Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

TECHNIQUES FOR THE TRACE-DRIVEN SIMULATION OF CACHE PERFORMANCE

Susan J. Eggers
Edward D. Lazowska
Yi-Bing Lin
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

ABSTRACT

In contemporary computers, cache memories are
interposed between processors and primary memories in
order to decrease access time and bus traffic. Because the
design of the cache is critical and the factors affecting its
performance are complex, trace-driven simulation is widely
used and studied. This paper surveys three interesting
techniques for the trace-driven simulation of cache designs:
stack analysis methodologies that make it possible to obtain
performance measures for a wide variety of cache designs
from a single run of the simulator, compression algorithms
specifically tailored to memory reference traces, and an
approach to parallel trace-driven simulation of
multiprocessor caches that dramatically reduces the
simulation’s synchronization and thus its running time.

1. INTRODUCTION

In contemporary computers, cache memories are
interposed between processors and primary memories in
order to decrease access time and bus traffic.

The design of the cache is critical to system
performance. There are a large number of design
parameters: size, associativity, speed, coherence policy (for
multiprocessors), and others. Cache performance is also
dependent on the detailed memory reference patterns of
programs. For all of these reasons, trace-driven simulation
is widely used to gauge the performance of alternative cache
configurations. The technique has been the focus of
considerable research activity, the goal of which is to reduce
its potentially enormous computational demands. This
paper surveys three developments in this area.

The first technique that we consider is a stack analysis
simulation methodology that makes it possible to obtain
performance measures for a wide variety of cache designs
from a single run of the simulator. This technique,
originally developed in the context of virtual memory
systems (Mattson et al. 1970), was easily adapted to
simultaneously simulating multiple cache sizes. It has
recently been extended to other cache parameters, such as
associativity (Hill 1987) and copyback and multiprocessor
caches (Thompson 1987).

The second technique is a set of compression algorithms
specifically tailored to memory reference traces (which can
be huge). Originally devised for paging behavior (Smith
1979), the technique has been adapted to uniprocessor cache

1042

simvlations (Puzak 1985) and extended to multiprocessor
studies (Eggers 1989).

The third technique is an approach to the parallel trace-
driven simulation of multiprocessor caches that dramatically
reduces the simulation’s synchronization and thus running
time (Lin, Baer & Lazowska 1989).

2. STACK SIMULATION

The first technique that we discuss in this paper is stack
simulation. Our discussion follows that of Hill and Smith
(1989).

It seems natural to expect to perform a separate
simulation for each cache configuration that is to be
evaluated (e.g., for each different cache size). Stack
simulation allows performance measures for a variety of
configurations to be obtained from a single simulation run,
dramatically reducing simulation execution time.

Mattson et al.’s development of stack simulation
(Mattson et al. 1970) is based on the inclusion property:
subject to certain restrictions, a larger cache will always
contain a superset of the blocks contained by a smaller
cache. The restrictions include that the caches must have
the same block size and the same set mapping function, and
that the replacement algorithm must be a stack discipline
(e.g., LRU). If the inclusion property holds, then a single
simulation can yield performance measures for caches of
different sizes, by utilizing a single stack per set to keep
track of the resident blocks belonging to that set (the first n
entries correspond to the # most recently used blocks in a
set).

The benefits of stack simulation for cache design studies
are obvious and dramatic. For this reason, the Mattson et al.
algorithms have been extended continuously over the years.
Traiger and Slutz, two of Mattson’s original co-authors,
generalized the algorithms to handle caches with different
numbers of sets and different block sizes (1971), in the case
of LRU replacement.

More recently, Hill (Hill 1987; Hill & Smith 1989)
extended the Traiger and Slutz algorithms to handle caches
with different associativities. Their all associativity
simulation simultaneously simulates alternative direct-
mapped and multiple set-associative caches that have the
same block size, do no prefetching, and use LRU
replacement, for arbitrary set mapping functions.

Thompson (1987) investigated a number of data
structure alternatives for managing the simulation stacks,
and extended the approach to copyback and multiprocessor
caches. Essentially, Thompson showed that elements of
cache state, such as dirty/clean state and coherency state,
obey the inclusion property, in addition to the validity state
demonstrated by Mattson et al.

