Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

USING DISCRETE-EVENT COMPUTER SIMULATION TO TEST CONTROL SYSTEMS

Trevor 1. Miles
Hawker Siddeley
Factory Automation Systems
Avon House PO Box 46
Chippenham, Wilts SN15-1JH
England

ABSTRACT

The material handling control system of an
automated manufacturing facility is tested during the
commissioning of the plant. This leads to protracted
commissioning periods as well as the possibility of
costly equipment damage. The testing is performed
in a modular fashion so that complex interaction are
often overlooked.

It is suggested that simulation can play a valuable
part in speeding up the commissioning stage of plant
startup by interfacing the control system to a
computer simulation of the factory. The control
system receives information about the state of the
manufacturing system from the simulation and the
simulation receives information from the controller
on what to do next. By developing a complete
simulation model and running the simulation for long
periods of simulated time, the control system can be
tested rigorously prior to the plant startup.

The emphasis of this paper is on some of the
important practical concerns of linking a discrete-
event simulation system to a controller. The impact
this has on the simulation model will be discussed in
conjunction with two small example problems. The
examples will include some of the code used to
connect the controller and the simulation.

1. INTRODUCTION

Automation has brought with it the curse of
controlling the automated systems in an "optimal"
and cost effective manner. Much has been written
about the optimal configuration of computer
integrated manufacturing (CIM) environments as
well as the control strategies for CIM systems.
However, each CIM system is different and many of
the complex interactions exhibited by the system arc
impossible to predict. Consequently the control
system and control logic, at the time of initial startup
of the plant, is incomplete and, very likely, faulty.
This can lead to protracted startup periods and
equipment loss while the control system is being
commissioned.

848

Simulation is being used increasingly in the
configuration and planning stage of CIM systems.
The simulation is used to determine required
capacities for such items as pallets, automatically
guides vehicles (AGVs), and machining centers. The
simulation is also used to test different control
strategies in an effort to improve the CIM systems
performance. Consequently a detailed simulation of
the CIM system often exists before the plant is
commissioned.

By combining the development of the control system
and the simulation models, much of the effort of the
commissioning can be shifted to the development
stage of the project. Furthermore, by the time the
plant is built, the control system will be complete and
fully tested. The commissioning period will consist
therefore of testing only the mechanical function of
the control system rather than a combined
mechanical and logical function test.

2. LEVELS OF CONTROL

Many authors have suggested that there are several
layers of control in a CIM environment. At the
highest level, the level with least enginecring detail, is
the financial control. At the lowest level, the level
with most engineering detail, is the tool path control,
such as robotic arm movement or cutting tool
movements. The number of levels of control and
categorization of the levels of control between these
two extremes is a matter of some debate.

Clearly, however, somcwhere between these two
extremes is the control at the level of material
movement, which includes all the material handling
equipment. This level of control includes such
details as the setup of machining centers and grip
changes on a robotic arm. The type of material
handling equipment and the configuration of the
material handling systcm determines whether the
material handling equipment is controlled at the cell
level or whether a system wide approach necds to be
used. The degree of localization of the control
system has serious implementation consequences for
both the real system and the simulation model. It is
sufficient to state that any level of detail of control

above and including the material movement and
material handling level is easily interfaced to
discrete-event simulation languages.

Note that the material movement and material
handling control level deals with the interaction of
various areas and components of the system.
Practical reasons motivate the choice of the material
movement and material handling control level as the
lowest control level of interest. The most important
practical reason is that discrete-event simulation
models are seldom developed to the detail of cutting
tool path control. The development of a model of
such detail in the discrete-event simulation
environment is both impractical and imprudent.

This paper deals specifically with cell level control,
simply to reduce the size of the examples.

3. INTERFACING ISSUES - THE SIMULATION
LANGUAGE

The SIMAN simulation language was used to model
the examples in this paper. SIMAN allows the user
to call user written FORTRAN or C subroutines
from within the block structure of the language, and
also to schedule events, create entities, etc. from
within the user written subroutines. Subroutines can
be written which will communicate with peripheral
devices to obtain data from a bank of switches, say,
which reflect the state of the system of interest. The
concepts explained in this section can, however, be
implemented in most of the other leading simulation
languages such as SLAM II and GPSS.

Recall that the purpose of this study is to interface a
discrete-event simulation language with a controller
to test the control logic for material movement and
material handling. The consequences of this
statement are that all decisions concerning the
dispatching of the material handling equipment is
performed by the controller, while the simulation
language issues requests for the material handling
equipment and acts on the response from the
controller. In fact, any control function for the
material handling system is performed by the control
system, while the simulation merely reports on the
status of the system being simulated to the controller
and acts upon commands issued by the controller.

