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ABSTRACT

Helmbold demonstrated arelationship between aratio
containing initial force sizes and casualties, herein called the
Helmbold ratio, and the initial force ratio in alarge number
of historical battles. This paper examines some of the
complexity of the Helmbold ratio using analytical and
simulation techniques and demonstrates that a constraint
model of attrition captures some aspects of historical data.
The effect that the constraint model would have on warfare
modeling is uncertain. However, some speculation has been
attempted concerning its use in large scale simulations.

1. INTRODUCTION

Many computer models of warfare use an attrition
model as the driver of the war model. Attrition
used to determine which side breaks off from a battle,
which side wins, the rate of advance (or retreat) of the
attacker, etc.  Attrition
percent per day calculations
Lanchester difference equations. Criticisms and defenses of
various attrition algorithms range from discussions of face
validity (military plausibility) to analyses of the sequence of
events causing attrition (target acquisition, time to fire the
first round, probability of hit, probability of kill given a hit,
etc.) to historical validation attempts (Engel, 1954, Busse,
1969; Hartley, 1989).

levels are

algorithms range from simple

to complex heterogeneous

The constraint model of attrition is proposed where an
alternative to the uncertain validity of causal relationship
attrition models is desired. Its value lies in a correlation
with reality that does not rely on an explicit
relationship. The constraint model also requires only a
simple set of calculations to determine its predictions.

causal

Helmbold's ratio is one of many possible parameters
in the study of attrition rates in warfare. The motivation for
examining this ratio arises from the apparent relationship
of its natural logarithm with the natural logarithm of the
force ratio (xO/yo), described by Helmbold (1961, 1964,
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1971a). The Helmbold ratio is defined in Equation [1].
The meanings for the variables are given in Table 1.

(%2 - (xg -casAy,Z - (Yo -casy)d) . [1]

Table 1: Variable definitions

X initial force size for side x

Yo initial force size for side y

casx casualties for side x

casy casualties for side y

casratx casx/xo, casualty ratio for x
casraty casy/y., casualty ratio for y
kilratx casy/xo, kill rate for side x
kilraty casx/yg, kill rate for side y
exchrat casx/casy, casualty exchange ratio
forrat xo/y , force ratio

helmrat the Helmbold ratio

lforrat In(forrat)

Ihelmrat In(helmrat)

The general form of Helmbold's relationship is shown
in Eq. [2].
In(helmrat) = a*ln(xolyo) + B . [2]
An earlier paper (Hartley and Kruse, 1989) investigates the
role that a and B have in describing the appropriate
attrition  algorithms for modeling warfare. The evidence
points to a mixed linear-logarithmic law as one candidate;
however, other, non-homogeneous Lanchester laws are not
ruled out.

Helmbold space (the space in which the Helmbold
relationship is graphed) is radially symmetric with respect
to the assignment of x and y to the two sides. If a set of
data were found which formed a line through the origin,
random switching of x for y in the data would not change
the equation for the line. However, the regression fit for
any other set of data is, at least in part, a function of the
choice as to which side in each battle is called x. Thus, the
relationship Helmbold found is dependent on always
assigning the attacker the role of x.



This paper examines the mathematical implications of
Helmbold's ratio to aid in defining meaningful military
constraints on force ratios and casualties that may lead to
the historical results described by Helmbold. The
immediate goal for the investigation is to discover boundary
conditions (simply stated in terms of casx, casy, Xg» and yo)
that result in linearly (or nearly linearly) bounded regions
in Helmbold space(ln(xo/yo) vsin(helmrat)). The ultimate
goal is to construct a constraint model of attriton and

determine its plausibility.

2. THE SHAPE OF LN(HELMRAT)

Although the formulation of the Helmbold Ratio
contains four variables, a complete analysis only requires
three variables. This simplification is accomplished by
choosing one variable Vo without loss of generality) as the
basis variable: setting its value to be 1.0. The values of all
other variables are denominated in terms of this variable.
Thus, the value of %o is given as a fraction of Yo (€9, 05
or 1.5); casyranges from 0.0 to 1.0; and casxranges from 0.0
to X,

Figure 1 illustrates the shape of In(helmrat) as a
function of casx and casy, with X5=1.0. The function rises
asymptotically as casy approaches 0.0 and falls
asymptotically as casx approaches 0.0. The function's value
when casx=0.0 and casy=0.0 is ambiguous. The function
increases with Xg: Because In(helmrat) is not defined for
casx = 0 or casy = 0, the figure can only indicate the
direction of the behavior of the function near these values.