3. TRACE COMPACTION FOR PARALLEL
PROGRAMS USING A CACHE FILTER

Stack simulation is one approach to reducing the
simulation execution time for cache design studies. Another
is trace compaction, which attempts to reduce the number
of trace records that must be processed, without losing
information that affects the results of the simulation.

The volume of trace data required for cache simulations
can be excessive even in studies of uniprocessor systems,
because a fairly large snapshot (in numbers of memory
references) is needed to obtain statistically significant
results. As cache sizes increase, this number mushrooms.
The problem is exacerbated in multiprocessor simulations
because the total trace size is proportional to the number of
processors. For example, the 6 million reference (per
processor) traces used in (Eggers 1989), after
postprocessing, comprised approximately 1.8 to 2 gigabytes
for a 12 processor simulation. Practically speaking, traces
must be compacted to be usable.

Traditionally, encoding schemes such as Ziv-Lempel
compression (Ziv & Lempel 1977) have been used.
Memory reference traces that are used for cache studies can
be further reduced by special techniques, such as cache
filtering, that take advantage of the particular "semantics"
that apply.

3.1. Uniprocessor Approaches

Uniprocessor cache filters reduce the size of memory
reference traces by removing all cache hits from the trace.
The filter is a cache simulator, the input to which is the
original trace, and the output from which is trace records of
cache misses and summary information for cache hits,
whose trace records are removed. In other words, only
those references that cause bus operations are explicitly
recorded in the filtered trace. There are two restrictions on
the configurations of caches that are analyzed with the
filtered traces. Both restrictions guarantee that caches of
varying sizes see correct hitmiss behavior. First, the
analyzed caches must contain no fewer sets than the cache
simulated in the filter. Second, they must use the same
block size as the filtered cache.

The first example of this approach, the stack deletion
filtering technique described in (Smith 1979), was
developed to analyze program paging behavior but is easily
adapted for cache studies. In the most gencral version of
the scheme, references to the first D —1 positions (D being
the deletion parameter) in an LRU stack of memory
references are removed from the trace, and a counter,
reflecting the amount of processing time required for the
number of references that were eliminated, is output with

1043

the next recorded reference. The technique achieves a
reduction in trace length (where length is defined in
numbers of entries) of a factor of 14 to 36, when D is, for
example, 6. However, since the algorithm is not directly tied
to a cache simulation, some error in the hit/miss
classification is introduced when using the compressed data
when D is greater than 2.

An alternative that addresses this problem, first
described in (Puzak 1985), is to base the filtering directly on
a cache simulation rather than on an LRU stack
approximation. The Puzak approach represents the
summary cache hit information using runlengths of
consecutive hits. For caches ranging from 4K to 16K bytes,
with 64 and 128 byte blocks, this method produces a filtered
trace approximately one tenth the size of the original.

Another alternative (Samples 1989) is to record the
difference between the address of the reference that hits in
the cache and the one that most recently missed in the same
block. Because this exposes the patterns of locality in
memory references, it produces traces that are good
candidates for further compression by schemes that rely on
pattern matching techniques. When used as a preprocessor
to Ziv-Lempel compression, this technique produces
compressed files at least as small as Puzak’s approach.
Although it does not compact as well as some other
schemes, it retains all the information from the original
trace; the original trace can be reconstructed, e.g., to
regenerate traces for a different block size or smaller cache
size.

3.2. Multiprocessor Approaches

In generalizing Puzak’s approach to the multiprocessor
case, Eggers (1989) broadened the criterion for reference
elimination by cache filters from Puzak’s simple hit/miss
model to a filtering technique that is based on any change of
state, in order to represent the additional bus operations
caused by sharing. In this more general scheme, state is
defined as the superset of cache state, dirty/clean state,
coherency state and synchronization state. (Thompson
(1987) uses a similar state definition as the basis for a
technique for simulating multiple sized caches in a
multiprocessor, alluded to in Section 2 above.) Cache state
is the criterion used in (Puzak 1985); it differentiates
between valid and invalid blocks, and is required to support
the hitmiss criteria. Dirty/clean state distinguishes between
the first write to a block and all others. It is needed for two
reasons. First, only the first write in a sequence of per
processor writes generates a bus operation (the invalidation
signal) in the write-invalidate protocols; and, second, dirty,
private data must be copied to memory on block
replacement.

