conceptual framework, but may not be
limited to that framework.

3.1.1 Roles of a Methodology

Nance and Arthur [1988] identify the dual roles of a methodol-
ogy as: (1) contributing to the understanding of the development
task and how to accomplish it, and (2) providing the requirements
specification for a supporting environment. This latter role can be
understood within the context of the Objectives/Principles/
Attributes (OPA) framework for methodologies [Nance and Arthur
1988, pp. 221-222], which can be summarized in the following
rationale:

A project effort (modeling or software) has defined objec-
tives which are desired. Achievement of the desired objec-
tives can be assured through application of certain princi-
ples that should govern the effort. An effort governed by

0. Balci, R.E. Nance, E.J. Derrick, E.H. Page, and J.L. Bishop

such principles should lead to a product (model or soft-
ware) that evinces distinguishing attributes.

Thus, principles establish the requirements for tools, €.g. a
methodology advocating the principle of hierarchical decomposi-
tion stipulates the need for modeling utilities that support this top-
down refinement of abstraction.

The roles of a methodology might be described as conceptual,
i.e. the prescription of “how the modeler should see the world” and
practical, i.e. setting forth the requirements for helping the modeler
express “what is seen.” Both roles are requisite in the methodology
principles.

3.1.2 Effect of the Conical Methodology

The Conical Methodology has served both the conceptual and
practical roles as the foundation for the SMDE. The objectives and
principles are described in the work cited above, and the latter are
repeated here:

(1) Top-down model definition followed by bottom-up model
specification promotes model correctness and testability.
(2) Documentation and specification must be inseparable to
assure model maintainability, adaptability, and reusability.
(3) Iterative refinement and progressive elaboration of model
description are essential in the abstraction resolution
required for assuring the correctness of large, complex
models.
Verification must be instituted as early as possible in the
model development and continue throughout to enhance
model testability and promote model correctness.
Model specification should be independent of model im-
plementation to promote model adaptability, reusability,
and maintainability.

1C))

(5

Table 1, taken from [Nance and Arthur 1988, p. 224], maps the
principles above to the affected SMDE tools shown in Figure 1.
Examination of this Table should convincingly demonstrate the
practical role. Demonstration of the conceptual role, in a convincing
fashion, requires use of an SMDE prototype.

3.2 Conceptual Frameworks

A Conceptual Framework (CF) is a structure of concepts under
which a modeler is guided to represent a system in the form of a
model. A CF is also called a simulation strategy, a world view, and
a formalism in the literature. Object-oriented paradigm, Conical
Methodology, process interaction, event scheduling, three-phase
approach are among the 13 CFs Derrick et al. [1989] compare.

Conceptual Frameworks play an important role in four distinct
approaches for the construction of a simulation model generator as
depicted in Figures 2 through 5. In approach 1, the model generator
employs a CF (e.g., object-oriented paradigm) under the guidance
of which a user creates a specification which is then translated into
an executable model. The CF of approach 1 is expected to be easily
applicable for modeling a large class of problems.

For a particular application domain, a CF can be developed to
provide much more detailed guidance and to facilitate model speci-
fication much more effectively in comparison with approach 1. This
philosophy is adopted by approach 2 shown in Figure 3. For each
application domain of interest, a model generator is built using a CF
designed based on the domain specific knowledge. SIMFACTORY
(factory simulation), COMNET (wide-area voice and data network
simulation), NETWORK (computer communications network simu-
lation), and LANNET (local area network simulation) are example
commercial products (registered trademarks of CACI, Inc.) that use
approach 2.

Several domain specific CFs can be incorporated in a model
generator with a selector component in approach 3 illustrated in
Figure 4. The CF Selector aids the user in selecting the most appro-
priate CF for the problem domain of interest. Once a CF is selected,
the user generates the executable model following that CF's path
that is independent of the paths of the other CFs. Such a model gen-
erator, although huge in amount of code, provides easy model spec-
ification for a number of problem domains. Potential duplication of

260

the same specification under different CFs contributes to the large
size of the generator; however, such duplication facilitates main-
tainability and modifiability of the generator.