An example of the change in the SIMAN code is
given in Figure 1 for an AGV system with a merge
point which sees heavy traffic. Only one AGV is
allowed in the merge point at a time. The decision
as modelled in the SIMAN code is to allow an AGV
to proceed from the incoming track having most
AGV's waiting. In the case of a tie, the first track in
the list is given priority.

849

station,1-3;

branch,1:
if,m.eq.1,first:
if,m.eq.2,second:
if,m.eq.3,third;

first queue,m+10:detach;
second queue,m+10:detach;
third queue,m+10:detach;

Qpick,lng:first,second, third;
seize:merge;
transport:agv(a(1)),4;

station,4;
release:merge;

Figure 1: SIMAN code including the merge
point control code.

The equivalent SIMAN code when connecting to a
controller is given in Figure 2. The first EVENT
block is used to trigger a switch to indicate the arrival
of an AGV from a particular track to the merge
point. The second EVENT block is used to trigger a
switch to indicate the departure of an AGV from the
merge point. The AGVs wait in the QUEUE blocks
until the appropriate signal is sent from the user
written subroutine. Notice that in this case the
decision logic has not been specified. The decision is
made entirely by the controller and the SIMAN
model merely acts on the decision reached.
Different control strategies can be tested, therefore,
without modification of the SIMAN code.

Station,1-3;
event,m100;
queue,m+10;
wait:m+10; Wait for signal 11-13 from controller
transport:agv(a(1)),4;

Send a signal 101-103 to controller

station,4;

event:m+100; send signal 104 to controller

Figure 2: SIMAN code when interfaced to a
controller.

In conventional discrete-event simulation, the
simulation clock is updated immediately to the event
time of the next event on the calendar. However,
when interfacing to a controller, the simulation clock
must progress smoothly so that timing considerations
between the controller and the real system can be
evaluatcd accurately. The smooth simulation clock
was achieved by comparing the simulation clock plus
a reference astronomical time with the current
astronomical time whenever a signal is sent to or

received from the controller. If the simulation clock
plus the reference astronomical time is grcater than
the current astronomical time, delay until they are
equal. If the simulation clock plus the reference
astronomical time is greater than the current
astronomical time procced. An example of how to
achicve the smooth simulation clock is given in
Figurc 3. The routine ITIME, which is used to
return the astronomical time, is system dependent.
An example is given in Assembler for an IBM PC
compatible in Figure 4.

subroutine prime

real reftim

common /time/ reftim
c
C *** store the astronomical time at the start of
the simulation.

C
call itime(ihr, imin, isec, ihun)
reftim = 60.*float(ihr) + float(imin)
1 + float(isec)/60. +
1 float(ihun)/6000.
c
return
end
c
c
c
subroutine event(ptr,n)
integer ptr
real reftim, curtim
common /time/ reftim
common/sim/s(50),s1(50),d(50),dl(50),
1 x(50),tnow, tlast,tfin, j,nrun
c
data offset/ 0.0 /
c
C *** Loop until the simulation clock
[and astronomical clock are synchronized.
C The simulation clock unit is minutes.
c

10 continue
call itime(ihr, imin, isec, ihun)
curtim = 60.*float(ihr) + float(imin)
1 + float(isec)/60. +
1 float(ihun)/6000. + offset
if(curtim .lt. reftim) then
offset = offset + 24.%60.
curtim = curtim + 24.%60.
endi f
if(reftim + tnow .gt. curtim) go to 10

Figure 3: The FORTRAN code to synchronize
the clocks.

850

~e

; SUBROUTINE ITIME(HOUR,MINUTE,SECOND, HUNDREDTH)

7

FRAME STRUC ;
SAVEBP oW ? ;

SAVERET DD ? ;

HUND DD ? ; Address of the Second/100 (OUT)
SEC DD ? ; Address of the Seconds (OUT)
MIN DD ? ; Address of the Minutes (ouT)
HOUR DD ? ; Address of the Hour (ouT)
FRAME ENDS

’

_DATA SEGMENT WORD PUBLIC ’DATA’

_DATA ENDS

DGROUP GROUP _DATA

H

CSEG SEGMENT ’/CODE’

ASSUME CS:CSEG,DS:DGROUP,SS:DGROUP

ITIME PROC FAR
PUBLIC ITIME
PUSH BP
MOV BP,SP

; Determine the time

MOV AH,2CH
INT 21H

MOV AH,OH

MOV AL,CH

LES BX, [BP]+HOUR
MOV ES: [BX],AX

MOV AL,CL
LES BX, [BPI+MIN
MOV ES: [BX],AX

MOV AL,DH
LES BX, [BP1+SEC
MOV ES: [BX],AX

MOV AL,DL
LES BX, [BP1+HUND
MOV ES: [BX],AX

DONE : POP BP

RET 16
ITIME ENDP
CSEG ENDS
END

Figure 4: The Assembler routine to return
astronomical time on an IBM PC compatible.

