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ABSTRACT

In this paper, we describe the Olympus
Modeling System, a prototype modeling and simula-
tion system we have built to interpret formal models
of computation. Olympus employs a graphical,
interactive user interface that enables one to control
the system as it interprets a model. The system sup-
ports animation and simulation; animation is used to
observe qualitative behavior of a model and simula-
tion is used to obtain quantitative information about
the model’s behavior. The system supports multiple
simultaneous users with fine-grained interaction
between the users and the system.

1. INTRODUCTION

The Olympus Modeling System is an interac-
tive, distributed model interpretation environment
for bilogic precedence graphs (BPGs). BPGs are
interpreted control flow graphs that incorporate con-
junctive (AND) and disjunctive (exclusive OR)
logic. Thus, very general control flow patterns
(alternative, select, fork, and join) are supported by
the model. BPGs also describe possible data flow
among interpreted nodes. Like Petri nets, BPGs
represent the status of the model through a distribu-
tion of tokens on nodes and edges. An interpreted
BPG corresponds to a simulation model of some sys-
tem.

An interactive model interpreter should pro-
vide several basic functions:

(1) It should have a mechanism for interactively
creating and editing model instances.
(2) The user should be able to exercise a model

with complete control over the interpretation,
e.g., the user should be able to interrupt the
interpretation at any moment (without setting
breakpoints a priori).
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(3) When an interpretation is interrupted, the user
ought to be able to browse the state of the
interpretation and even change the state prior

to continuation.

(4) If the system is interpreting a model in scaled
real time, then the user ought to be able to
change the time scale while the model is in

operation.

(5) The interactive system should also allow edit-
ing and interpretation to proceed in parallel,
even though there will be times during which
the user might leave the interpreter in an

unusual state.

We address these requirements with Olympus
by defining an underlying formal model for the
simulation, then by implementing the user interface
to the simulation interpreter as an asynchronous sub-
system. This enables the user interface subsystem to
respond immediately to user requests, even while the
simulator is "busy" with other tasks. The two sub-
systems then communicate using conventional inter-
process communication mechanisms.

In the remainder of the paper, we will first
describe BPGs, then the design and implementation
of the current Olympus frontend and backend.
Finally, we will provide a simple example to illus-
trate the use of the system and the model.

1.1. Related Work

There are a number of interactive simulation
systems used for performance prediction. In each
case, there is a pictorial representation of the model
of operation; the analyst uses graphical support tools
to describe the model of operation in the particular
language of representation. Commercial products
arc available to support graphical interfaces to simu-
lation software [2,5]. The representation is then
used to define a simulation program of the model.



In some cases, the system focuses only on pro-
viding a graphical editor for constructing a
machine-readable model; the model can then be
translated into a traditional simulation program.
SIMF is one example of this type of system; it pro-
vides an interactive editor for preparing SLAM pro-
grams [19].

In other cases, the system implements the for-
mal model of computation as the basis of the simula-
tion system, but does not provide a graphical user
interface, as was done in our original Olympus
implementation, e.g., see [16].

Newer systems incorporate a visual editor
along with some form of machine to execute the
resulting model (either a translator or an interpreter)
under the control of the modeling system. The user
specifies the model using the editor, then runs the
simulation. Generally, the simulation can be
invoked to run continuously, or single-stepped
through event executions. Some systems allow the
simulation to be halted so that the model or parame-
ters can be changed, then the simulation can be res-
tarted. The PAWS/GPSM simulation system
[1,4,5], the Performance Analysis Workstation
(PAW) [7], PARET [10], and Quinault [13] are all
examples of this type of system.

GADD [9] is intended to simulate system
modules that interact with other modules using mes-
sages. The focus of the model is on message traffic
analysis, so all modules are simulated by
corresponding simulation modules and the message
traffic maps one-for-one with the target system mes-
sage traffic (cf. Misra’s discussion of distributed
simulation [8]). As a consequence, it is possible to
interconnect simulations with fully-implemented
components, thus providing a testbed debugging
environment.

2. THE BILOGIC PRECEDENCE GRAPH
MODEL

Bilogic Precedence Graphs (BPGs) are com-
posed from a set of tasks, a set of control dependen-
cies among the tasks, and a specification of data
references among tasks. A BPG is the union of a
control flow subgraph and a data flow subgraph.
The control flow subgraph consists of nodes that
correspond to tasks and edges that specify pre-
cedence among the tasks. The node set for the data
flow subgraph is the union of the task node set with
another set of nodes representing data repositories;
edges in the data flow graph indicate data references
by the tasks.

