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ABSTRACT

Classical methods of studying the behaviour of the output of a
simulation model as a function of parameters (independent variables,
factors, predictor variables) can be divided into global regression
and smoothing (local regression). Neither of these methods are ade-
quate, especially when the observations are a function of a time
evolution variable and are probably highly correlated. Several new
smoothing methods have been proposed recently for this problem,
most of them based on the use of splines. This paper concentrates
on the use of multivariate adaptive regression spline (MARS)
methodology for this smoothing and characterization problem, and
on the use of this methodology when there is serial correlation in the
data so that lagged values of the observations can be used for predic-
tor variables. The methodology is also useful when analyzing inputs
to queues.

1. INTRODUCTION

A common situation in simulation studies is to be confronted
with the need to model or analyze a sequence of random variables
¥i, where i is an ordered index, very often time or serial number,
and sometimes a shorthand notation for a more general dependence
on a sequence of fixed values x; . We assume here that the y; are
continuous random variables although no assumption of normality
or symmetry of their distribution is made. For example the y; may
be successive waiting times in a queue or successive service times or
the number of people in a queue at successive fixed intervals. Or the
yi may be waiting times indexed by the value of the traffic intensity
in the simulated queue, say x; equals 0.05, 0.10, 0.15, ..., 0.95. Of
course dependence on both types of “independent” variables may
occur; the time evoluton of the waiting times in a queue for different
values of appropriately defined traffic intensity is clearly of interest.
This will be considered later. For now we consider the case of only
one “independent” variable.

Now one is interested in determining the effect of the variable i
on the random variables y;, unless the assumption is made that the
sequence of random variables is independent and identically dis-
tributed, in which case, by definition, there is no effect. This might
be a reasonable assumption for the service and inter-arrival pro-
cesses in some congestion systems, but it is clearly not true for out-
put processes. As a case in point, for a queue which is started
empty, the effect of the serial number, i, on the expected value of
the successive waiting times will be an evolution to a steady state or
an explosive growth, depending on whether a “traffic intensity” is
less than one or not. It is clearly an interesting problem in simulation
to be able to characterize this dependence from a finite sequence of
observations on the waiting times, and the fact that the behaviour
changes from one region to another in the range of the dependent
variable (traffic intensity) suggest that nonlinear effects are present
and need to be modelled. And by nonlinearity here we mean that the
whole form of the dependence changes, usually in a rather abrupt
way.

To tackle this problem of the dependence of y; on x; one needs
a model—Sir Maurice Kendall once said that “models are for think-
ing with”—and the usual modelling assumption is that we can char-
acterize y; with an additive noise model,

vi = f(xi)+ &,
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where &; is a random variable with expected value 0, so that the
expected value of y; is f(x;). Of course the idea of an additive noise
component is probably quite erroneous when dealing with positive
random variables, but a transformation, say a log transformation,
can usually be used to produce an additive noise model, or an
approximation to it. We will not go into the use of transformations
here, except to say that they need to be used with care, and our pref-
erence is to deal directly with the observations y; in their original
scale. (Transformation of the independent variables is another mat-
ter; often the square of an independent variable or its reciprocal may
be more meaningful.) )

Given the very broad model above for y;, then we are left with
the problem of determining f(x;) from the data. There are, in gen-
eral, two ways of approaching this problem, although we will men-
tion a third, somewhat derivative method later, namely the use of
splines.

P The first of these approaches to determining f(x;) is (global)
regression, in which some parametric functional form is assumed
for f(x;), over the whole range of observed x;’s (and sometimes
beyond this range) and the parameters in the functional form are
estimated, for example by least squares. Unfortunately the usual
linear additive forms which are assumed for f(x;) in regression
analysis are seldom adequate in queueing situations, if for no other
reason than that very different functional forms would be required
in, for example, the queueing case described above when the queue
is an equilibrium queue or is an explosive queue. And again in
simple queues the mean waiting time is proportional to 1/(1—p), the
traffic intensity, so that if the x;’s are values of p, the dependence is
certainly highly nonlinear. The dependence will not be as simply
expressed in more complicated queues, but the simple queue does
suggest the problems one might encounter.