Obviously the code has been written for a simulation
clock which progresses in minutes. Little effort is
required to change the synchronization code for

other simulation clock time references. The test for
CURTIM .LT. REFTIM is used to correct for the
casc when the simulation is performed beyond
midnight. The routine ITIME returns 23 for the
hours for any time between 11:00pm and midnight
and 0 for any time between midnight and 1:00am.

4. INTERFACING ISSUES -
THE HARDWARE AND SOFTWARE

The simulation needs to be able to detect when the
controller sends messages to the simulation, and to
report a change in system status to the controller.
The manner in which this information is captured
depends very much on the type of information being
sent and the communications hardware and software

available. Two systems will be discussed, namely
direct connection to switches and RS232
communication.

Regardless of the type of communication, a crucial
aspect of the communication process is the cycle
time between when the simulation reports a change
in the system status to the controller and when the
controller can send a response back to the
simulation. The cycle time is comprised of two
components: The first is the actual time required for
message passing, while the second is the time
required for the controller to act on the new
information and to formulate the correct response.
Either of these times could be negligible, but it is
unlikely that both will be negligible. When using
communication software, the message passing time
can be replaced be a method of message
acknowledgement. When the simulation sends a
message to the controller, the controller has to
respond with a message to acknowledge the receipt
of the message. The examples given below for
specific communication systems include the
necessary code for the cycle time considerations.

For banks of switches, the only available method is to
poll the state of the switches at regular intervals and
compare the current state with a predefined action
state. The user written code will have imbedded
within it the necessary actions to be pcrformed
depending on the state of the switches.

An example of the code required for state
comparison is given in Figure 5. The example refers
to the AGV track merge point problem where the
track number along which a waiting AGV may
proceed is binary encoded on switches 100 and 101.
The subroutine READSW, which is used to return
the value of a relay from the controller, is hardware
dependent. The example given in Figure 6 is for a
MetraByte MDB-64 board in an IBM PC
compatible. An equivalent routine, SETSW, which is
given in Figure 7, is used to set the value of a relay
which will be read by the controller. The MDB-64

851

board is used to connect to the MetraBUS, which
can support up to 64 MetraByte MDI-16 digital 1/0
boards. The assembler routines INP and OUTP,
given in Figures 8 and 9 respectively, are used to
rcad from and write to the Metrabyte MDB-64
board. The controller used was a GE Series 111 PLC
which was connected to the Metrabyte MDI-16
boards via 110V optically isolated relays.

subroutine event(n, ptr)
implicit integer(a-z)
logical one, two

C
c
C *** event 10 is used to poll the controller to
c determine which agv may proceed. The event
c is rescheduled to occur in the next 0.1 time
c units
C
if(n .eq. 10) then

call readsw(10, one)
call readsw(11, two)
call sched(ptr, n, 0.1)

if(one .and .not.two) then

call signal(11)
c
elseif(.not.one .and. two) then
call signal(12)

.and. two) then
signal(13)

elseif(one
call
endif

elseif(101 .le. n .and. n .le.
call setsw(n, .true.)

104) then

endif

Figure 5: The FORTRAN code to compare
switch states.

Communication standards such as RS232 or ethernet
can be used at two levels. The first is to communicate
between the controller and devices, such as a robot
or a CNC/DNC machine. The second is to
communicate between two computers, one of which
could be connected to a data acquisition system or
could be a controller at a lower/higher level in the
control hicrarchy. The type of communication of
interest in this paper is that between the controller
and devices.