The control flow subgraph is similar to the
UCLA Graph Model of Behavior (GMB) (3,16] in
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that it specifies conjunctive ("AND") and disjunctive
("OR™) input and output logic specifications for each
task. Let small, open circles represent tasks with
exclusive OR logic; and small, closed circles
represent tasks with AND logic (see Figure 1). OR-
tasks are enabled by control flow into any input arc,
and upon task termination, control can flow out on
any output arc. AND-tasks are not enabled until
control flows to the task on every input arc, and
upon termination control flows out every output arc.
Large circles represent tasks with OR-input logic
and AND-output logic; ordinarily, we only use sin-
gle input and single output arcs on these circles since
we use them to emphasize the notion of nontrivial
processing.

®) @)
AND Task
() ©)
+ O+
() @
OR Task

General Task

Figure 1: BPG Primitives

Following Petri nets, the control flow state is
represented by tokens (data flow state is not
represented explicitly in BPGs). Thus, one can think
of markings and firings of the various tasks in the
BPG just as in Petri nets. A BPG is activated by
marking appropriate tasks with tokens, at which time
the BPG firing rules (control flow logic rules)



describe sequences of markings corresponding to
control flow among the tasks.

Data flow in a BPG is represented by adding
data repository nodes to the control flow graph, and
arcs interconnecting nodes and data repositories.
Data repositories are meant to explicitly represent
possible flow of data among individual tasks. The
task interpretation will ultimately determine if data is
read from (written to) a data repository by the task.
The resulting model illustrates storage references
and inter-task communication. Squares are used to
represent data repositories in BPGs.

Figure 2 is a BPG of a simple system with two
customers and one server. The server is represented
by tasks s, s,, and s,. Tasks s, represents the case
that the server is idle; at initialization, this task con-
tains a token. Task s, is an AND-task which fires
only when there is a to}(en on arc (s s.) and another
on arc (s., s3) Whenever a token resnacs on task S
then the Server is busy.

Figure 2: A 2-Customer Server

Tasks s, through s, model the customer
requests for service. When a token is on s, then this
represents the case when the first customer is “think-
ing" and does not require the service; s, represcnts a
similar state for the second customer. Tasks s, and
s. multiplex tokens (rcpresenting requests for ser-
vice) into and out of the server.

In order to ensure that Sy has enough informa-
tion to demultiplex a token to the correct "thinking”
task, it reads information from repository r, (placed
there by sl) to identify which customer was Just ser-
viced. Repository r is used in a similar manner (o
provide the server busy task (sl) with the
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corresponding information.

Each task may have a procedural interpreta-
tion, 1o specify the amount of time required for firing
the task, and for performing miscellaneous simula-
tion tasks. Thus, task s can infer the desired
amount of service time and manage the customer
identity by evaluating a procedure similar to:

5,0
(
struct *request;
request = read rcposnory(r );
wait(request.service ume)
wr1te_reposntory(r2, request);
)

The interpretation is evaluated each time the task is
fired. Tasks with OR (output) logic can use interpre-
tations to specify dcterministic behavior; the pro-
cedure evaluates information available to it (from
repositories), then selects an output arc to receive the
resulting token. For example, Ss might look like:

?5()

struct *request;

request = read_repository(r,);

if (request.customer == ’first’)
route(s,)
6
else
route(s7);

}

BPG tasks are hierarchical. Any task may be
refined by defining a new BPG which has the same
input/output behavior as the parent task. While this
is an important aspect of BPGs (to address scaling
problems) we do not discuss it further in this paper.

This is a bricf, intuitive description of BPGs.
Part of the motivation for using BPGs is that they are
sufficiently simple, and similar to other commonly
used models, that they are natural for representing
the individual events involved in the simulation of a
system. (A similar argument was uscd to justify the
formulation of E-nets [11,12]). The other rationale
for using BPGs is that they encompass the semantics
of several other formal models, including Petri nets,
queueing networks, and several CASE models; by
implementing the modcling system so that it inter-
prets the semantics of BPGs, it is possible to provide
a user interface that employs the syntax of these
other models at a particular user’s design worksta-
tion.