Approach 4, shown in Figure 5, is similar to approach 3 except
that the common elements of the CFs are shared within the model
generator. The generator size is reduced at the expense of less main-
tainability and modifiability.

The Model Generator [Bishop and Balci 1990] of the SMDE
uses approach 1 employing a new CF which is graphical, object-
oriented, and activity-based.

3.3 Automated Assistance

A fundamental human limitation, the hrair limit, dictates that a
human being cannot simultaneously handle more than 712 activi-
ties. A simulation modeler undoubtedly needs assistance in model-
ing a complex system with dozens or hundreds of simultaneous
activities. The modeler needs methodological, conceptual, and com-
puter-aided assistance to overcome the complexity of simulation
modeling. A modeling methodology, a conceptual framework, and
a model generator software tool can provide the required assistance
in generating simulation models.

3.4 Automatic Translation

The translation of model specification created by the model
generator into an executable model is certainly a challenging issue
in all four approaches shown in Figures 2 through 5. Balzer et al.
[1983] propose an automation-based software paradigm that incor-
porates the capabilities of automatic programming, program trans-
formation, and a “knowledge-based software assistant.” This radi-
cally different approach proposes a shift from the current informal,
person-based software paradigm to a formalized, computer-assisted
software paradigm. Today, maintenance constitutes 67 to 80 percent
of software life-cycle cost and it is a major problem. Under the au-
tomation-based paradigm, maintaining the specification as opposed
to the implementation can significantly reduce this problem. Balci
and Nance [1987b] discuss the automation-based software para-
digm for simulation support within the SMDE.

3.5 Human-Computer Interface

A graphical user interface (GUI) is a crucial element in provid-
ing the required computer-aided assistance in model generation.
Early in the SMDE research project, a dumb-terminal interface to a
UNIX computer has proven to be useless. The dumb-terminal inter-
face, although menu driven, has resulted in a tedious, long, and
ineffective interaction for extracting the knowledge necessary for
model generation. After the acquisition of the SUN workstation in
1985, SunView GUI has provided the needed platform. However,
some prototype tools developed under SunView employing a strict-
ly menu-driven interface has also proven to be ineffective. Hence, a
graphical, window-driven interface has been designed under a new
CF as the GUI of the Model Generator tool in the SMDE.

3.6 Visualization

Two basic types of simulation model visualization exist: Pos:-
simulation animation visualizes the input, internal, and output
behaviors of a simulation model by using the simulation trace data
generated from a completed simulation run. Simulation-concurrent
animation visualizes the input, internal, and output behaviors of a
simulation model as the simulation runs. The second type is
required for providing an interactive visualization.

Development of a post-simulation animation requires the
instrumentation (insertion of trap codes or hooks for the purpose of
gathering data) of the simulation model. The instrumented simula-
tion model is run to completion creating the trace data from which
the model visualization is obtained. Simulation-concurrent anima-
tion imposes much more challenging demands on the construction
of the model, but it provides the interactive capability. The model is
constructed with the objective of visualization. Hence, an additional
requirement is added to the development process making it more
complex and demanding.

