Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

TCDL - AN EXPERT SYSTEM LANGUAGE FOR WARGAMING

Joseph L. Sowers
Paul E. Rubin
Computer Scicnces Corporation
Integrated Systems Division
Moorestown, NJ 08057

ABSTRACT

This paper discusses the design and implementation of the
Tactical Control Directive Language (TCDL). TCDL is a special-
purpose language designed for use within the Enhanced Naval
Warfare Gaming System (ENWGS). It was developed to support
the concept of Tactical Control Directives (TCDs) and to allow their
use within the wargaming model. A TCD is a possibly complex
series of actions which simulate decisions made by a Naval officer in
response to a specified situation. For example, an aircraft carrier
detecting the presence of unknown aircraft will launch fighters and,
dependent on the actions of the unknown aircraft, will execute a
variety of possible responses. While this and other doctrines could
easily be implemented by the ENWGS development team as part of
the base software system, it is more desirable for the users of the
wargaming system to be able to develop TCDs. TCDL provides a
language in which users who are generally neither programmers nor
simulationists can combine ENWGS low-level wargaming
primitives and conditions into complex operations. This capability
effectively extends the ENWGS user interface and may in turn be
used to build even more complex operations. Since the
introduction of TCDs into ENWGS, many of the air operations
missions (Rubin and Sowers, 1988) have been implemented via

TCDs.

We discuss the features of the TCDL compiler and how the
language constructs assist in the production of code that integrates
into a larger body of existing software. Also discussed are the
advantages of the rule-based language in this type of environment,
along with implementation problems such as assigning priorities to
the various rules by the compiler. Examples of the language are
shown along with a discussion of how the wargaming simulation is
affected.

1. INTRODUCTION

TCDL, the Tactical Control Directive Language, has been
designed as a rule-bascd language involving situation-action
combinations. It is similar in nature to the OPS5 language
(Brownston, et al, 1985). TCDL also provides an extensive user
support environment, although much of this is hidden from the
ENWGS player. Library functions as well as form generation and
reporting facilities are incorporated into the language and are

produced without specific encoding by the TCD author. Language

1015

support within the integrated environment gives experienced Naval
officers who are relatively inexperienced in programming
simulation software a means of managing, developing, and
executing new applications within an elaborate wargaming system

(Buser and Rubin, 1988).

Let us consider an overview of the structure of the language.
It
incorporates data hiding and modularity and enforces these without
TCDL provides the
author with a natural means of expressing the situation-action

TCDL provides a strongly typed, rule-based language.
TCD author's being aware of the details.

structure of the various doctrines. The nature of the data types is
specific to wargaming. TCDL has a rich assortment of types in
addition to such standard types as integer, string, and boolean.
TCDL strongly enforces the use of types. It is also a highly
structured language. Variables must be declared prior to any rule
definition. The language uses several reserved words that define the
structural sections of code written in TCDL.. Each of thesc reserved
words has the flavor of a natural language to the experienced
ENWGS user.

As a special-purpose language within the wargaming
simulation system, TCDL provides mechanisms for the runtime
TCD to access information from the system and cause actions to
occur within the running game. These mechanisms are supplied by a
library of primitives (causing actions), view functions (gathering
information), wait functions (conditionals), and modecl-outcome
data (information from specific simulation models). In all cases, the
TCDL compiler checks the number and type of parameters.
Parameters may be declared optional, resulting in default values
being passed to the library function. In addition, there are
specialized primitives which control selection of rules as well as the
runtime behavior of the resulting TCD. Once the TCD has been
compiled and entered into ENWGS, it becomes an extension to the
basic gaming operations.

TCDL communicates with the TCD Librarian. There are
controls built into the compiler which control the actions of the
Librarian. TCDs may cause an instantiation of another TCD using
the TCDL verb “invoke.” The compiler checks the contents of the
user and system TCD library for the presence of the child TCD; if
found, it further checks type and number of parameters. Should the
compiler fail in its search, then a compilation error is generated.
During development, the TCD author can direct the compiler 1o
disregard the TCD library or to use a specificlibrary. Itisimportant
to note, however, that while the TCDL compiler is one module

within an environment, it has language constructs which control or
modify the actions of the other elements of the simulation
environment.