Coherency state includes the five MOESI values
(invalid, private clean, shared clean, private dirty, shared
dirty) (Sweazey & Smith 1986). Generating a memory
reference for any potential change of coherency state
essentially means that all shared operands are output. All
write-shared references must be recorded, because it cannot
be determined a priori, which will result in a bus broadcast

in the write-broadcast protocols. Read-shared operands
must also be included, because in the write-invalidate
protocols, write hits produce a different bus operation (an
invalidation) than write misses (a full data transfer). For the
hit to be detected, the block must already reside in the cache
when the write occurs.

Synchronization state comprises a processor’s first
attempt to obtain a lock, its acquiring the lock, its unlocking
it, and its reaching a barrier or flushing the cache. Memory
references that correspond to these coherency-related
instructions (i.e., instructions that implement locking and
unlocking, reaching a barrier, and executing software
coherency mechanisms) must also be output. If not
explicitly recorded in the filtered trace, the multiprocessor
simulator would be unable to synchronize processes and
ignore and/or replace them with other sequences of code.

Explicitly specifying these output records leaves
runlengths only to hits of instructions and private data
(excepting the first write to the blocks). (The runlengths
may be further subdivided into separate runs of contiguous
reads and writes. The subdivision is required to ensure
correct simulation, when the simulator’s cache controller
implements one-cycle cache reads and two-cycle cache
writes.) The amount of trace reduction achieved by
substituting runlengths for trace records is called the
compression ratio. The compression ratio is defined as the
number of items in all runlengths (number of references
eliminated), divided by the total number of memory
references. Multiprocessor traces filtered in this way are
roughly 15% of the size of the original unfiltered traces
(Eggers 1989). When further compressed with Ziv-Lempel
encoding, the final traces are approximately 4.5% of the size
of the originals.

4. PARALLEL TRACE-DRIVE
MULTIPROCESSOR CACHES

Since simulations are time-consuming, it is natural to
attempt to use parallel computing to accelerate them. The
final topic that we consider in this paper is a parallel trace-
driven simulation technique for multiprocessor cache
coherence protocols, originally described in (Lin, Baer &
Lazowska 1989). We first present a general technique, and
then optimize this technique to simulate various specific
protocols. The surprising result is that using this technique,
the processes simulating the caches often need to do little or
no communication, even when simulating shared references.
Thus, linear or near-linear speedup is possible.

SIMULATION OF

In the parallel cache simulation, we have one cache
process to simulate each processor-cache pair. There is a
separate reference trace for each cache process. Each trace
includes two types of memory references: private and
shared. A private reference originating at processor/cache j
does not have any effect on caches other than j, whereas a
shared reference may update the status of other caches. All
caches can be simulated asynchronously in parallel as long
as there are no shared references, but concurrency control of
some sort is required when shared references are
encountered.

1044

Two mechanisms can be used to synchronize the cache
processes. The optimistic mechanism assumes that no
communication is required between two processes. When 3
communication request from cache process i to cache
process j occurs, and j’s simulation time is ahead of i's,
J's computation is rolled back to the synchronization point,
The optimistic mechanism needs to save process state, so
that it can be restored when rollbacks occur. Because of the
complexity of this state when simulating caches, the
optimistic mechanism does not appear practical in this case.

An alternative is the conservative mechanism, which
ensures that every event (either a reference request from the
input trace or a synchronization request from other cache
process) is handled according to timestamp order. In other
words, before cache process ¢ handles the next memory
reference from its input trace, it checks other cache
processes to see if any inter-process communication may
occur. This implies that all processes are synchronized at
every event, and the synchronization overhead is too high to
be acceptable. In the next subsection, we describe a simple
technique which effectively reduces this overhead.

