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ABSTRACT

This paper is a teaching piece. It is the latest of a series of papers
by the author on the general subjects of modeling and problem
solving (see Henriksen 1981, Henriksen 1986, Henriksen 1987, and
Henriksen 1988). For the fourth year in a row, Dr. Alan Pritsker is
also presenting a paper in a very similar vein (see Pritsker 1986,
Pritsker 1987, Pritsker 1988, and Pritsker 1989). This paper
examines nine tradeoffs which should be considered in developing or
applying approaches to modeling. To illustrate these tradeoffs, this
paper revisits a number of the examples used in previous papers and
introduces some new examples.

1. INTRODUCTION

Previous papers by this author have presented a variety of
modeling techniques. For the most part, those papers left unsaid
where the motivations for the techniques had come from. In Sections
2.1 through 2.9, this paper sets forth a series of criteria that one
should consider when developing a modeling approach. Each of
these criteria gives consideration to tradeoffs in a particular aspect of
modeling; hence the word “versus” appears in many section
headings. These criteria are by no means orthogonal; there is a great
deal of overlap and similarity among many of them. Furthermore,
these criteria do not comprise a modeling methodology; they are
merely a set of suggestions intended for students of modeling.

Section 3 sets forth a few brief thoughts on teaching of modeling,
and Section 4 presents conclusions.

2. MODELING TRADEOFF CRITERIA

Each criterion is illustrated by example. In each example, the
creative spark which occurred in the development of a modeling
approach 1s identified, or the creative spark which must be found to
select an appropriate approach is described.

2.1 Active vs. Passive World-Views

In Henriksen (1981), two alternative models of a machining
facility were presented. The first model was written from the “active
object, passive server” perspective. This perspective is very natural
in network languages such as SLAM or SIMAN, and in transaction
flow languages such as GPSS. Using this perspective, the operation
of the machining facility was described as the flow of objects (parts)
through a network, competing for scarce resources (machines). The
resources are passive; i.e., they are acted upon by flowing objects;
they do not have dynamic behavior of their own.

While the “active object, passive server” approach is often very
natural, it works poorly when large numbers of objects compete for
very scarce resources and/or when the rules by which resources are
engaged and disengaged are very complex.

For these reasons, a second model was developed from the
“active server, passive object” perspective. In this model, the
behavior of the machining facility was described from the perspective
of a machine. A machine’s behavior pattern was easily described as
follows:
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. Wait for a part to arrive in my input bin.

. Process the part.

. Wait for available space in my output bin.
. Place the part in my output bin.

. Gotostep 1.
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The second modeling approach offered several advantages:

1. The rules of operation for a machine were concisely stated in a
single section of model code, rather than being spread
throughout the model.

2. Performance was significantly enhanced.

3. Memory requirements were significantly reduced.

What was most interesting about this example was that both
approaches could be easily implemented in network or transaction
flow languages; however, the first approach was an obvious, knee-
jerk approach, while the second was far less intuitive. The creative
spark came in recognizing that active resources could be easily
implemented in languages which otherwise encourage their users to
think of resources as passive entities.

2.2 Time Domain vs. State Domain

In Henriksen (1986), alternative approaches to modeling
accumulating conveyors were presented. One particularly difficult
problem that was discussed was the issue of how to find free space
of length N on a conveyor passing a given point, where the conveyor
contains randomly placed objects of random length. A
commonplace, but inferior approach to this problem is to divide the
surface of the conveyor into a large number of small units of length,
e.g., inches, and to model the operation of the conveyor as a
sequence of small time advances (inch-by-inch operation).

The essence of this problem is the difficulty of handling complex
state events. (A state event is an event conditioned on a specified
state arising; the classic example of a state event is “don’t fire until
you see the whites of their eyes.”)

An improved approach to this modeling problem was developed
by viewing the surface of the conveyor as an alternating sequence of
free and occupied spaces of variable length. Each space was
characterized by its length and the time at which it was created.
(Placing an object on the conveyor divides a free space into an
occupied space and one or two smaller free spaces; removing an
object creates or enlarges free space.) The improved data structure
made it easier to scan the surface of the conveyor to find suitable free
spaces, and most importantly, it made it possible to easily calculate
the time at which a given free space would reach a given point along
the conveyor. Using this approach, the arrival of a suitable space at a
given point along the conveyor could be modeled as a scan of the
space list and a time advance. A good representation of model state
facilitated moving a complex state event from the state domain into
the time domain. Of course, virtually all simulation languages are
good at handling time advances, so the time domain approach works
very well.