The added complexity is justified, however, by the additional

Model Generation Issues in a Simulation Support Environment

Table 1. Procedural Guidance for Environment Design Tool Functionality

Conical Methodology Procedural Guidance Environment
Principle Derived From the Tools Affected
CM Principle
1. Top—(iqwn model 1.1 Definition must Model Generator
definition/bottom-up precede specification Premodels Manager
model specification
2. Documentation and 2.1 Model documentation ~ Assistance Manager
specification are is produced during Project Manager
inseparable model specification Model Generator
2.2 The model specifi-
cation and consequent
documentation should
support different
views (aspects) of the
modeling task
3. Iterative refinement 3.1 The degree of detail of ~ Premodels Manager
and progressive submodel description Model Generator
elaboration should be controlled
by the modeler; sub-
model stubbing should
be supported so that
later addition of detail
is facilitated
3.2 The functional expan-
sion (progressive elab-
oration) of the model
should be supported
4. Verification must begin 4.1 Diagnosis of model Project Manager
with communicative representation should Model Analyzer
models and continue begin as early as possi- Model Verifier
throughout the develop- ble, certainly prior to
ment process the program form
4.2 Automated or semi-
automated diagnosis is
a requirement
5. Model specification is 5.1 The execution (imple- Model Generator
independent of model mentation) details Model Analyzer
implementation should be ignored in Model Translator
the model develop- Model Verifier
ment (specification)
process
Model Generator

User —=

Conceptual
Framework

benefits to be gained from visualization. Most importantly, visuali-
zation facilitates verification, validation, and testing of the SImulaj
tion model. Other benefits are described in [Bishop and Balci
1990].

3.7 Interactive Multimedia Technology

Interactive multimedia technology refers to the integrated use
of video (motion), audio (sound), images, graphics, and text in an
interactive fashion on a computer. Such a technology would be use-
ful to educate the modelers about the operation of the system under

Executable
Model

Figure 2. Model Generator Construction Approach 1

study. A modeler can, for example, interactively watch a video of
how a manufacturing system operates in one window on the com-
puter, and in another window work on the development of its mod-
el. Knowledge of the system being modeled is crucial for develop-
ing successful simulation models. Therefore, interactive multimedia
technology can provide significant assistance in model generation.

3.8 Rapid Versus Evolutionary Prototyping

The prototyping of SMDE tools has employed the design and
development strategy generally described as rapid prototyping with

261

0. Balci, R.E. Nance, E.J. Derrick, E.H. Page, and J.L. Bishop
Model Generator 1

U Conceptual Model Executable
¢ —=1 \ Framework 1 J Specification 1 | Model 1
Model Generator 2
U Conceptual ¥ Model Executable
Ser —=1 | Framework 2 | Model 2
Model Generator N
U Conceptual W Executable
ser —=1 | Framework N } Model N
Figure 3. Model Generator Construction Approach 2
Model Generator

Executable
Model 1

Conceptual Y}
| _ Framework 1 J I
Conceptual)
Framework 2 ;.

Executable
Model 2

User —+

Conceptual Framework Selector

Model Executable

Conceptual
[| Framework N i

Specification N | Model N
Figure 4. Model Generator Construction Approach 3
Model Generator
Conceptual Model Executable
™ Framework 1 [T\ Specification 1 Model 1
|§ g B
(93
2
(]
w
%
g | Conceptual | Model P, Executable
User —-o § Framework 2 Specification 2 Model 2
g S
2 |
2 i i :
g |
5
Ol | Conceptual Model Executable
Framework N T\ Specification N Model N
|] R

Figure 5. Model Generator Construction Approach 4

262

Model Generation Issues in a Simulation Support Environment

one major departure. Rapid prototyping maintains that the knowl-
edge gained from development is foremost, and the actual product
should be totally discarded so as not to inhibit design creativity in
subsequent versions. With “evolutionary prototyping” the intent is
to retain those portions of the prototype which represent the kernel
for the next version. In essence, a balance is struck between the lim-
itations on creativity and the efficiency of design, and potentially
code, reuse. Our experience with evolutionary prototyping has been
decidedly positive.