2. DATA TYPES

Variables may be typed asspeed, bearing, range, altitude, lat,
and long; these are somewhat self-explanatory. Types may also be
very specific. Some examples are:

ACT_TRK - An entity under the command of a
participant executing the TCD

ALERT - A message to be sent to the player’s console

ANY_TRK - Any entity in the game

TIME_DTG - A time-date group such as “221415Z DEC

89" (or December 22, 1989, at 2:15 p.m.
Greenwich time).

TCDL is an extremely strongly typed language. Parameters,
assignments, and conditions are checked by the compiler. Mixing of
data types except through the use of explicit conversion functions is
completely forbidden. In the context of the TCD application, this
rule provides an additional safeguard in that a TCD author could
not enter a variable typed as a “bearing” in a use requiring a
“latitude” - even though both may be measured in degrees. The
strong typing is extended to the return values of the various inquiry
(or “view”) functions. Where necessary, type conversions are
permitted provided they are explicit.

TCDL provides three primary means of access to the
underlying ENWGS game environment: primitives, view functions,
and wait functions.

Primitives correspond to the interactive user language
employed by an ENWGS game participant at the workstation. The
subset of these commands allowed by TCDL is the action type of
command. Action commands allow the TCD to control the various
ENWGS game entities. For example, the MANEUVER primitive
corresponds to the MANE keyword and allows the course, speed,
and altitude/depth of a platform to be changed. The arguments of
the primitive match the input ficlds of the interactive form seen by a
game participant. The fields match by both TCD data type and
required/optional attributes. Optional arguments whose values are
not given are represented by $. Thus, to assign a speed of 600 knots
to the aircraft “batman,” the following would be written:

mancuver (batman, 600, $, $, $).

The three dollar signs ($) in the statement correspond to the
optional arguments’ course, altitude, and depth.

1016

View functions provide the means to access values within the
game data base. This class of functions loosely corresponds to the
reports which a game participant may request. Due to the strongly
typed nature of TCDL, each view function has a specific TCD data
type return value. These values may be assigned to local variables
(of the same data type) within a TCD and may then be used either as
part of the situation section of a rule or as arguments to primitives,
wait functions, or even other view functions. Moreover, view
functions may be nested if it is not necessary to save intermediate
values. An example of a view function is:

tr_type = track_type (robin)

where tr_type is a local variable of a type string, robin is a local
variable or a parameter of type any_trk, and track_type is a view
function which returns a string designating the type of track: air,
surface, or subsurface.

Wait functions are the means by which TCDL accesses the
various conditions that may occur during a game. Wait functionsare
the primary method of specifying conditions within the situation
section of a rule. A wait function only returns the values “true” or
“false,” corresponding to whether or not the indicated condition has
occurred. The wait function

launch_complete (base_cmd, $)

returns a “true” whenever the air base designated by base_cmd
completes the launch of a flight. Note the $ in the argument list
representing an unentered optional argument which will cause the
argument either to use a default value or, more usually, to retain its
current value. A dollar sign in the position where an altitude would
be expected would result in the use of the aircraft’s existing altitude.

A special feature of certain wait functions and primitives is
the concept of a model-outcome. A model-outcome refers todata
other than the explicit return value associated with the function or
primitive. This situation arises when the condition or primitive is
directly related to an ENWGS model. For example, the above wait
function, launch_complete, only returns a true or false. However,
since it is associated with the aircraft launch model, the identity of
the aircraft (track) that was launched is available and indeed is
usually required. To retrieve and use this data, the wait function is
prefixed with the model-outcome construct “[&n]” when it is used,
where n is a single-digit integer. The model-outcome can then be
used as an argument to a view function which will transform it into
the required data type. A sample sequence may be:

[&1]launch_complete (base_cmd, $);
action: “Launch completed”;
flt = mo_trk_launched ([&1]);

where “..." represents the restof arule. In thisexample, “flt” would
be a local variable of type any trk. The view function
“mo_trk_launched” transforms the input model-outcome into a
track.