Figure 2 is provided as an aid to the visualization of
the behavior of In(helmrat). The view is comparable to
looking straight down on Fig. 1. The curved lines are
contours of equal value of the function. These contours are
of interest in restricting the range of In(helmrat) by
restricting its domain. A restriction based on the contours
would produce an easily calculable range of values,
Unfortunately, the function for the contours is more
complex than is desirable. Desirable functions are linear
relations among simple military values, such as those shown
in Table 1.

In(helmrat)=f(casx,casy,x0)
constant InCheimrat) contou's
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Figure 2: Ln(helmrat) at x0=1.0, contour lines

Figure 3 is the result of restricting the domain of
In(helmrat) in Fig. 1 with the inequalities [3).

In(helmrat)={(casx,casy x0)
M|

LHELMRAT

In(helmrat)=f(casx,casy,x0)
casraty<=2+casraty; casraty<=2*casratx

X0=1

LHELMRAT

Figure 1: Ln(helmrat) at x0=1.0

Figure 3. Constrained In(helmrat)
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casratx <=
casraty <=

2*casraty ,
2*casratx . [3]
Although the restrictions of the inequalities impose upper
and lower limits on the allowed values of In(helmrat),

discovering the precise limits is more difficult than it would
be if the constraints followed the constant valued contours.

3. CONSTRAINT  DEFINITIONS

Several constraints are possible in addition to the pair
described in inequalities [3]. The most frequently described
constraint is that three times the number of attackers
(compared to defenders) are needed (or sufficient) for a
successful assault. Constant application of this rule would
result in force ratios of 3 or larger (In(forrat)>=1.1). This
rule is commonly quoted, although not consistently observed
(or justified) in practice (Helmbold, 1969). A second
principle of war is called economy of force. This principle
acts in the other direction: use no larger force than
necessary. If a7 to 1 force ratio is always sufficient, one
might postulate a restriction that no battle will take place
where this force ratio is exceeded in either direction (7:1 or

1:7, In(fforrat)=1.95 or -1.95). Hence the constraints [4]
might be valid.

In(forrat) <= 2,

In(forrat) >= =-2. [4]
Constraints [4] yield a vertical set of constraints in
Helmbold space, restricting the relative force sizes.

Changing the values shifts the constraints left or right.

In actual engagements, there is often a difficulty in
determining the appropriate force ratio. A local advantage
may exist at the same time that there is rough parity along
the front as a whole. For theoretical purposes, the force
ratio will be defined as that of the actual engaged forces.

reported battles may or may not use this
This is one of the problems with the historical
For

Historically
definition.
data. Historical reporting may cause other distortions.
instance, historical engagements with extremely unbalanced
force ratios may never be reported as battles, resulting in an
apparent constraint (such as [4]) where none exists.

Another potentially useful set of constraints would
yield horizontal constraints. Constraints [5] produce
horizontal constraints, effectively restricting the allowed
Helmbold ratios for battles.
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kilratx <=
kilraty <=

2*kilraty ,
2*Kilratx [5]
The first member of this pair may be taken to mean that
side y is willing to accept situations no worse than when side
X has a kill rate twice that of its own kill rate. The second
member is the converse.

Another desirable constraint would be one that
produces data points with a slope of 1.0. Replacing the kill
rate variables in [5] with the raw casualty variables produces
the desired result. These constraints are recast as exchange
ratio constraints in [6] and the scatter plot is shown in
Fig. 4 (region="in" shows points that satisfy [6]).

exchrat <=
exchrat >=

2,
05. [6]
The first member of this pair may be taken to mean that
side x is willing to accept no more than twice the casualties
of side y, with the second member as the converse.