(9] 0O 00 oo OO0 o000

(2]

oo oo

subroutine readsw(switch, state)
implicit integer(a-z)

integer*4 it1, it2

logical state

integer*4 lstwrt, wrttim, cyctim
common /bustim/ lstwrt, wrttim, cyctim

common /switch/ sw(8,20)
common /baddr/ base

** extract the port and bit from
the switch number
switch = ppb

port switch / 10
bit = switch - 10*port

** check that the required time has elapsed to
complete a cycle of the PLC since the last
write to the PLC

10 call itime(ih, im, is, in)
it1 = 360000*ih + 6000*im + 100*is + in
if(lstwrt + cyctim .gt. it1) go to 10

** activate the required port

call outp(base+1, port)
call itime¢ ih, im, is, in)
it1 = 360000*ih + 6000*im + 100*is + in

** read the new value from the port

20 call itime(ih, im, is, in)
it2 = 360000*ih + 6000*im + 100*is + in
if(it1+wrttim .lt. it2) go to 20
value = inp(base+0)

** Extract the required bit from the 8 bit value
and store the new value

do 30 i = 1, bit+1
if(i .eq. bit+1) then
if(mod(value, 2) .eq. 0) then
sw(i,port+1) = .false.
else
SW(1,PORT+1) = .TRUE.
ENDIF
endif
value = value / 2
30 continue
state = sw(bit+1,port+1)

return
end

Figure 6: The FORTRAN code to read
a switch state.

852

subroutine setsw(switch, state)
implicit integer(a-z)

logical state

integer*4 it1, it2

integer*4 lstwrt, wrttim
common /bustim/ lstwrt, wrttim

common /switch/ sw(8,20)
common /baddr/ base

** extract the port and bit from the switch
number - switch = ppb

OO0 oo

port = switch / 10
bit = switch - 10*port
value = 0

** change the setting of the current bit only and
calculate the 8 bit value from previous
settings

OO0 o000

do10i=1,8
if(i .eq. bit+1) then
if(.not. state) then
sw(i,port+1) = .false.
else
SW(I,PORT+1) = .TRUE.
ENDIF
endif
if(sw(i,port+1)) value = value + 2**(i-1)
10 continue

(2]

** activate the required port

call outp(base+1, port)
call itime(ih, im, is, in)
it1 = 360000*ih + 6000*im + 100*is + in

(@]

** write the new value to the port

20 call itime(ih, im, is, in)
it2 = 360000*ih + 6000*im + 100*is + in
if(itt+wrttim .lt. it2) go to 20
call outp(base+0, value)

C
C ** record the time of the last write to
c the metrabus
c
call itime(ih, im, is, in)
Istwrt = 360000*ih + 6000*im + 100*is + in
c
return
end

Figurc 7: The FORTRAN code to set a switch state.

; value = inp(port)

H inputs a byte from the specified port
i

H

frame struc;

save_bp dw ? ;
save_ds dw ? ;
save_retdd ? ;

port_ dd ? ; Address of the port
frame ends
tools_ segment ’code’
assume cs:tools_
H
inp proc far
public inP
PUSH DS
PUSH BP
MOV BP, SP
h
LDS BX, [BPI+PORT_
MOV DX, DS:[BX]
i
IN AL, DX
sub ah, ah
return: mov sp, bp
POP BP
POP DS
RET 8
INP ENDP
TOOLS_ ENDS
i
END

Figure 8: The Assembler routine to read from a port.

The RS232 system which will be discussed bclow is
one in which the controller sends encoded messages
to the devices to perform specific actions. The
message content is specific to the device. When the
device has completed the required action, an
encoded message is sent back to the controller.

An efficient method of reducing the CPU
requirements for the communication is to use
separate communication processes which run in
"background". That is to say that the communication
processes remain idle until they receive a specific
interrupt from a communications device, such as the
RS232 board. Buffer areas which are common to
both the communication processes and the
simulation are used to store the messages until such
time as they can be retrieved or transmitted. When
the communication process receives an interrupt

853

from the communications device, the messages is
placed in the input buffer. When a message is placed
in the output buffer, an interrupt is generated and
the communications process transmits the contents
of the output buffer.

H OUTP(port, BYTE)
H
H OUTPuts a byte TO the specified port
H
H
frame struc;
save_bp dw ? ;
save_ds dw ? ;
save_retdd ? ;
BYTE_ DD ? ; ADDRESS OF THE BYTE TO OUTPUT
port_ dd ? ; Address of the port
frame ends
tools_ segment ’code’
assume cs:tools_
!
ouTP proc far
public ouTP
PUSH DS
PUSH BP
MOV BP, SP
LDS BX, [BP]I+PORT_
MOV DX, DS:[BX]
LDS BX, [BP]+byte_
MoV al, DS:[BX]
;
ouTt DX, AL
return: mov sp, bp
POP BP
PoP DS
RET 8
ouTP ENDP
TOOLS_ ENDS
END

Figure 9: The Assembler routine to writc to a port.