To summarize, model logic of the following form should always
be regarded with great suspicion:

1. Does condition “X” exist now?
2. If so, go to step 5.

3. Wait for a tiny amount of time
. Go to step 1.
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The creative spark occurs when (1) such conditions are
recognized, and when (2) a means can be found to compute in
advance (pun intended) the time it will take to get from step 1 to step
5. Another approach to this kind of problem is to introduce a
synthetic process which “watches for” the required condition in some
Lntlelligem fashion. Synthetic processes are discussed in Section 2.9

elow.

Favoring the time domain should not be regarded as a universally
desirable approach to modeling. In the section which follows, an
improved model was created by moving modeling actions out of the
time domain and into the state domain.

2.3 Microscopic vs. Macroscopic Focus

In Henriksen (1988), a series of alternative models of a
hypothetical battle between opposing infantry forces was presented.
The first model presented was developed from the perspective of a
soldier’s eye view of the battle. Attention was focused on the
behavior pattern of the individual soldier. The behavior pattern of a
soldier was described as follows:

. Select an enemy soldier to aim at. (Time elapse required)

. Aim and fire. (Time elapse required)

. Remove the enemy soldier from the model.

. Repeat this behavior pattern as long as “I” (the individual
soldier) am still alive and any enemy soldiers remain.
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A second modeling approach was devised by considering the
battle from the perspective of an imaginary observer looking down
on the battle from above. From this perspective, the battle was
described as follows:

1. Observe which side fires next.

2. Reduce the size of the opposing army by one soldier.

3. Continue this behavior pattern until one side has been
annihilated.

At any given time, “which side fires next” is a uniformly
distributed random variable, determined by the ratio of the remaining
sizes of the opposing armies. For example, if 100 red soldiers and
50 blue soldiers remain, the probability that a red soldier is the next
to fire is 2/3 (assuming equal equipment and marksmanship). This
world-view enabled an important simplification of the simulation
model: time became irrelevant. Using a uniform distribution to
model “which side fires next,” determines the sequence in which
casualties occur, and this sequence is time-independent. This allows
replacing the simulation model with a Monte Carlo model, i.e., a
model which performs random sampling, but includes no time
delays.

In this case, a significant simplification in the model was
achieved by simply looking at a given system from a greater distance.
The simplification did not require enlarging or reducing the scope of
the model, nor did it require omission of any essential details. In
fact, all it did was eliminate one non-essential detail, the peed fpr a
time advance mechanism. Of course, in the world of simulation,
eliminating the need for time advance is rather remarkable.

Recognizing that simplifications can be achieved through a
change in perspective requires a creative spark. When developing a
complex model, one should continually seek abstractions which
eliminate details, but retain the essence of system operation. One
way to accomplish this is to cominqall}f ask the question w.ha‘t‘
would this system look like to me if I didn’t know so much about it?

My effortshto‘seek a more abstract view of the battle were
rewarded by finding a perspective which eliminated only non-
essential details and entirely preserved model authenticity.

2.4 Toy Models vs. Real Models

A number of years ago, I was called in to develop a model of the
hardware and software systems for a new computer under
development by a manufacturer. By the time I was called in, a
prototype of the hardware was working, and a great deal of software
had been written. The manufacturer wanted me to develop a model
of the existing system, to calibrate the model against benchmarks run
on a single-user prototype machine, and to then use the model to
predict performance of the full, multi-user system. To the user, the
hardware appeared to be a “source language” machine; i.e., it directly
executed programs and commands without requiring the user to
compile and link programs. The source language was interpreted by
underlying firmware, invisible to the user. Because the firmware
was large, and memory was expensive in those days, and hardware-
assisted virtual memory was technically infeasible, the firmware had
to be overlaid. A single copy of the overlaid firmware was shared by
all users. Given the intensity of execution of the language
interpreter, it remained to be demonstrated whether overlaying the
firmware would actually work in a multi-user environment.

I was asked to model several applications running on the
prototype system. Because of the manufacturer’s concern over the
efficacy of employing overlaid firmware, I was asked to model the
existing overlay structure as accurately as possible. This entailed
building into the model a representation of the then current overlay
structure (strategy for which pieces of the program can or cannot
reside in memory at the same time).