The second approach to determining f(x;) is smoothing, which
one might call local regression. The basic idea is simple. Assume in
our model that the errors are independent and have constant vari-
ance, 02, and further that f(x;) can be adequately approximated
over the interval i — 1 to i + 1 by a linear (in i) function

f(xi) = (i) + B(i)i.

Note that the constants are indexed by i, implying that the linear
approximation is specific to the point i and would have different
coefficients elsewhere. The justification for this approximation is
Taylor’s theorem, and an assumption that f(x;) is “smooth,” so that
we can ignore quadratic and higher terms in the variable i. Now it is

easy to see that if we average the values y;_1,Y;,¥;+1, We get a

“smooth,” say f(x,'), which has variance 62 / and which is

unbiased, i.e., the smooth f(x;) has the same mean as y;. To see
this note that

E(f(x:)) = E{yi-1+ % +¥i1} /3
= (i) + B(i)(i = 1) + ee(i) + B(i) + ex(i) + Bi)(i + 1)) / 3
= a(i)+ ()i
= f(xi)
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Again, one can look at the effect of the smoothing on the relative

variances of y; and f(xi). By the assumption of constant variance
and independence

_ Var(ye_1+yi +¥in)
9

Var(f(x;))

ml% \o|‘5{)

Thus, we have reduced the variance of y; by 1/3 when we go from it

to f(x;) as a representation of the data, or we have reduced the stan-
dard deviation by 1/3172,

Also if we do this averaging over adjacent points, we have

introduced correlation between f(x;_1),f(x;) and f(x;+1), which
again corresponds to our notion of “smoothness” in a function.

This is easy to see since, for example, f(x;_1) and f(x;) have in
common the variables y;.; and y;. From this a formal quantification

of the correlation can be made. By contrast, the additive noise for
the y;’s is assumed to be independent, and thus their sample path is
anything but smooth in appearance. This is in contrast to the
assumed smoothness of f(x;).

At this point we seem to have obtained the best of all possible
worlds with this simple smoothing scheme, so why not average

over y; for indices (i—p),...,i,...,(i+p), where p is a positive

integer and get an even better smooth f(xi) with an even smaller

variance? The answer is that as we increase the “bandwidth” (p) the
linear approximation to f{x;) will generally not be valid and we will
introduce bias into the smooth. This conflict between increasing
bandwidth and thereby lowering variance but at the same time
increasing bias is absolutely fundamental to smoothing.

Where can we go from here? There are myriads of “better”
smoothing schemes, some based on the following idea. The
“smooth” described above is equivalent to fitting a linear regression
function through the three values y;_1,¥;,¥;+1 and taking as the
“smooth” the fitted value at i. Therefore why not fit a quadratic
function to, say, five points and use as the “smooth” the new fitted
value at the middle point? This is in turn equivalent to doing a mov-
ing average over five points with weights which are not all equal to
1/5 but are tapered. This is called a non-uniform smoothing win-
dow. The idea can be extended further, and an enormous amount of
work has been done on the problem. For a reference see Kendall,
Stuart and Ord [1987]

The drawback in the above smoothing schemes is the need to
find a correct or optimum bandwidth and window, i.e., one which
will minimize, locally or globally, mean square error for the
“smooth.” This is often done by inspection, in particular by graph-
ing the smooth for several different bandwidths and windows. Oof
course there is a high degree of subjectivity in the decision to accept
one smooth and not the others. Another drawback to smoothing is
the fact that the same window and bandwidth may not be adequate at
different points i, since the shape and form and smoothness of foxi)
may be entirely different in different parts of the range of x;. This
has been overcome in modern smoothers, and in particular
SUPERSMOOTHER, a program due to Friedman at Stanford
University, by using a technique called cross-validation and some
very heavy computing. Another drawback with smoothing is that the
output is essentially graphics, which is fine for examining a given
set of data, but is not of much use when one wants a characterization
of f(x;) with which to generate data in a simulation. Again,
interpolation and prediction is difficult with smoothing.