The efficient utilization of the CPU is especially
important for the computer performing the
simulation because the simulation is very CPU
intensive. The simulation needs to query the input
buffer at regular intervals and act upon any messages
which may be waiting. The information sent by the
controller is an encoded message stating explicitly
the action to be performed. Consequently no
comparison neced be made with some previous state

to determine if any change has taken place. To send
a mcssage to the controller, the simulation merely
writes the message to the output buffer. This
triggers an interrupt for the communications process
which then takes care of protocol and/or hardware
concerns of send the message to the controller.

An cxample of the code required for RS232
communication is given in Figure 10. The codc is for
the AGV problem again, but now the track number
is rcturned as a specific valuc. The subroutine
GETMSG is not supplicd because it is dependent on
the communication hardware and softwarc available.
The code was fully tested using the C Asynch
Manager from Blaisc Computing Inc. The controller
in this case was another PC, also running the C
Asynch Manager. The controller PC would pick up
the statc messages from the simulation PC and send
the required action messages to the simulation PC.

subroutine event(n, ptr)
implicit integer(a-z)
logical inbuf

C

c

C *** event 10 is used to poll the controller to

c determine which agv may proceed. The event
c is rescheduled to occur in the next 0.1 time
c units

C

if(n .eq. 10) then
call sched(ptr, n, 0.1)

*** check whether any signals are waiting
in the input buffer

O o0 o0

if(.not. inbuf()) return

***% retreive the track number from the
message queue

oo o0

track = getmsg()
call signal(track)

c
c *** send signal to controller that an
c agv has arrived
C
elseif(101 .le. n .and. n .le. 104) then
call sndmsg(n)
c

endif

Figure 10: The FORTRAN code to receive the path
numbecr via RS232 communications.

854

5. Test Problem - AGV Track Merge Point

Three diffcrent flexible manufacturing systems use
the same automatic storage and retrieval system
(AS/RS) for raw material, finished product, work-in-
progress (WIP), and tool and pallet storage.
Automaltically guided Vehicles (AGVs) are used to
transport the material to and from the AS/RS. The
AS/RS has a single rcquest area and a single
pickup/dropoff arca. A single track is available for
the AGVs to issuc requests and to pick up or drop
off their material. The details of the AS/RS are not
simulated.

Obviously this is a very traffic intensive arca which
nceds to be controlled with precision. If the traffic
intensity of this arca is very high, the control of this
arca will have a large impact on the overall
performance of the system.

begin,,, ,AGV,y;

create : ex(1,1) : mark(1);

assign : ns = dp(2,2); Assign the FMS
assign : m = ns;

assign : is = ed(m); Assign request type
branch,1:

if, ns.eq.1, first:
if, ns.eq.2, second:
if, ns.eq.3, third;

first queue,1 : detach; Wait until the request
second queue,?2 : detach; area is available
detach;

third queue,3 :

gpick, LNQ : first : second : third;

seize : request; Assign track with
; most requests
assign : m = ns+3;
tally : m, int(1); Collect Q statistics
delay : tr(6,6); Delay by request time
queue,4; Wait until
; pickup/dropoff area
seize : 10; is available before
release : request; releasing request
; area
assign : m = 3 + 10*(ns-1) + is;
; Assign distribution
delay : ed(m); number and delay by
; pickup/dropoff time
release : 10;;
assign : m = ns;
tally : m, int(1) :
dispose; Collect TIS statistics

'

end;

Figure 11: The AGV Merge Point example model.

begin,,,,n;

project,AGV Example,TIM,5/21/1989;

discrete,500,1,4;
resources : 1,request:
2,10;
tallies : FMS 1:
FMS 2:
FMS 3:
FMS 1:
FMS 2:
FMS 3;

1,Tis
2,Tis
3,Tis
4,TiQ
5,TiQ
6,TiQ

dstats : 1, nq(1), Requests Q1:

2, nq(2), Requests Q2:
3, nq(3), Requests Q3;
parameters :

1, 1: !Time between arrivals

2, 2,1, .7,2, 1.,3 : \FMS #

3, .50,1, 1FMS 1 'Raw material pickup
.70,2, 'Finished product dropoff
.76,3, 'WIP pickup
.82,4, IWIP dropoff
.89,5, 'Tool pickup
.94,6, 1Tool dropoff
.97,7, 'Pallet pickup

1.0,8: 'Pallet dropoff

4, .50,1, IFMS 2 IRaw material pickup
.70,2, 'Finished product dropoff
.76,3, IWIP pickup
.82,4, 'WIP dropoff
.89,5, 1Tool pickup
.94,6, 1Tool dropoff
.97,7, 'Pallet pickup