4. CONCLUSIONS

The ever-increasing complexity of systems studied via simula-
tion mandates a software environment providing cost-effective,
integrated and automated assistance throughout the entire simula-
tion model development life cycle. The SMDE Research Project
described herein is a major step towards such an environment.
Development of the Model Generator software tool has been the
most challenging in the SMDE Research Project. The Conical
Methodology has provided the underpinnings of several Model
Generator prototypes. The Conceptual Framework has been recog-
nized as the most crucial element of the Model Generator. Exten-
sive research has been conducted to develop the desired Conceptual
Framework. Automated assistance, automatic translation, human-
computer interface, visualization, interactive multimedia technolo-
gy, and prototyping remain essential issues in the generation of sim-
ulation models.

ACKNOWLEDGMENTS

This research is based on past work sponsored in part by the
U.S. Navy and on current efforts supported by IBM through the
Systems Research Center at VPI&SU. The contributions of the fol-
lowing people to the SMDE project are gratefully acknowledged:
Lynne F. Barger; Jay D. Beams; Charles W. Box; Valerie L. Fran-
kel; Robert H. Hansen; Matthew C. Humphrey; Kevin E. Martin;
David P. Maynard; Robert L. Moose, Jr.; C. Michael Overstreet;
and Jack C. Wallace.

REFERENCES

Balci, O. (1986), “Requirements for Model Development Environ-
ments,” Computers & Operations Research 13,1, 53-67.

Balci, O., Ed. (1987), Proceedings of the Conference on Methodol-
ogy and Validation, SCS, San Diego, CA.

Balci, O. (1988), “The Implementation of Four Conceptual Frame-
works for Simulation Modeling in High-Level Languages,” In
Proceedings of the 1988 Winter Simulation Conference, M.A.
Abrams, P.L. Haigh, and J.C. Comfort, Eds. IEEE, Piscataway,
NJ, 287-295.

Balci, O. (1990), “Guidelines for Successful Simulation Studies” In
Proceedings of the 1990 Winter Simulation Conference, O.
Balci, R.P. Sadowski, and R.E. Nance, Eds. IEEE, Piscataway,

Balci, O. and R.E. Nance (1987a), “Simulation Model Development
Environments: A Research Prototype,” Journal of the Opera-
tional Research Society 38, 8, 753-763.

Balci, O. and R.E. Nance (1987b), “Simulation Support: Prototyp-
ing the Automation-Based Paradigm,” In Proceedings of the
1987 Winter Simulation Conference, A. Thesen, H. Grant, and
W.D. Kelton, Eds. IEEE, Piscataway, NJ, 495-502.

Balzer, R., T.E. Cheatham, and C. Green (1983), “Software Tech-
nology in the 1990's: Using a New Paradigm,” Computer 16,
11, 39-45.

Barger, L.F. (1986), “The Model Generator: A Tool for Simulation
Model Definition, Specification, and Documentation,” M.S.
Thesis, Department of Computer Science, Virginia Tech,
Blacksburg, VA.)

Barger, L.F. and R.E. Nance (1986), “Simulation Modgl Develop-
ment: System Specification Techniques,” Technical Report
SRC-86-005, Systems Research Center, Virginia Tech, Black-
sburg, VA. .)

Bishop, J.L. and O. Balci (1990), “General Purpose Visual Simula-
tion System: A Functional Description,” In Proceedings of the
1990 Winter Simulation Conference, O. Balci, R.P. Sadowski,

263

and R.E. Nance, Eds. IEEE, Piscataway, NJ, 504-512.

Box, C.W. (1984), “A Prototype of the Premodels Manager,” MDE
Project Memorandum, Department of Computer Science, Vir-
ginia Tech, Blacksburg, VA.

Derrick, E.J. (1988), “Conceptual Frameworks for Discrete Event
Simulation Modeling,” M.S. Thesis, Department of Computer
Science, Virginia Tech, Blacksburg, VA.

Derrick, EJ., O. Balci, and R.E. Nance (1989), “A Comparison of
Selected Conceptual Frameworks for Simulation Modeling,” In
Proceedings of the 1989 Winter Simulation Conference, E.A.
MacNair, K.J. Musselman, and P. Heidelberger, Eds. IEEE,
Piscataway, NJ, 711-718.