3. RULES: SITUATION AND ACTION

There are four types of rules defined in TCDL. Each hasa
specific use. However, each follows the same syntax:

ruletype: rulename;
situation: quoted-description;
situation-statements;

action: quoted-description;
action-statements;

endrule;

The action rule, or arule, may be uscd only once in a given
TCD. It is executed, or “fired,” when the TCD is instantiated. This
rule is conditionless; that is, the situation-statements section shown
above must be null (empty). The arule is primarily used for
initialization. Its use is not required, and if a sequence of initial
actions is not needed, the arule may be absent from the TCD. The
validation rule, or vrule, is used to check the validity of either
existing conditions within the wargame upon TCD instantiation or
the validity of the parameter data input by the user. There may be as
many vrules in the TCD as the author wishes. Like the arule,
however, there is a restriction in the vrule. The action portion of the
vrule admits only one statement. This is the function:
send_error_message. Should the vrule fire, the action portion will
issue a message to the player’s console, and the TCD is terminated.
Again as with the arule, the situation section of the vrule is tested on
TCD instantiation. Once tested, a vrule either fails and is never
tested again or fires, thus causing the termination process. Vrules
need not be used in any given TCD; however, good programming
practice usually ensures the use of one vrule for each critical
parameter. The decision-making rules are of the following two
types, single-fire rules (srule) and multifire rules (mrule). The major
difference is underscored by the designation. The srule can fire only
once and is no longer part of the rule-set of the TCD. The multifire
rule can be fired as many times as its situation section returns a

“true.”

Each of the segments, situation or action, may be composed
of ablock of statements. Interpreting thesituation sectionas an “if”
or condition, the separate statements are treated as though they
were joined by “AND” conditions in a conventional language. For

example, the situation sequence:

track_type(batman) = “air”;
track_type(robin) = “surface”;
course(batman) ™ = course(robin)

would be seen as requiring “batman” to be an aircraft AND “robin”
to be a surface ship AND “batman” and “robin” to be traveling in
differing directions before the associated action statements could
be executed. Note the use of “ ~ = " todenote “notequal.” Should
a rule fire, all of the statements within the action section will be
executed in sequence.

1017

4. TCDL ENVIRONMENT

A substantial portion of the TCDL syntax exists to support
the surrounding environment - both the general ENWGS system
and, specifically, the TCD support environment (see Figure 1). The
player’s view of the ENWGS system is that of a geotactical display,
several automatic status boards, and an alphanumeric console by
which commands may be issued to the system. The human interface
is by means of menus or, in ENWGS, forms. Once a TCD is
compiled, it joins within the system many other procedures which
may be invoked via form selection. In order for these forms to
become available to the player, the TCD name must be placed on a
menu; the name must also be able to generate a menu of its own to
prompt and receive data relating to its input parameters. This
arrangement becomes more involved than it seems because the
TCD software resides on a host mainframe, while the player is
interacting with a workstation. Communication must be performed
through messages passing between host and workstation. The form
(menu) must be generated, and data types, communications, etc.,
must be built by the TCD without the player’s being tasked with too
many details. This is done by a combination of the TCDL language
syntax, a form generator, and a TCD library.

Several TCD verbs relate specifically to the form generation
phase. These verbs include category, keyword, directions, and
prompt. The verb category defines the menu on which the TCD’s
name will appear for selection. The verb keyword is used to define
the shortened name used to invoke the TCD. The form will show a
header composed of the lines of text following the “directions” verb
in the TCD. The input data is received via fields which are
prompted for by text strings defined by the TCD author using the
prompt verb. Inaddition, a qualifier “optional” in TCDL will result
in the form'’s requiring, or not requiring, the input of any specific
field. Part of the package generated by compiling a TCD is input to
the form generator providing the interface to the player. This
feature is integrated into TCDL in such a way that often the
player/author is not really aware that the menu used to invoke the
TCD is being produced within the TCD itself.