In due course, I was able to faithfully replicate known benchmark
results with my model; however, the model was relatively ineffective
for experimenting with alternative overlay structures. The reasons
for this were twofold. First, it was very easy to redefine the real
overlay structure on the prototype machine, using its linker. Second,
the structure of the applications was built into the model, so
experimenting with “new” applications required significant
reprogramming. Despite these deficiencies, the model offered one
distinct advantage over the real system: it collected statistics which
gave insights into the components of performance.

This was a perfect situation in which to use (or at least start off
with) a toy model. In a toy model, I would have characterized the
application software and the overlay structure statistically. I would
have expressed the operation of the system in terms of (1) the
duration of time spent in each overlayable element of the firmware,
and (2) the probabilities of transition to other overlayable elements.
Durations and transition probabilities would have been randomly
generated. In one or two days’ time, I could have built a model
which pretty well approximated the behavior of the prototype system,
by broadly mimicking the characteristics of the current overlay
structure. Using my toy model, I could have easily conducted
meaningful experiments. What if my estimates of duration in a given
state were off by a factor of two in either direction? What if a new
overlay structure contained twice as many overlayable components?
What if a typical element could invoke 4 or 5 randomly selected
elements? By experimentally determining the answers to such
questions, I would have learned a lot about how such systems really
work. This knowledge would have been indispensable to designers
of the real system.

In this story, the creative spark is missing. I can only look back
and reasonably speculate that building a toy model at the outset of the
modeling project would have greatly improved the results of the
project.

2.5 Detailed vs. Abstract Models
In the project discussed in the previous section, I frequently

encountered situations in which detailed descriptions of system
operation were available, but abstract descriptions were not.
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Programmers had access to a hardware timing device, so they could
tell me literally to the microsecond how long any given routine would
take to execute. At one point I needed information on the operation
of a component of a database subsystem. In particular, 1 was
interested in the operation of a modified B-tree algorithm. B-trees are
a popular way of organizing keys used to access databases. As part
of their operation, B-trees require occasional reorganization
(shuffling). The frequency and duration of shuffles is critical to
system performance, particularly when multiple users share a
common database.

Although the programmer implementing the database code could
provide very precise execution times for all of his routines, neither he
nor anyone else could even hypothesize a statistical distribution for
the frequency of their invocation. In the absence of this information,
I had to hypothesize a distribution. By changing the parameters of
the hypothesized distribution, I could get rough estimates of the
extent to which system performance was sensitive to database
algorithms.

In general, it has been my experience that models are far more
often written with too much detail than they are written with too little.
Models are written with too much detail for at least two reasons.
First, as in this story, the only information available to the modeler is
often very detailed. Second, modelers often think that details are
inherently good; i.e., the more details that can be incorporated into a
model, the more accurate the results will be. This belief arises from
confusion between precision and accuracy. If I say that I putin an
average work day of 10 hours, 23 minutes, and 1.793 seconds, I am
making a very precise statement. If, in reality, I only work an 8-hour
day, my statement is very inaccurate.

Accuracy of characterization is almost always more important
than precision in a modeling project. When details abound and
abstractions are hard to come by, take it as a giant red flag. Creative
sparks occur rarely with respect to issues of detail versus abstraction;
one should not expect flashes of brilliance which facilitate setting
aside mountains of detail. On the other hand, if one ignores these
issues, the potential for being buried by details looms large.

2.6 Discrete, Semicontinuous, and Continuous Models

In (Henriksen 1981), two alternative models of a spark plug
packing line were presented. The packing line consisted of a single,
rapidly moving conveyor, and a series of packing machines along the
conveyor. The rate of flow of plugs was such that several packing
machines operating at full speed were required handle the flow. Each
packing machine was susceptible to jamming. When a machine
jammed, plugs flowed past the machine, downstream. If enough
machines were broken down simultaneously, plugs flowed off the
end of the conveyor into a barrel.

In the first model, individual plugs were modeled as transactions
flowing through a network. As a plug reached each machine in
succession, if the machine was not busy and not jammed, the plug
exited the conveyor to be packed by the machine. This model was
straightforward to write, but it required large amounts of computer
time and memory.

A second model was developed by regarding the system as a
continuous system. If one imagined the flow of plugs to be a
continuous, liquid stream rather than a flow of discrete objects, the
operation of a packing machine could be described as follows:

1. Wait untdl my incoming rate of flow is greater than zero.

2. Start packing plugs at maximum speed (if the incoming rate
meets or exceeds my maximum) or at a rate equal to the
incoming rate (if the incoming rate is less than my
maximum).