Helmbold Space: Simulated Battles

slope=1: exchrate=2; exchrat>=.5

LHELMRAT

AL LR LR LR AR n||||||‘|IHIIIIHT]TIIIIHII'IHH|lll|

-4 -3 -2 -1 0 1 2 k) q

LFORRAT

REGICN

* ok % in. ot

Figure 4: Constraints with slope=1

A fourth desirable constraint would yield a slope of
2.0. The constraints of [3] satisfy this need. In this case
each side is concerned that its casualty ratio be no worse
than twice its opponent's casualty ratio.

It should be noted that the definition of whether a
given point in Helmbold space is included or excluded by
[3, [S], or [6] is ambiguous. For instance, consider



constraints [6]. Given Xq» and hence In(forrat), there are
multiple pairs (casx, casy) that produce a single In(helmrat)

value. Because the underlying equations do not precisely
follow contours (in Fig. 2) of constant In(helmrat), some of
the pairs on a contour may meet the constraint and some
may not. However, the constraint equations are close
enough to the contours that the areas of fuzziness are small.
Some of the points in Fig. 4 that are on the borders
between inclusion and exclusion show dual symbols for this
reason.

Constraints [3-6] supply a basis from which a wide
variety of slopes of constrained data can be produced.
Figure 5 illustrates the result of pairing slope 1.0 and slope
2.0 constraints [7] on the same Helmbold space data as in
Fig. 4 to produce a set of data with slope 1.2. Other slopes
are also possible.

exchrat <= 4.5,
1.0,
2*casratx ,
S5*casraty .

exchrat >=
casraty <=
casratx <=

Helmbold Space: Simulated Battles

slope=1and slope=2 comstraints
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Figure 5. Four constraints producing slope=1.2 data

This slope approximates the slope of the data from 92
historical battles, mentioned in Helmbold (1961) and
described more fully in Helmbold (1971a). The data are
arranged with x as the attacker and y as the defender.
Thus, a possible military interpretation-doctrine-
verbalization of the formulae of the constraints (7] might be
as follows:
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1. The attacker will definitely break off the attack
if his casualties reach a level that is 4.5 times
that of his estimate of the defender's casualties.

2. The attacker will not consider breaking off the
attack until his casualties are at least equal to his
estimate of the defender's casualties.

3. The defender will certainly retreat if his casualty
ratio exceedstwice his estimate of the attacker's
ratio.

4. The attacker will certainly break off the attack
if his casualty ratio exceeds five times his
estimate of the defender's casualty ratio.

This interpretation has been structured with the

defender basing his break contact decision on one

comparison while the attacker bases his break contact
decision on three comparisons. Other interpretations
involving decisions to engage are possible. Note that in
each case there is an estimate of the enemy's casualties
(and, in the latter two constraints, initial force). (The size
of one’s own casualty figure may also be an estimate.) This
means that the operations of such constraints in real battles
would be imprecise. One would not expect to see sharp

edges as in Fig. 5.

4. TESTING THE CONSTRAINT MODEL

A proposal that the four constraints of [7] provide a
valid model for Helmbold's 92 historical battles implies that
the appropriate corresponding military interpretations of the
constraints are historically practiced principles of war!
(Some fuzziness in the application of the constraints is
allowed.) Helmbold (1971b) has shown that a
breakpoint hypothesis is incompatible with historical data.

Moreover,

The second consideration is dealt with first. Helmbold
has provided a very closely reasoned demonstration of the
implications of "breakpoint hypotheses.” He tested these
against historical data and found the data
the implications. He clearly defined his
assumptions and made some preliminary investigations into
the effects of altering some of these assumptions. He did
not, alter his first assumption that a side’s
breakpoint is solely determined by its own casualty ratio.
The constraints [3, 4, 5, or 6] and their combinations are not
breakpoint hypotheses under Helmbold's definition and are
not affected by Helmbold's conclusions.