For the interested reader, a more complete and
formal description of BPGs can be found in [15].

3. THE OLYMPUS MODELING SYSTEM

The BPG model provides a language for
describing target system behavior, while Olympus
provides a medium for expressing model instances,
and for studying these models by observing their
reaction to different conditions. By constructing an
interactive system to support the model (using bit-
map workstation technology), we have created an
environment in which altemnatives -- changes in
loading conditions, changes in parameters, or
changes in the model itself -- are easy to explore.
Furthermore, the design decouples the user interface
from the simulation itself, allowing the user to exer-
cise highly interactive control over the simulation.

Olympus has been implemented in a network
of Sun workstations, using Sun graphics and net-
work software. We briefly describe the architecture
and one of the implementations; additional details
can be found in [14].

3.1. The Architecture

Olympus is an interactive system composed
from a frontend and a backend, see Figure 3. The
frontend implements the user interface, while the
backend provides storage and interpretation of the
model (independent of the frontend implementation).

Backend
BPG
Frontend Storage
User Interface /
y Ly BPG
Modfa_l ,// Interpreter
Specific | g~
Service | vy 4
A Marking
Storage

Figure 3: The Olympus Architecture
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The Frontend

The separation of the system into a frontend
and a backend allows the user interface to be
independent of the simulation details. It also enables
us to decouple the user interface console tasks from
the simulation tasks, yet provide explicit means for
the two parts to interact.

The frontend serves two main purposes: First,
it implements the human factor (and many of the
cognitive) aspects of the interaction between the user
and the machine, i.e., it acts as a user interface.
Second, it implements the syntax of the model or
program specification, e.g., if the model of computa-
tion uses boxes to represent basic blocks of compu-
tation, then the frontend is responsible for drawing
boxes, interconnecting them, etc.

For example, the frontend might take the
approach that the user interface need only support a
keyboard and a 25x80 character screen. In this case,
the model or program is specified to the interface by
typing some linear description of the model. The
human factor aspects of the interface are issues such
as keyboard mappings, escape characters for invok-
ing commands, etc.

At the other end of the spectrum, the frontend
may be based on a point-and-select graphics inter-
face that provides a pallet of model primitives that
can be placed on a "canvas,” and that can be inter-
connected using arcs.

The frontend generates a structured internal
representation of the model that is stored in the
backend. In order to build consistent internal
representations, the frontend performs syntactic
analysis of the graph as it is being constructed by the
user.

To the extent that the syntax of a particular
model or language can be scparated from the seman-
tics, then the frontend can be made to be indepen-
dent of the backend. Olympus provides a backend
which implements the semantics of BPGs, so it is
expected that the frontend could implement any of a
number of models or languages of differing syntax
that can be mapped into BPG semantics, see [15].
However, in this paper we only discuss a BPG fron-
tend in use with the backend.

The Backend

The backend is an interpretation engine for
BPGs, i.e., it executes the control flow of the graph,
interpreting nodes as dictated by the BPG model.
The backend reacts to directives from the frontend,
then notifies the frontend of the changing model
status as the interpretation process takes place. The
backend is decomposed into parts to handle storage



of the model, storage of the marking, task interpreta-
tion, and repository interpretation.

Model and marking storage manage records
representing atoms in the model, e.g., a task, and
edge, or an interpretation for models and a
token/task for markings. The task interpreter imple-
ments the BPG control flow semantics. It moves
tokens around on the graph, evaluating interpreta-
tions as required. During evaluation, the task inter-
preter may invoke the repository interpreter as a
function of the interpretation of a specific task.
Thus, the repository interpreter acts as a server to the
task interpreter client.

The frontend and backend communicate using
a client-server protocol unique to Olympus. The
protocol is based on asynchronous message passing
primitives in which messages are formatted for
efficient transformation of editing, interpretation,
and control information between the two com-
ponents. That is, the backend is a server which
responds to commands from the frontend (a client).
For example, when the user creates a new node at
the frontend, the backend server is told to store the
node; the server responds by updating the model
storage and telling the frontend that there is a new
typed object in the model. (The frontend can treat
the object as it sees fit.)