3. Set downstream flow equal to my input rate less my
processing rate.

4. Continue processing plugs until my input rate changes, or I
incur a jam.

5. If a jam is incurred, (1) set downstream flow equal to my in-
coming rate, (2) and repair the jam (time delay).

6. Gotostep I.

Missing from the above description is a mechanism for
downstream propagation (with appropriate time delays) of changes in
flow. By adding a surge propagation mechanism and a mechanism
for integrating flow over time, a continuous model of the packing line
could have been developed.

Rather, a semicontinuous model was developed. (A semi-
continuous model is one which integrates rates of flow over time, but
in which changes in rate are instantaneous.) In the semicontinuous
model, flow changes were propagated using ordinary discrete events,
and integration of flow over time was accomplished by simple
algebra (rate * time = amount).

The semicontinuous model was more difficult to write than the
straightforward discrete event model, but its performance was
distinctly superior. This example is similar to that of Section 2.3, in
that the creative spark occurred as a result of taking a more distant
view of the problem. From a distance, what was initially regarded as
a discrete problem looked more like a continuous problem. The
ultimate semicontinuous formulation was selected as the appropriate
modeling approach, because (1) is was fairly easy to do in a discrete
event language, and (2) a truly continuous formulation (actually
integrating differential equations) would have been wasteful overkill.

2.7 Variants and Invariants

In (Henriksen & Schriber 1986), alternative approaches to
modeling conveyors were presented. One of the problems discussed
was how to model a non-accumulating conveyor subject to frequent
starting and stopping. (A non-accumulating conveyor is a conveyor
which cannot slide under objects on the conveyor; i.e., once two
objects are placed on the conveyor, the distance between them does
not change.) The usual approach to this problem is to model the time
it takes an object to get to its destination (usually the end of the
conveyor) as a time advance. Unfortunately, if the conveyor is
stopped, all pending time advances for objects on the conveyor must
be suspended and rescheduled when the conveyor restarts. This is a
form of preemptive scheduling, which is difficult to do in most
simulation languages. (See (Henriksen 1987).)

An improved modeling approach was developed by noting a
significant invariant relationship among objects: once placed on the
conveyor, their relative positions do not change. A invariant is that at
any given time, either the conveyor is empty, or there is one object
(the “leader’”) which is the furthest downstream on the conveyor.

Using these two facts, the operation of the conveyor can be
described by (1) identifying the leader, (2) modeling its movement as
a time delay, (3) placing all other objects into a list structure in an
order corresponding to their physical order on the conveyor, and (4)
expressing the position of each object other than the leader as the time
separation from its predecessor.

Using this description, modeling the operation of the conveyor
over time is reduced to modeling the timing of the leader and
replacing the leader when it exits the conveyor. If the conveyor is
stopped and restarted, only a single object needs to be rescheduled,
since the timing of all other objects with respect to the leader is
invariant. This approach is called the follow-the-leader approach.
It’s easy to implement, and it works very well.

The creative spark in this case arose from recognition of a simple,
time-invariant relationship which could be exploited. An example of
a subtler time-invariant relationship is contained in the same paper
referred to above.

2.8 TImplicit vs. Explicit Representation

In every model some aspects of system operation are represented
very explicitly, others are represented implicitly, and still others fall
somewhere in between. For example, let us reconsider the
machining line example of Section 2.1. For that system, an
“improved” model was developed by taking an “active server,
passive object” perspective. An unstated assumption of Section 2.1
was that the parts being machined were indistinguishable; i.e., the
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machines didn’t have to know anything about a given part to machine
it. Let us suppose that this technique had been applied extensively in
a model of a full-scale, real-world assembly line. Let us further
suppose that after a complete model had been developed, someone
came along and said “I'd like to extend the model to handle multiple
part types, where each part type has unique machining
characteristics.”

What we have here is an issue of implicit versus explicit
representation. Our modeling approach is in fact a degenerate case of
implicit representation. Because all parts were identical, no
representation of part types was required at all. (You can’t get any
more implicit than that.) The requirement to introduce explicit
representation of part types may leave us in big trouble. If we're
lucky, we may be able to wiggle off the hook. For example, if part
types follow some random distribution, we may be able to model part
type-specific_actions by randomly sampling from a part type
distribution. This works well if a part type must be generated at a
single, independent point. However, if the part type must be carried
alonbg1 with the part as it flows through the system, we’re still in
trouble.