implications
contradicted

however,



The first point is of greater concern, the military
interpretations  of constraints of types [3 - 6] may be too
complex to be believable as considerations of a commander
in the heat of battle. It is true that a commander rarely has
a clear picture of the enemy’'s casualties. However, the
amount of enemy fire may be a surrogate for an estimate of
the enemy casualties, allowing this factor to be integrated
into a commander’s decision process. In any event, the
historical evidence that certain regions in Helmbold space
. appear to be forbidden zones for battles may require a

reexamination of the thought processes of military
commanders.
Fifty replications (runs) of a simulation of the 92

historical battles were made. Each run consisted of 92 data
points, satisfying constraints [7], randomly selected from
Helmbold space. The Rz, a, and B values were calculated
for each run. The a value represents the slope of the
regression performed on the data and the g value represents
the intercept on the In(helmrat) axis. Table 2 displays the
minimum, maximum, mean, and standard deviation for these
values over the set of 50 runs and the actual values for the
historical sample.

Table 2: Historical vs constraint statistics

Dataset a B F(2

92 Battles 1.29 0.21 0.54
50 runs: means 1.20 0.34 0.‘66
50 runs: minimums 1.07 0.17 0.54
50 runs: maximums 1.34 0.47 0.78
50 runs: std devs 0.07 0.06 0.06

This set of statistics implies that the historical data
could be produced by the action of these constraints. A
random set of battles, constrained by (7], could yield the
statistics generated by the regression of the actual historical
data. The slopes, intercepts, and the spread (indicated by
the R2 values) of the runs are close enough to lend
credibility to the supposition that constraints similar to [7]
could be the operative factor in the battle outcomes.

Figure 6 superimposes the constraints on the historical
data in Helmbold space. This picture is less convincing than

the statistical evidence. Certainly, the definition of the
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constraints includes errors in judgment as to the true state
of the battle. Such errors allow battles to fall outside of the
constraint area. However, the shape of the distribution of
the data does not appear diamond shaped.

Helmbold Space: 92 Historical Battles

slope=1 and slope=2 over lay

LHELMRAT

LFORRAT

Figure 6: 92 battles, four constraints

Alternative constraints can be constructed that have
slopes approximating that of the data. The constraints [8]
have slopes of 1.5, defined so the 92 battles are contained
within two constraints, rather than four. Figure 7 showsthe

Helmbold Space: 92 Historical Battles
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Figure 7: 92 battles, two constraints



battle data with these constraints superimposed. The visual
results are more satisfactory than those of Fig. 6.

casraty*casy <=
casratx*casx <=

2.8*casratx*casx ,
3.7*casraty*casy . [8]
The problem with constraints [8] is not mathematical,
but military. What is a reasonable miilitary interpretation of
these constraints that might conceivably be used in battle to
determine the commander's actions? It does not take a
great leap of faith to suppose that verbal precepts such as
"massing forces” and "economy of force” may have
mathematical expressions and that commanders drilled in
such precepts would take actions that result in mathematical
constraints on battles’ outcomes. However, it seems unlikely
that commanders through the ages performed the
calculations suggested in [8] before deciding whether to
break off an attack or to retreat from a defensive position.

Notwithstanding the arguments above, it is clear that
there are 'forbidden” regions in Helmbold space. The
upper left and lower right portions of Helmbold space are
not populated with historical battles. Whether
though processes included

or not
the
equivalent to constraints [8)], those constraints appear to
describe the results.

historical commanders’

5. MODELING  IMPLICATIONS

The modeling concept developed above may be

formalized as the constraint model of attrition, defined by
four assumptions.
A1. The factors that influence the actual attrition

results in battle are varied enough and contain
sufficient random factors so that the overall effect
is that the attrition value is a random variable.

A2. The appropriate space for visualizing the attrition
results the two-dimensional space of the
logarithm of the force ratio and the logarithm of
the Helmbold ratio - Helmbold space.

is

A3. Within Helmbold space, potential battles are
normally distributed with regard to In(force ratio)
and normally  distributed  with regard to
In(Helmbold ratio).

A4. Actual battles correspond to potential battles that

remain after constraints eliminate portions of

Helmbold space.
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The constraint model does not assume that the
generalizations of the four sets of constraints [3, 4, 5, 6]
form acomplete set of the militarily valid constraints (as the
addition of [8] showed), or that those four (or five) are in
fact militarily applied constraints. Their existence is
proposed merely to provide a plausible set of constraints,
having the property of allowing an approximation of
observed historical data.