4.1. The Basic Algorithm

The idea of the basic simulation technique is to pre-
process the input traces so that all shared references are
inserted into each input trace. These references added to
each trace are called inserted references. With these merged
traces, all potential interactions among caches are identified
before the simulation commences; we refer to these as
interaction points. During the simulation, all private
references between two interaction points can be handled
without interruption, and the synchronization overhead for
the conservative mechanism is considerably reduced. In
(Lin, Baer & Lazowska 1989) we show that if (1) there are
k cache processes, each assigned to a dedicated processor,
and (2) the arrivals of interaction points to each cache form
a Poisson process, with the same mean for each cache, then
the speedup is O (Vk).

4.2. The Modified Algorithm

The basic algorithm requires that all cache processes
synchronize at each interaction point. The modified
algorithm relaxes this restriction. At some interaction
points, a cache process can determine its cache status using
only local information (including that provided by its
merged trace), so there is no need to consult the status of
other caches. Thus we can process these interaction points
in the same way as private references. Whether an
interaction point can be processed locally is dependent on
the type of interaction (a shared reference, which is 2
processor-induced transaction, or an inserted reference,
which is a "possible" bus-induced transaction) and the
cache coherence protocol under investigation.

In Table 1, the first column lists various information that
is required by different cache coherence protocols, while the
second and third columns indicate the sources of this
information for processor-induced and bus-induced
transactions, respectively.

source of information
information
required processor-induced bus-induced
transaction transaction
current state status of the status of the
of the block cache process cache process
read/write arrival event arrival event
status of the status of the
hit/miss cache process cache process or
other cache procs.
shared/ status of other status of the
non-shared cache processes cache process

Table 1: Sources of Information

From Table 1 we see that synchronization is required
during the simulation if (1) the cache coherence protocol
requires information about actual sharing for a processor-
induced transaction, or (2) the protocol cannot provide
information about hit/miss for a bus-induced transaction. A
transaction (or an interaction point) is synchronous iff it
requires synchronization in the simulation. An interaction
point that requires synchronization is a synchronous point.
Otherwise, it is a non-synchronous point.

As just noted, the specific cache coherence protocol
under investigation has a bearing on whether an interaction
point is synchronous (requires synchronization) or not.
Table 2 gives "synchronization information" about five
protocols: Berkeley ownership (Katz et al. 1985), Illinois
(Papamarcos & Patel 1984), write-once (WO) (Goodman
1986), Firefly (Thacker & Stewart 1987), and Dragon
(McCreight 1984). The first three of these protocols are

based on "invalidation", while the last two are of the
"distributed-write" type.
shared inserted
protocol read write
read | write
hit | miss | hit [miss
Berkeley
Illinois X
wO X
Firefly X X
Dragon X X

("X" means synchronization is required)

Table 2: Synchronization Information for Protocols

Table 2 shows that a surprisingly large number of event
types can be simulated without the need for
synchronization. For example, an ownership-based
invalidation protocol such as Berkeley ownership does not
require any synchronization. The other two invalidation-
based protocols require synchronization only at read-misses.
For the distributed-write protocols, synchronization on
write-misses is also required. The modified algorithm takes
advantage of this observation.

1045

The timing analysis of the modified algorithm is
complex and is not shown in detail here. (See (Lin, Baer &
Lazowska 1989).) The key result is that, under the
assumptions stated earlier (k cache processes, each assigned
to a dedicated processor, and Poisson arrivals of interaction
points to each cache with the same mean for all caches), the
time spent in synchronization is always less than the
computation time. In other words, the simulation speedup
will be at least 50% of the number of processors.

5. SUMMARY

We have described three approaches for reducing the
computational demands of cache design studies employing
trace-driven simulation. Stack simulation allows
performance results for a variety of cache configurations to
be obtained from a single simulation run. Trace compaction
reduces the number of specific events that must be
simulated, without reducing the information content of the
simulation. Parallel simulation allows the power of multiple
processors to be applied to a single simulation run.