Another element of the TCD environment is the TCD
library. The library maintains all of the TCDs for a player. When a
TCD is created, the librarian invokes the TCDL compiler, creates a
form, and adds the (new) TCD to the player’s library. Should the
TCD already exist in the library, the librarian will query the author
as to whether this is a replacement. The librarian also performs
some type checking as to whether this TCD is “invoked” by (or is
invoking) another TCD. (Invoke is a TCDL verb which causes the
instantiation of a child TCD.) If this TCD is invoked, the number
and types of the parameters are checked for consistency. When a
player logs into an ENWGS game, a test is made for the presence of
a TCD library. If found, the librarian is polled and a comparison
made to the TCDs already residing on the workstation. Should the
workstation not have TCDs or if they are different from those in the
player’s TCD library, then those in the library are downloaded to

the workstation. Depending on the number to be downloaded, the
system determines whether the workstation should be purged and a

full library download executed, or if a selective download of TCDs is
more efficient.

TCDL

Is TCD valid?
Request Form

Compiler

Generation

Is TCD
valid?

Usage Load
Information Reports TCD
Usage
Information Form
Generator
Development TCD < o
Environment Library
ENWGS Game Load
Environment TCD Reports and
Rules Forms
Run-Time
Reports
. —>
Event Wait Inference Game
Monitor Functions Engine Player
Execute
TCD
Execute TCD
View Pimitives
Functions
Game < > TCD
Data Read and Write Primitives
Game Data
16955-1

Figure 1: The TCDL Environment

1018

The command line invocation of the TCDL compiler can, to
an extent, control the use of the library. There are a number of
switches on the command line:

tcdl TCD {-list | -map | -nocode | —-nowarn | —-debug

| -nolibrary | -library LIBNAME |
-trace }

where all of the switches are optional. There are default values for
each option, and most may be abbreviated. The interpretation of
the switches may be found in Table 1.

Table 1: The TCDL Compiler Options

Switch Abbreviation Default Description

-list -1s NO List Provides a numbered listing of the TCD
showing errors (if any).

-map -mp NO Map Provides a symbol table listing and a
cross-reference.

-nocode -nc Code Determines if the compiler is to check
syntax only.

-nowarn -nw Warn Prevents the emitting of non-fatal-error
messages.

-nolibrary -nl Library Specifies that the library is not to be
checked. Useful when first developing a
new TCD.

~library NAME -lib NAME SYSLIB Allows the use of TCD libraries other
than the default system.

-trace —tr NO Trace Shows the actions of the parser during
TCD compilation.

-debug -db NO Debug Shows actions of compiler and the gen-
eration of intermediate source code.
Generally used by the TCDL compiler
maintainers.

5. ANALYSIS OF THE “RED_OCTOBER” TCD

Let us take a close look at the features of the sample TCD
“red_october.” The TCD listing may be found in Appendix A. The
object of the TCD is to control the defection of a submarine (with
apologies to Tom Clancy; Clancy, 1984). The first line in
“red_october” defines the name and the list of input parameters.
Next, the category line specifics the name of the menu on which this
TCD is to appear on the player’s workstation, in this case “surface
engagement.” Next, the keyword clause defines the string by which
the player can invoke this particular TCD. The following two
clauses, directions and summary, are multiple line entries. The
directions (up to four lines) will appear on the player’s workstation
when the keyword ZOCT is entered. The summary (up to 15 lines)
will be printed in response to a request for a report on the TCD and
is usually much more detailed as to the functionality of the TCD.
Both summary and directions are optional and need not be present

1019

in the TCD, whereas category and keyword are required. However,
order of appearance is arbitrary.

The nextsection defines the input parameters in more detail.
An entry is required for each parameter in the list on the heading
line. For each parameter, however, only the parameter line itself is
required, specifying the name of the parameter and its data type. In
addition, the line may specify that the parameter need not be
entered by the player (by using the word “optional™). If the word
optional is not part of the parameter statement, then the player
must enter a value on the input menu generated by the TCD. The
author may also define the prompt seen by the player for each
parameter by using the prompt clause. The author may alsospecify,
by using the init clause, an initial value for the parameter, although
this initial value could be overwritten by the player when filling out
the menu. Order of entry is not important as long as each parameter
has been qualified by a parameter block. Following the expansion

of the parameters, local variables are (optionally) declared. These
are invisible to the player.