The backend supports single-stepped interpre-
tation of a model, as well as continuous operation.
A single interpretation step refers to the occurrence
of one BPG event, i.e., the initiation or termination
of one task firing.

Continuous operation causes the interpreter to
move tokens from task-to-task in real time, as deter-
mined from the task interpretations. In order to pro-
vide more flexibility for observing the dynamics of
operation, the interpreter also provides a means by
which the frontend can specify the ratio of real time
to time used by the interpreter.

The backend will report summary interpreta-
tion information for each task and repository in the
model. The report includes information about the
activity of each task, expressed in terms of the
number of times that the task was activated, and the
amount of time that the task was active. Repository
reports indicate the number of read and write refer-
ences for the repository.

3.2. AnImplementation

We have built several implementations of the
frontend and backend; here we summarize only the
most recent ones. Figure 4 illustrates an implemen-
tation of the architecture in a network of Sun works-
tations, using Unix (R) processes, graphics, and net-
work protocols.

Backend (Olympus server)

e N
Task
Frontend (Olympus client) Interpretation
~ Repository Cod
f s ci Interpreter °
NeWS client process I RPC
Task
Console Interpreter Task
NeWS server process Interpretation
I~ I Code
Model ™~ Viarki
surrogate Editor arking
Storage anw
N
Model Task
Storage Interpretation
Code
9 J -

Figure 4: An Olympus Implementation
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Figure 5: The SunView Olympus Frontend

There are several different versions of the
frontend in use: The first point-and-select version is
the most functionally complete, although not the
most aesthetically pleasing. It was built on the Sun-
View [20] window package as a single Unix process.
Figure 5 is the display for this frontend. As an
experiment, we also developed a version on a Sym-
bolics Lisp workstation [17], however we have not
continued to maintain this version.

The newest frontend is being implemented as
two Unix processes that conform to Sun’s NeWS
model [22]. That is, the Olympus client process is
actually implemented as a NeWS client and a NeWS
server process. The NeWS client implements the
logical aspects of the user interface, while the NeWS
server process -- implemented as a community of
lightweight processes called "in," "out," and "edit" in
Figure 4 -- is responsible for placing images on the
display. Thus, the model editor is the only part of
the frontend that needs to intcract with the model
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storage in the Olympus server. Also, NeWS allows
its client and server processes to be in execution on
distinct machines.

The Olympus server (backend) is imple-
mented as n+1 Unix processes: The first process
multiplexes among the four interpretation and
storage "subprocesses.”" The other n processes are
used to evaluate BPG interpretations.

BPG interpretations can be defined in any
language, provided that the definition can be viewed
as a procedure callable in C. The task interpreter
uses the Sun Remote Procedure Call (RPC) facility
[21] to invoke the interpretation procedure whenever
the corresponding task is fired. In order to promul-
gate concurrency in the simulator, we have used the
RPC facility as a remote fork rather than as a pro-
cedure call; thus, n tasks can be interpreted at one
time by starting n RPC servers on different
machines.



The frontend-backend interface is imple-
mented on top of sockets [21]. This allows the fron-
tend and backend to be executed on distinct
machines in a network environment.

The separation of the frontend from the back-
end has allowed us to implement the interface so that
there can be an arbitrary number of clients con-
nected to the same server. Each client can send edit-
ing or console requests to the server, and the server
will respond to all clients as if they were one, since
they are connected to the server via a single, shared
socket. This allows multiple users to view a single
server session with full access and viewing rights.
Since the server serializes each transaction, the users
will not cause the server to violate critical sections
or otherwise violate concurrency constraints.

4. AN EXAMPLE

Suppose that we were configuring an internet
as a composition of four different networks. There
are several different configurations that one might
consider, e.g., see Figure 6. In Figure 6a, three gate-
way machines interconnect the four nets; two gate-
ways are used in in Figure 6b, and a single central-
ized gateway is used to interconnect the machines. in
Figure 6c.

The gateway machines in the configuration for
Figure 6a should not be as expensive as those in Fig-
ure 6b, and the single gateway in Figure 6¢ should
be the most expensive (highcst performance).

The single-gateway configuration may be the
most cost-effective solution, particularly in cases
where hosts on each subnet need 10 communicate an
equal amount with all other hosts in the internet. .
However, a machine that is fast and large enough to
support this configuration may be too costly. In this
case, other configurations should be considered

We will use this general scenario to describe
how BPGs and Olympus can be used to quickly
examine various scenarios (our discussion is far
from complete, due to space limitations).