ACKNOWLEDGEMENTS

Our research has been supported in part by the National
Science Foundation (Grants No. MIP-8352227, CCR-
8619663 and CCR-8703049), the Naval Ocean Systems
Center, the Washington Technology Center, U S WEST
Advanced Technologies, Digital Equipment Corporation
(the Systems Research Center and the External Research
Program), IBM (through a Predoctoral Fellowship),
SPUR/DARPA contract No. N00039-85-C-0269, and
California MICRO (in conjunction with Texas Instruments,
Xerox, Honeywell, and Philips/Signetics).

REFERENCES

Eggers, SJ. (1989). Simulation Analysis of Data Sharing
in Shared Memory Multiprocessors. Technical Report
89/50, Computer Science Division, University of California,
Berkeley. (Ph.D. Thesis).

Goodman, J.R. (1987). Cache Memory Optimization to
Reduce Processor/Memory Traffic Journal of VLSI and
Computer Systems 2,1, pp. 61-86.

Hill, M.D. (1987). Aspects of Cache Memory and
Instruction Buffer Performance. Technical Report 87/381,
Computer Science Division, University of California,
Berkeley. (Ph.D. Thesis).

Hill, M.D., and Smith, AlJ.
Associativity in CPU Caches.
Computers, to appear.

Katz, R., Eggers, S., Wood, D.A., Perkins, C., and Sheldon,
R.G. (1985). Implementing a Cache Consistency Protocol.
Proc. 12th Annual International Symposium on Computer
Architecture, pp. 276-283.

Lin, Y.-B,, Baer, J.-L., and Lazowska, E.D. (1989).
Tailoring a Parallel Trace-Driven Simulation Technique to
Specific Multiprocessor Cache Coherence Protocols. Proc.
1989 SCS Multiconference on Distributed Simulation.

(1989). Evaluating
IEEE Transactions on

Mattson, R.L., Gecsei, J., Slutz, D.R., and Traiger, LL.
(1970). Evaluation Techniques for Storage Hierarchies.
IBM Systems Journal 9,2, pp. 78-117.

McCreight, E. (1984). The Dragon Computer System: An
Early Overview. Technical Report, Xerox Palo Alto
Research Center.

Papamarcos, M., and Patel, J. (1984). A Low-Overhead
Coherence Solution for Multiprocessors With Private Cache
Memories. Proc. 11th Annual International Symposium on
Computer Architecture, pp. 348-354.

Puzak, T.R. (1985). Analysis of Cache Replacement
Algorithms. Ph.D. Thesis, University of Massachusetts.

Samples, A.D. (1989). Mache: No-Loss Trace
Compaction. Proc. ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. 89-
97.

Smith, A.J. (1979). Two Methods for the Efficient
Analysis of Memory Address Trace Data. I[EEE
Transactions on Software Engineering SE-3,1, pp. 94-101.

Sweazey, P., and Smith, AJ. (1986). A Class of
Compatible Cache Consistency Protocols and Their Support
by the IEEE. Proc. 13th International Symposium on
Computer Architecture, pp. 414-423.

Thacker, C.P.,, and Stewart, L.C. (1987). Firefly: A
Multiprocessor Workstation. Proc. 2nd International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 164-172.

Thompson, J.G. (1987). Efficient Analysis of Caching
Systems. Technical Report 87/374, Computer Science
Division, University of California, Berkeley.

Traiger, I.L., and Slutz, d.R. (1971). One-Pass Techniques
for the Evaluation of Memory Hierarchies. Technical
Report RJ892, IBM.

Ziv, J., and Lempel, A. (1977). A Universal Algorithm for
Sequential Data Compression. [EEE Transactions on
Information Theory 243,3, pp. 337-343.

AUTHORS’ BIOGRAPHIES

SUSAN J. EGGERS is on the faculty of the Department
of Computer Science and Engineering at the University of
Washington. She received her Ph.D. from the University of
California at Berkeley in 1989. Her research interests are in
computer architecture.

EDWARD D. LAZOWSKA is on the faculty of the
Department of Computer Science and Engineering at the
University of Washington. He received his Ph.D. from the
University of Toronto in 1977. His research interests are in
computer systems.

YI-BING LIN is a graduate student in the Department
of Computer Science and Engineering at the University of
Washington. His research interests are in parallel
simulation.

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

1046