The next section of the TCD specifies the various rules.
Note that comment lines are flagged by a leading “%" and continue
to the end of the line. The TCD is ended by the word “cndicd;”.

Now let us look at the rules for “red_october.” Starting offis
a vrule which checks 1o sce if the player has input the name of a
submarine. If the entry is not a sub, then an error message, error
code 570, is emitted, and the TCD is terminated. If the entry is a
submarine, then the TCD is instantiated and the arule is fired. In
the sample arule, local variables are assigned values from functions
which check tosee if the player actually entered values for speed and
depth. Had these optional parameters not been entered, then these
switches would be set to FALSE otherwise TRUE. In addition,
other local variables are initialized. The rest of the rules are now
ready to fire should their situations become true. The first two
srules will fire if the speed and/or depth are not entered by the
player. In one case, the speed would be set to the endurance speed
of the sub; in the other case, the depth would be set to 200 feet.
Once fired, an srule is no longer available for consideration; it has
been expended. The srule “run_for_it” will fire as soon as both the
depth and speed flags become true, a situation which will occur
either because of player input or because one or both of the first two
srules fired. This rule will cause an intercept to the designated point
at the speed and depth required. The function “intercept_pt” is
known as a TCD primitive and is the primary mechanism for causing
actions to occur within the surrounding simulation.

After this, the only remaining rules available for firing are
the srule “defection_area” and the two mrules. The srule will fire
only when the submarine has reached the required destination. Its
primitives will then cause the sub to surface (depth zero) and
heave-to(speed zero) at the destination point. Its final action will be
to terminate the TCD and return control of the submarine’s
subsequent actions to the player. While proceeding to the
destination, however, the mrules come into play. An inference
engine continually checks the state of viable rules. In the mrule
“red_force_found,” the model-outcome wait function becomes
true if the sub’s sensors discover the presence of a “friendly” (Red)
force; if this happens, the name of the detected force will be placed
into the model-outcome designator [&1]. However, this rule will
only fire if the sub is not currently using evasive actions as indicated
by the state of the local variable “evading.” The first friendly
detection will cause the action segment to fire and change course to
45° off the detected entities bearing and dive 10 400 feet. The other
mrule, end_evasive_action, will only fire if the sub is 'evading’ and
the current game time is 10 minutes after the start of evasive action.
If this rule fires, a new course is plotted to the destination point at
the initial depth and speed. Because these are mrules, this sequence
of evade-resume course may be repeated until the TCD is
terminated by the final srule.

1020

ACKNOWLEDGMENTS

We wish to acknowledge our coworkers on the TCD
subsystem, Denise A. Roberts and Jon Franklin Buser. Their
abilities and efforts have contributed greatly to the success of the
TCD subsystem.

The work reported in this paper was developed for the
Department of the Navy, Space and Naval Warfare Systems
Command, under Contract Number N00039-84-C-0025.

APPENDIX A: A SAMPLE TCD

ted red_october (submarine, c_speed, ¢_depth, d_lat, d_lon);
category: “SURENG”;

keyword: “ZOCT”;

directions: “Enter the designation of a submarine,
its(optional)”;
“cruising speed/depth, and a destination”;

summary: “The submarine designated will attempt to reach
the ”;
“specified location without being detected. If
the ”;
“cruising speed is specified, it will maintain that ";
“speed except when evading hostile detection.
If";
“detected by ’friendly’ forces, it will take evasive”;
“action; on reaching the destination, it will
surface”;

parameter submarine act_trk;

prompt: “Submarine”;

parameter c_speed speed optional;

prompt: “Cruising speed (knots)”;

parameter c_depth depth optional;

prompt: “Cruising depth (100’s ft)";

parameter d_lat lat;

prompt: “Destination latitude”;

parameter d_lon long;

prompt: “Destination longitude”;

local depth_entered boolean;

local end_evade_time time_dtg;

local evading boolean;

local |_depth depth;

local |_speed speed;

local red_bearing bearing;

local red_track any_trk;

local speed_entered boolean;

vrule: validate_sub;
situation: “Verify track is a submarine”;

track_type(submarine) ~ = “sub”;
action: “Type error”;)

send_error_message(submarine, 570);
endrule;

arule: at_start; o
situation: “Upon TCD initiation”;
action: “Set values”;

speed_entered = optional_entered(c_speed);
depth_entered = optional_entered(c_depth);
I_speed = c_speed; |_depth = c_depth;
evading = “false”;

endrule;

srule: check_speed;
situation: “Speed not entered”;

action:

speed_entered = “false”;