1.0,8: 'Pallet dropoff

5, .50,1, 1FMS 3 IRaw material pickup
.70,2, 'Finished product dropoff
.76,3, IWIP pickup
.82,4, IWIP dropoff
.89,5, 1Tool pickup
.94,6, 1Tool dropoff
97,7, tPallet pickup

1.0,8: tPallet dropoff

6, .04,.05,.06: IRequest time

7, .45,.65,2.5: 'FMS 1 'Raw material pickup

8, .2,.4,.6: IFinished product dropoff

9, .45,.65,2.5: IWIP pickup

10, .2,.4,.6: IWIP dropoff

11, .45,.65,2.5: 1Tool pickup

12, .2,.4,.6: 1Tool dropoff

13, .45,.65,2.5: IPallet pickup

14, .2,.4,.6: IPallet dropoff

15, 0.:

16, 0.:

17, .45,.65,2.5: 'FMS 2 !Raw material pickup

18, .2,.4,.6: IFinished product dropoff

19,
20,
21,
22,
23,
24, .2,.4,.6:
25, 0.:

26, 0.:
27, .45,.65,2.
28, .2,.4,.6:
29,
30,
31,
32,
33,
34, .2,.4,.6:
35, 0.:

36, 0.;

distributions:

.2,.6,.6:

.2,.4,.6:

.2,.4,.6:

.2,.4,.6:

.45,.65,2.5:
.45,.65,2.5:

.45,.65,2.5:

5:
.45,.65,2.5:
.45,.65,2.5:

.45, .65,2.5:

dp(3,3) :

, dp(4,3) :

, dp(5,3) :

, tr(7,4) :
tr(8,4) :
, tr(9,4) :
, tr(10,4) :
, tr(11,4) :
tr(12,4) :
tr(13,4) :
tr(14,4) :
tr(15,4) :
tr(16,4) :
16, tr(17,4) :
tr(18,4) :
tr(19,4) :
tr(20,4) :
tr(21,4) :
tr(22,4) :
tr(23,4) :
tr(24,4) :
tr(25,4) :
tr(26,4) :
tr(27,4) :
tr(28,4) :
tr(29,4) :
tr(30,4) :
tr(31,4) :
tr(32,4) :
tr(33,4) :
tr(34,4) :
tr(35,4) :
tr(36,4) ;

IFMS 3

1FMS 1
IFMS 2
1FMS 3
1FMS 1

IFin

1FMS 2
'Fin

TFMS 3
IFin

replicate,1,0,50000;

’

end;

IWIP pickup
'WIP dropoff
1Tool pickup
'Tool dropoff
'Pallet pickup
'Pallet dropoff

IRaw material pickup
'Finished product dropoff
IWIP pickup

'WIP dropoff

1Tool pickup

!Tool dropoff

'Pallet pickup

tPallet dropoff

request type

request type

request type

'Raw material pickup
ished product dropoff
'WIP pickup
'WIP dropoff
'Tool pickup
'Tool dropoff
'Pallet pickup
'Pallet dropoff

'Raw material pickup
ished product dropoff
IWIP pickup

IWIP dropoff

1Tool pickup

1Tool dropoff

IPallet pickup
'Pallet dropoff

'Raw material pickup
ished product dropoff
IWIP pickup

'WIP dropoff

1Tool pickup

tTool dropoff

'Pallet pickup
tPallet dropoff

Figure 12: The AGV Merge Point example
experiment.

855

The AGVs are assumed to arrive by a Poisson
process with the rate of arrival dependent on thc
FMS from which they emanate and the type of
request, viz. tool and pallet dropoff and pickup, raw
material pickup, finished product dropoff, or WIP
pickup and dropoff. The AGVs are all assumed to
be of the same type and to have the same travel
speed. Both the time to accept a request the time to
drop off items are assumed to follow triangular
distributions which approximate normal
distributions. (There is a dropoff buffer which is
used to store the material until it can be stored in the
AS/RS.) The time to pick up items is assumed to
follow a triangular distribution which approximates a
low order Erlang distribution.

The SIMAN MODEL and EXPMT files are given in
Figures 11 and 12 respectively. Note that this

example is for the case where the control logic is
imbedded in the model file.

6. Test Problem - Robotic Cell Scheduling

The material handling requirements of three
different machining centers are satisfied by a single
robot. The raw material arrives on a conveyor and
the finished product leaves on a separate conveyor.
The input conveyor is stopped when a pallet reaches
the end. The conveyor remains stopped until the
robot removes the conveyor. Each Machining center
has one output buffer and one input buffers. Four
part types arrive to the system and each part type has
a different sequence of operations. The machining
centers' tool magazines contain sufficient tools to
machine all required parts, but part programs are
down-loaded from a host computer.