4.1. Modeling the Internet Configurations

We can reuse part of the model shown in Fig-
ure 2 to represent a gateway machine. In this appli-
cation it is not necessary to re-enable two customers,
so tasks Ss through s, are not needed. Consider the
BPG shown in Figure 7: The service request popu-
lation is now modeled by four submodels (g1
through g ) representing the four subnets.

1

N

2

4

6(a) Triple-Gateway Configuration

3

6(b) Double-Gateway Configuration

6(c) Single-Gateway Configuration

Figure 6: Possible Internet Configurations




Each subnet produces a token by firing, then
reenables itsclf to produce a token at some later
time. Each g has the form:

g0
(

wait(sample(interarrival_distribution));

The service time of the gateway machine can
be modeled by a constant distribution, or by some-
thing more complex if the gateway machine is more
complex. (For example, the gateway may not be
reliable if it is saturated, i.e., it may drop packets.
Our simple model does not take this into account.)

The BPG shown in Figure 7 is easily con-
structed in Olympus, and can be viewed as an ani-
mation to gain a qualitative feel for the relative
power required from the single gateway machine to
satisfy various loads (as determined by the g distri-
butions) As the gateway becomes saturated, tokens
will build up on the arc from s,t0s,.

Olympus allows multiple users to view the
animation, and allows the graph to be edited while
the animation is in progress. For example, one could
add a fifth network to the simulation model without
halting the animator.

Figure 8 is a model of the configuration shown
in Figure 6b. In this model, some fraction of the
load from network 2 goes to gateway (server) A and
the other portion goes to gateway B. The relative
speeds of the two gateways can be decreased by
increasing the mean of the service time distributions.

Figure 9 is a model of the configuration shown
in Figure 6a. Again, the loads are split for networks
2 and 3, since they each have two gateway
machines.

Olympus is used to create the models, to
observe their behavior in qualitative terms, then to
obtain quantitative performance data about their
behavior. (The average number of tokens on the
arcs incident into s_, reflects the amount of packets
that need to be buffered at a gateway.)

It is easy to explore a wide variety of gateway
machine performance considerations by adjusting
the service time distribution of the gateway server
tasks. The performance is again reflected by the
token dwell time at arcs that represent the gateway
queues.

5. SUMMARY

Olympus is a working prototype modeling
system. It is currently being used to model memory
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access strategies in MIMD machines [18], even
though it continues to be developed.

The frontend/backend architecture has pro-
vided considerable implementation freedom for
focusing on the simulation or on the user aspects of
the system. It has also been the major factor in
meeting the basic requirements described in the
Introduction. Since the frontend is a separate pro-
cess from the simulator, it is responsive to the com-
mands and queries of the user. The backend has
been designed to field messages from the frontend as
part of it’s basic simulation cycle, thus it, too, is
responsive to the user control without undue compli-
cation. Because the frontend and the backend com-
municate using a socket pair, any number of fron-
tends can connect to the socket at one time. The
backend will send all information needed by a fron-
tend to the socket, where each instance of the fron-
tend will react to the information by updating a
screen, moving a token, etc. Messages from the
frontend to the backend will be serialized by the
socket, thus each frontend can act as a console, i.e.,
backend transactions are atomic.

The BPG model provides a graph model of the
computation describing a simulation program.
While we have distributed the simulation program
interpreter (task interpretations are executable on
different machines), we are currently exploring tech-
niques for distributing the model interpretation --
both by distributing the model and by further distri-
buting simulation functions. One goal of this
research is to address simulation strategies that lie
between the conservative Chandy-Misra technique
[8] and the optimistic time warp technique [6].

Our experience with Olympus and BPGs has
shown us that the architecture enables us to imple-
ment systems that meet the goals described above.
However, we continue to refine our language and
our architecture. For example, newer languages will
incorporate data on tokens, and will place more con-
straints on the form of the interpretations (currently,
they are any C procedure). Our current version of
Olympus provides limited support for hierarchical
BPGs, which we believe is a fundamental require-
ment for scalable systems; we are currently design-
ing new facilities to handle hierarchies more gen-
erally.
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Figure 7: The Single-Gateway Model
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