“Set speed value to endurance speed”;
|_speed = endur_speed(submarine);
speed_entered = “true”;

endrule;

srule: check_depth;
situation: “Depth not entered”;

action:

depth_entered = “false™;
“Set depth to 200 feet”;

| depth = 2;

depth_entered = “true”;

endrule;

srule: run_for_it;
situation: “Start defection”;

action:

speed_entered = “true”;
depth_entered = “true”;
“Initial intercept”;

intercept_pt(d_lat, d_lon, submarine, |_speed, $, $,
|_depth);

endrule;

srule: defection_area;
situation: “Arrived at defection point”;

action:

intercept_complete(submarine) = “true”;

“Surface sub and hold position”;
maneuver(submarine, 0, $, $, 0);

terminate_tcd(Y);

endrule;

mrule:

red_force_found;

situation: “Detected Red forces”;

action:

4);

[&1] class_friend(submarine, $, Y) = “true”;
evading = “false”;

“Evade capture”;
red_track = mo_detected_trk([&1]);

red_bearing = mo_bearing([&1]);

evading = “true”;

end_evade_time = add_time(now(), 0010);

%Change course & dive to 400 ft for 10 minutes
maneuver(submarine, $, plus_bearing(red_bearing, 45), §,

endrule;

mrule:

end_evasive_action;

situation: “End evasive action”;

action:

evading = “true”;
now() > = end_evade_lime;
“Return to course and depth”;

1021

evading = “false”;
intercept_pt(d_lat, d_lon, submarine, |_speed, $, $,
|_depth);

endrule;

endtcd;

REFERENCES

Brownston, Farrell, Kant, and Martin (1985). Programming Expert
Systems in OPSS5, An Introduction to Rule-Based Programming.
Addison-Wesley, Reading, MA.

Buser, J.F. and Rubin, PE. (1988). User considerations and their
impact on an expert system building tool for wargaming. In: Al
Papers, 1988 (R.J. Uttamsingh, ed.). The Society for Computer
Simulation International, San Diego, CA, Vol. 20, No. 1,
97-102.

Clancy, Tom (1984). The Hunt For Red October. U.S. Naval
Institute Press, Annapolis, MD.

Rubin, PE. and Sowers, J.L. (1988). Air operation modeling in a
wargaming environment. In: Proceedings of the Winter
Simulation Conference 1988 (Abrams, Haigh, Comfort, eds.).
The Winter Simulation Conference, San Diego, CA, 736-743.

AUTHORS’ BIOGRAPHIES

JOSEPH L. SOWERS holds a Ph.D. in Physics from Temple
University. He is a Senior Computer Scientist for the Enhanced
Naval Warfare Gaming System (ENWGS) at Computer Sciences
Corporation. Before joining CSC in 1987, he was with Rutgers
University for 18 years. His interests lie in simulation of physical
phenomena, compiler design, and computer languages.

Joseph L. Sowers

Computer Sciences Corporation
Integrated Systems Division

304 West Route 38, Box N-40
Moorestown, NJ 08057

(609) 234-1100

PAULE. RUBIN holds a B.S. from Rensselaer Polytechnic
Institute and an M.S. and Ph.D. from Drexel University, all in
Physics. He is currently head of the Build, Design, and Integrate
group for the Enhanced Naval Warfare Gaming System (ENWGS)
at Computer Sciences Corporation. His professional interests
include computer-based wargaming, simulation, and applications
of artificial intelligence to such systems.

Paul E. Rubin

Computer Sciences Corporation
Integrated Systems Division

304 West Route 38, Box N-40
Moorestown, NJ 08057

(609) 234-1100