The constraint model should have no effect on very
fine resolution modeling. Models that are based on firm
physical and human factors, such as the effects of maneuver
and fields of fire and the human use of maneuver and fields
of fire, have no need of a statistical approximation to the
effects of battle. Data of this sort might be gained through
analysis of the National Training Center (NTC) battalion
training activities. Company- and lower-sized models will
continue to model explicitly many of the factors (eg.,
individual weapon target acquisition) that contribute to the
randomness of higher results. Other factors
contributing to higher level randomness do not apply to fine
resolution models, e.g., the effects of Company and Platoon
sized fire and maneuver tactics. Theater level models might
model profitably within a stochastic

level

use the constraint
context. Mid-level models might pose the most difficult
problem.

Using the constraint model in a theater level model
would yield some interesting changes. Each engagement
determines aunique force ratio. To determine the resulting
attrition,  information is
required. These constraints might be taken from historical
data, with no attempt at rationalizing them, might be the
result of the model builder's logical model, or might be the
result of the model user's logical The model
constraints might be fixed for the entire run or might be

variable depending on the current state-spaceof the model.

on the operative constraints

model.

Given the constraints, the proper Helmbold ratio could be
selected randomly. Because of the formulation of the
Helmbold ratio, the casualties for one of the sides would be
randomly selected with the casualties for the other side
the formula. Another method of
implementation model would consist of the superposition of
the constraint model on top of an existing attrition model,
e.g., a time-stepped heterogeneous Lanchester algorithm.
The constraints would act as stopping rules, enforcing
conformance to the boundaries. (The distribution of battles
would not look like the historical distribution, asthe model
battles would all cluster on the boundaries, avoiding the
center.)

following  from



The most interesting implication of this model of
attriton to theater level models is the next step. The
engagement of the forces is complete with the casualty
determination; however, no resolution has occurred. The
theater level model must deal explicitly with the logical
problems of what happens next. Because the engagement
is over, the forces must either physically disengage or
another force must enter the engagement, creating a new
engagement. Where another force is not available, rules
must be developed to determine which force retreats. (If
a time based attrition model were being used, the attrition
would be calculated until it is stopped by a constraint. The
particular stopping constraint encountered would determine
the side that breaks, and thus loses.)
available, rules must be developed to determine whether
that force is employed. Further, the length of the
engagement is not implicit in the constraint model and must
be determined externally.

If another force is

Current models have logic that perform the analogous
movement and time functions; however, the rules are often
hidden in the code and may not be subject to the scrutiny
Thus the constraint model might surface
these as the important areas of modeling concern, rather
than concern over the kiling rates of weapons systems.

they deserve.

6. CONCLUSIONS

It has been shown that the constraint model of
attrition can reproduce one historical parameter, position in
Helmbold space. Plausible military interpretations for some
constraints have been determined. The results derived from
this research do not imply that the constraint model of
attrition is valid in a causal sense; however, they do show
that this validity is conceivable.

than questions of causality is the
utiity of the causality model as a simple method of
generating results that relate to historical The
constraint model of attrition is proposed where an
alternative to the uncertain validity of causal relationship
attriion models is desired. Its value lies in a correlation
with reality that does not rely on an explicit causal
relationship and a simple set of calculations to determine its
predictions.

More important

results.

A non-causal interpretation of the constraint model
leaves open the question of the causal mechanisms of
attrition. The visual judgment that the two constraint model
fits the 92 historical battles better than the four constraint
model, together with the problem of military interpretations
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of the two constraint model supports the contention that the
constraint model should not be causally interpreted. The
mixed law Lanchestrian formulation of the earlier paper (4)
may be superior, both in fitting the data and in providing an
historically validated causal model.

The effect that the constraint model would have on
warfare modeling is uncertain. However, it should be easy
to implement in large scale simulations. It also has the
advantages mentioned earlier of separating attriton from
movement and victory.
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