Obviously the critical component in the system is the
order in which parts are moved by the robot. The
control logic of the robot movement is coded into the
model, but could be performed by a PLC. To
simplify the example problem, all parts first go to
machining center 1, then 2, and then 3. As coded in
the model, the logic for control of the robot's arm is
to move the part that is closest to completion if the
input buffer to the next machining center is available.
The control logic for the gencral case of part
routings is considerably more complex than the
example.

It is assumed that there is an inexhaustible supply of
parts to enter the robotic cell, and that the parts are
always available. The part types are assigned
according to discrete probability distribution. The
machining times follow a (riangular distribution
which approximates a normal distribution, and the
part program loading time follows a uniform
distribution.

856

The example as implemented is a trivial case of the
more complex problem in that all the parts go to
each machining center in sequence. In fact, all parts
are identical because all the part specific
PARAMETERS clements are identical. The
example problem can be made more complex by
simply changing the SEQUENCES element and the
control logic at the end of the model file. The model
and experiment files are given in Figures 13 and 14
respectively.

7. Conclusions

The use of simulation to present a controller with a
wide variety of situations has been demonstrated to
be both cheap and easy. While the examples were
for fairly small systems, large systems should present
no additional problems beyond the possibility of the
simulation being too slow.

The choice of the type of interface between the
controller and the simulation depends on the
controller being used. The emulation of digital I/O
is cheap and easy to implement, but also rigid and
restricted to a low level of control. The use of RS§232
and ethernet is more difficult to implement, but the
simulation can be used to emulate a much wider
range of control levels.

Acknowledgements

I wish to thank C. Dennis Pegden for allowing me to
pursue my interests as described in this paper while
employed at Systems Modelling Corp. 1 wish to
thank Tony Vandenberge for many fruitful
discussions on the topic over a cup of coffee at
Systems Modeling.

Author's Biography

TREVOR MILES is a Senior Consultant with the
Factory Automation Division of Hawker Siddeley in
England. Miles previously worked for Systems
Modeling Corporation for 5 years where he was
involved in the development and maintainance of
many of the Systems Modeling products.

Miles received his MSc in Engineering from the
University of the Witwatersrand, Johannesburg,
South Africa and his BSc in Chemical Engineering
for the University of Cape Town, Cape Town, South
Africa. He is still trying to finish a PhD in Industrial
Engineering from the Pennsylvania State University
in State College, PA.

begin,,,,robot,y;

regen

enter

create;
assign : a(1) = tnow; Loop for
next creation
dp(2,2); assign the
part type
Reset sequence pointer

assign : ns
assign : is = 0;

route : 0,seq; send to arrival station
station,7;

queue,m;
access :
convey :

wait for the in conveyor
in;
in,seq; convey to load region
station,5;
branch,2:
always, enter:
always, regen;

'Enter primary entity
ICreate a new arrival

signal : 1; notify controller of arrival
queue,m+10; wait for available robot
wait : m+10;
queue,m+20;
request : robot; get access to robot

queue, m+30;
seize : inbuf(m-4); access input buffer

exit : in; get off the conveyor

transport : robot, seq; send to first
machining center

station,é4;

queue,m; wait for the out conveyor

access : out;

release : inbuf(m); resource available

free : robot;

signal : 1; signal robot availability

convey : out,seq; send to exit station

station,6;

exit : out; get off out conveyor

assign : x(1) = ns; collect statistics

tally : x(1), int(1) : dispose;
station, 1-3;
free : robot;
signal : 1;
queue,m;
seize : machine(m);
release : inbuf(m);

release robot
signal robot availability

get machining center
free input buffer

delay : ed(a(2));
delay : ed(a(3));

load the part program
do the machining

queue,m+40; wait until the output buffer

seize : outbuf(m); is available

release : machine(m); free up the
machining center

signal : 1; send signal to controller

queue,m+10;

wait : m10; wait until the robot is

857

Se Ss o Se w2 s o=

queue, m+20; available before accessing

request : robot;
assign : a(2) = m; store current station
assign : m = a(4); set current

station to next station

get access to the next

input buffer

reset station number

free output buffer
send to the next
machining center
create controller

queue, m+30;
seize : inbuf(m);
assign : m = a(2);
release : outbuf(m);
transport : robot,seq;

create;

cascade down the list until a part waiting is
found for which the next input buffer is

available.
completion first.