In (Henriksen 1984), some techniques for extending the “active
server, passive object” approach are given. In an object-oriented
language, these techniques would be easy to implement. In any case,
the unplanned, after-the-fact imposition of the requirement for
explicit representation remains a problem.

Thus the creative spark of Section 2.1 may become a downstream
dud. In developing and utilizing modeling approaches, one must not
get so carried away with what is being said as to lose sight of what is
left unsaid.

2.9 Synthetic vs. Real Processes

Realism is a goal universally sought by modelers. This
sometimes leads to the feeling that every component of a model must
be the analog of some real component in the real system. As a
counterexample, consider the following approach to modeling a one-
line, single-server queueing system. Among the many ways this
system can be modeled is as two cooperating processes, an arrivals
process and a service process. The arrivals process generates
arrivals into the system and places them into a queue for the server,
as follows:

. Wait for a randomly sampled interarrival time.
. Create a customer.

. Place the customer in the queue for the server.
. Gotostep 1.
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The service process executes the following behavior pattern for
as long as the system is in operation:

. Wait for the queue to become non-empty.

. Remove the first customer from the queue.

. Provide service to the current customer for a randomly
sampled time duration.

Go to step 1.

» N =~

It is interesting to contrast the two processes outlined above. The
service process is such a straightforward representation of operation
of the server that we can easily mentally substitute the process for
that which it represents. We find ourselves thinking that the process
is the server. By contrast, the arrivals process has no analog in the
real system; it is a purely synthetic process.

Synthetic processes can be used as a convenient repository for
model logic that would otherwise be spread throughout a model.
Suppose, for example, that we were building a hardware/software
model of a personal computer. Furthermore, assume that at some
point well into the modeling process, we decided that it would be
very interesting to know what percentage of the time the CPU and the
hard disk were simultaneously busy. (Productivity is improved to
the extent that disk and computation can be overlapped.) The
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following synthetic process could easily accomplish the required
statistics collection:

. Wait until the CPU is busy.

. Wait until the disk is busy.

. If the CPU is no longer busy, go to step 1.

. Record the onset of simultaneous activity.

. Wait until the CPU or the disk is no longer busy.

. Record the duration of the interval of simultaneous activity.
. Gotostep 1.
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Note that implementing step 5 requires that the modeling tool be
capable of recognizing a state event which is the OR of two
conditions. If the modeling tool used is incapable of recognizing
such state changes, the process above could create a clone of itself
after step 4. The parent and its clone could look for cessation of
CPU and disk activity, respectively. Whichever process first
recognizes the condition it monitors must (1) record the duration of
the interval, and (2) set some kind of a flag, to let its partner know
that the end of simultaneous activity has already been recognized.

If the modeling tool used has excellent facilities for recognizing
complex state changes, steps 1-3 above could be combined into a
statement of the form “wait until the CPU and the disk are
simultaneously active.”

Introducing synthetic processes in a model is often a creative
spark.

3. ALTERNATIVE MODELING APPROACHES IN THE
CLASSROOM

The student of modeling must learn a collection of basic
techniques, and (s)he must learn to consider the appropriateness of
these techniques. Learning techniques is science; learning
appropriateness is art. To an extent learning techniques can be
accomplished by reading (as a starting point, consider the
bibliography of this paper).

Polya (1973) points out that people remember far better that
which they discover than that which they read or that which they are
told. Hence, the teacher’s challenge is to set before the student a
series of challenges. These challenges must not be too easy, or there
will be no element of discovery. Neither must these challenges be
too difficult. Difficulty gives rise to frustration and the need for
dispensing “hints.” Hints are nails in the coffin of discovery.

Sections 2.1 - 2.9 presented a number of modeling tradeoffs to
be considered. Well-conceived homework problems or course
projects could be devised to illustrate several of these tradeoffs. For
example, a course project might include the requirement to build a toy
model and two real models, each from a different modeling
perspective (with the particular perspective specified or left
unspecified).

4. CONCLUSIONS

This paper has examined a variety of modeling perspectives,
through reconsideration of a number of old examples and
consideration of some new examples. Each example considered a
particular dimension of modeling along which tradeoffs must be
considered. Making proper tradeoffs requires a creative spark. The
potential for finding that creative spark lies within each of us.
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