47

2. SMOOTHING CORRELATED SEQUENCES

The criterion used for determining from the data the degree of
smoothing that is necessary is based on the method of cross-valida-
tion and the generalized method of cross-validation [Craven and
Whaba, 1979]. The idea is to fit at i with the value y; removed, and

to then compare the fitted value, f(x,') to y;. These quantities will

be independent if the assumption of independence of the &’s is cor-
rect. Unfortunately this method is quite sensitive to the assumption
that the errors €; in the regression models above are independent, or
at least uncorrelated. Experience has shown that this methodology,
as employed in SUPERSMOOTHER, is apt to lead to serious bias
problems in the smooth. These problems have been addressed by
several workers; Altman (1989) has shown that standard bandwidth
selection techniques such as cross-validation and generalized cross-
validation favor undersmoothing when the serial correlations in the
¥i’s are predominantly positive, and oversmoothing when negative.
She has also shown how the selection criteria can be adjusted to cor-
rect for the effect of correlation. In another paper [Altman, (1990)]
she showed how to estimate simultaneously the mean and correla-
tion function in nonparametric regression problems. However, the
approach described in the next section seems to be the most promis-
ing. Moreover the result is a functional form for f(x;) which can be
used, for example, to generate data as though it were statistically
identical to the y; sequence.

3. SMOOTHING WITH MARS AND ASTAR

It was suggested above that there is another method for curve
estimation which is intermediate to global and local regression, and
this is the method of spline smoothing. Essentially low-order poly-
nomials are fitted for non-overlapping pieces of the independent
variable—that is between knots—and conditions for smoothness are
imposed at the knots. For a review of this methodology, see
Silverman [1985]. The knots still have to be chosen and this is
almost equivalent to choosing the bandwidth in the smoothing pro-
cess. These methods are very flexible and have been extended by
Friedman [1988] to a technique called multivariate (independent
variable) adaptive regression splines (MARS) and the MARS
methodology has been extended by Lewis and Stevens [1990] to
account for serial correlation in the data. The extension of the MARS
methodology to correlated data is obtained by letting one of the
regressor variables be a lagged value of the data, and this leads to
non-linear autoregressive threshold models for the data.
Consequently the method should be applicable to very general
modelling of y; sequences when the independent variable is time or
serial number.

4. MULTIVARIATE SITUATIONS

Of course in general one wants to look at the modelling of mul-
tivariate situations,

¥i = f(xi) + &,

where the boldface indicates the presence of multivariate indepen-
dent variables, one of which may be time or serial number. Thus
one may have data in which y; is dependent on serial number, traffic
intensity, number of servers in the queue, etc.. This kind of situa-
tion is easily accommodated in the MARS methodology and its
extensions. In fact MARS is designed to work best in cases where
the dimension of the independent variable x;, is large.

MARS can be conceptualized as a generalization of recursive
partitioning [Morgan and Sonquist, 1963] that uses spline fitting in
lieu of other simple fitting functions. Given a set of predictor vari-
ables, MARS fits a model in the form of an expansion in product
spline basis functions of predictors chosen during a forward and
backward recursive partitioning strategy. MARS produces continu-
ous models for high dimensional data that can have multiple parti-
tions and predictor variable interactions. Predictor variable contribu-
tions and interactions in a MARS model may be analyzed using an
ANOVA style decomposition
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§. AN EXAMPLE

In modelling chemical warfare the outcome—the dependent
variable—is the number of deaths which have occurred at fixed time
point after the initiation of the attack. Other independent variables
which are controlled in the simulation experiment are the number of
rounds fired, the wind direction, wind strength, the target radius,
temperature, stability of the gas cloud and the breathing rate of the
troops. Given the multiple levels of these independent variables
which were used in the simulation experiment, there were about
230,000 data points in all for the analysis. If one uses a linear
additive model for f(x;), where the first component of x; is serial
number, then it is easy to show that the output is serially correlated
on this variable. If one models the data linearly in, say, the lagged
output and the other variables, a first question which arises is
whether or not to put in a constant term. Of course at time zero, or
with zero rounds fired, the output should be zero, which argues
against a constant term. Unfortunately if the wind direction is not
“zero,” and the wind strength is not zero, then there will still be
nonzero output at time zero if the regression coefficients of these
independent variables are not zero. This argues for interaction terms
in the equation for f(x;). Further analysis shows that nonlinear
dependence on some of the independent variables is needed for
proper modelling of the output, and this is just the kind of situation
which can easily be handled with MARS.

A discussion of the application of the MARS methodology to
this problem will be given.
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