Frankel, V.L. and O. Balci (1989), “An On-Line Assistance System
for the Simulation Model Development Environment,” Interna-
tional Journal of Man-Machine Studies 31, 6, 699-716.

Geoffrion, A.M. (1987), “An Introduction to Structured Modeling,”
Management Science 33, 5, 547-588.

Hansen, R.H. (1984), “The Model Generator: A Crucial Element of
the Model Development Environment,” Technical Report
SRC-85-004, Systems Research Center, Virginia Tech, Black-
sburg, VA.

Henry, S.M,, J.D. Arthur, and R.E. Nance (1985), “A Procedural
Approach to Evaluating Software Development Methodolo-
gies,” Technical Report SRC-85-008, Systems Research Cen-
ter, Virginia Tech, Blacksburg, VA.

Humphrey, M.C. (1985), “The Command Language Interpreter for
the Model Development Environment: Design and Implemen-
tation,” Technical Report SRC-85-011, Systems Research Cen-
ter, Virginia Tech, Blacksburg, VA.

Moose, R.L., Jr. (1983), “Proposal for a Model Development Envi-
ronment Command Language Interpreter,” Technical Report
SRC-85-012, Systems Research Center, Virginia Tech, Black-
sburg, VA.

Moose, R.L.,, Jr. and R.E. Nance (1987), “Model Analysis in a
Model Development Environment,” Technical Report SRC-87-
010, Systems Research Center, Virginia Tech, Blacksburg, VA.

Nance, R.E. (1987), “The Conical Methodology: A Framework for
Simulation Model Development,” In Proceedings of the Con-
ference on Methodology and Validation, O. Balci, Ed. SCS,
San Diego, CA, 38-43.

Nance, R.E. and J.D. Arthur (1988), “The Methodology Roles in
the Realization of a Model Development Environment,” In
Proceedings of the 1988 Winter Simulation Conference, M.A.
Abrams, P.L. Haigh, and J.C. Comfort, Eds. IEEE, Piscataway,
NJ, 220-225.

Nance, R.E. and C.M. Overstreet (1987), “Diagnostic Assistance
Using Digraph Representations of Discrete Event Simulation
Model Specifications,” Transactions of the Society for Comput-
er Simulation 4, 1, 33-57.

Overstreet, C.M. and R.E. Nance (1983), “Graph-Based Diagnosis
of Discrete Event Model Specifications,” Technical Report
SRC-85-003, Systems Research Center, Virginia Tech, Black-
sburg, VA.

Overstreet, CM. and R.E. Nance (1985), “A Specification Lan-
guage to Assist in Analysis of Discrete Event Simulation Mod-
els,” Communications of the ACM 28, 2, 190-201.

Overstreet, C.M. and R.E. Nance (1986), “World View Based Dis-
crete Event Model Simplification,” In Modelling and Simula-
tion Methodology in the Artificial Intelligence Era, M.S. Elzas,
T.I. Oren, and B.P. Zeigler, Eds. North-Holland, Amsterdam,
165-179.

Overstreet, C.M., R.E. Nance, O. Balci, and L.F. Barger (1986),
“Specification Languages: Understanding Their Role in Simu-
lation Model Development,” Technical Report SRC-87-001,
Systems Research Center, Virginia Tech, Blacksburg, VA.

Wallace, J.C. and R.E. Nance (1985), “The Control and Transfor-
mation Metric: A Basis for Measuring Model Complexity,”
Technical Report SRC-85-007, Systems Research Center, Vir-
ginia Tech, Blacksburg, VA.

Whitner, R.B. and O. Balci (1989), “Guidelines for Selecting and
Using Simulation Model Verification Techniques,” In Proceed-
ings of the 1989 Winter Simulation Conference, E.A. MacNair,
K.J. Musselman, and P. Heidelberger, Eds. IEEE, Piscataway,
NJ, 559-568.