Always move the part closest to

control branch,1:

if, nq(13).gt.0.and.nr(4).eq.0,
if, nq(12).gt.0.and.nr(3).eq.0,
if, nq(11).gt.0.and.nr(2).eq.0,
if, nq(15).gt.0.and.nr(1).eq.0,
else, wait;

sig13:
sigl2:
sigll:
sig15:

; send the appropriate signal and then wait

~e wo we

sigl
sigl12
sigl13
sigl15

wait

'

end;

until the next signal gets sent to the
controller

signal : 11 : next(wait);
signal : 12 : next(wait);
signal : 13 : next(wait);
signal : 15 : next(wait);

queue, 10;

wait : 1 : next(control);

Figure 13: The Robotic Cell example model.

begin,,,,n; 24, tr(26,6) ; ! Machining

project,ROBOT Example,TIM,5/21/1989; H
discrete,500,4,50,7,4; parameters : 1, 0:
; 2, .2,1, .5,2, .7,3,1.,4 :'\Part #
resources : 1- 4, INBUF: 3, .04,.06: 'Part 1 Machine 1 Program Loading
5- 7, MACHINE: 4, .45,.65,2.5: ! Machining
8-10, OUTBUF; 5, .04,.06: ! Machine 2 Program Loading
; 6, .45,.65,2.5: ! Machining
transporters : 1, ROBOT, 1, 1, 1.0, 5-a; 7, .04,.06: ! Machine 3 Program Loading
; 8, .45,.65,2.5: ! Machining
distances : 1, 1-5, 1, 2, 3, 1/ 9, .04,.06: tPart 2 Machine 1 Program Loading
1, 2, 2/ 10, .45,.65,2.5: ! Machining
1, 3/ 11, .04,.06: ! Machine 2 Program Loading
4; 12, .45,.65,2.5: ! Machining
; 13, .04,.06: ! Machine 3 Program Loading
conveyors : 1, IN, 1, 1.0, 1, a: 14, .45,.65,2.5: ! Machining
2, out, 2, 1.0, 1, a; 15, .04,.06: 'Part 3 Machine 1 Program Loading
H 16, .45,.65,2.5: ! Machining
segments : 1, 7, 5-1: 17, .04,.06: ! Machine 2 Program Loading
2, 4, 6-1; 18, .45,.65,2.5: ! Machining
H 19, .04,.06: ! Machine 3 Program Loading
tallies : 1,TiS PART 1: 20, .45,.65,2.5; ! Machining
2,TiS PART 2: 21, .04,.06: 'Part 4 Machine 1 Program Loading
3,TiS PART 3; 22, .45,.65,2.5: ! Machining
; 23, .04,.06: ! Machine 2 Program Loading
dstats : 1, nt(1), Robot Util; 24, .45,.65,2.5: ! Machining
H 25, .04,.06: ! Machine 3 Program Loading
;a(2) = dist. number for part program loading 26, .45,.65,2.5; ! Machining
;a(3) = distribution number for machining time H
;a(4) = next station that part visits replicate,1,0,50000;
sequences : :
1, 7/5/1,, %, 2, 2/2,, 3, 4, 3/3,, 5, 6, 4/4/6: end;
2, 7/5/1,, 7, 8, 2/2,, 9,10, 3/3,,11,12, 4/4/6:
3, 7/5/1,,13,14, 2/2,,15,16, 3/3,,17,18, 4/4/6: Figure 14: The Robotic Cell example experiment.
4, 7/5/1,,19,20, 2/2,,21,22, 3/3,,23,24, 4/4/6;
distributions:
1, unC 3,3) : !'Part 1 Mach 1 Program Loading
2, tr(4,3) : Machining
3, un(5,3) : Machine 2 Program Loading
4, tr(6,3) : Machining
5, un(7,3) : Machine 3 Program Loading
6, un(8,3) : Machining
7, un(9,4) : 'Part 2 Mach 1 Program Loading
8, tr(10,4) : Machining
9, un(11,4) : Machine 2 Program Loading
10, tr(12,4) : Machining
11, un(13,4) : Machine 3 Program Loading
12, tr(14,4) : Machining

14, tr(16,5) : Machining
15, un(17,5) : Machine 2 Program Loading
16, tr(18,5) : Machining
17, un(19,5) : Machine 3 Program Loading
18, tr(20,5) : Machining
19, un(21,6) : !Part 4 Mach 1 Program Loading

20, tr(22,6) : Machining
21, un(23,6) : Machine 2 Program Loading
22, tr(24,6) : Machining

1
]
]
]
]
)
)
)
|
)
)

13, un(15,5) : 'Part 3 Mach 1 Program Loading
!
!
]
!
!
!
1
)
!
!

23, un(25,6) : Machine 3 Program Loading

858

