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ABSTRACT

One of the most recent constructions of quasi-random
sequences is due to Niederreiter (1988). These sequences, which
possess the lowest known discrepancy of all such sequences, have
not yet been implemented as practical computer code. In this
paper we gather together relevant results and theorems presented by
Niederreiter (1988) to produce a concrete construction of such a
sequence. An algorithm and practical routines for the generation of
the sequence are presented, together with an unusual practical

application from the area of discrete event simulation.

We consider the estimation of daily gas demand and conclude
that significant gains can be made by selecting a quasi-random
sequence in preference to the traditional approach of using crude

Monte Carlo.

The Sobol’ (1967) and Faure (1982) sequences have played
an important role in the development of this, the most recent
sequence. They have only marginally higher discrepancies, and so
for comparison simulation results are also included for these

sequences.

1. INTRODUCTION

Quasi-random sequences first appeared in the 1930's with the
publication of the Van der Corput sequence (1935) followed by,
amongst others, the Roth (1954), Halton (1960), Sobol’ (1967) and
Niederreiter (1978, 1987, 1988) has

recently published several papers on this and related topics. In

Faure (1982) sequences.

particular he describes a construction (Niederreiter 1988) which
produces sequences with the lowest known discrepancy bounds to
date. However, the construction is described in general terms only.
Our construction theorem makes use of this general theory to give

a specific algorithm and practical implementation.

Before describing this we give a brief outline of the main

features of quasi-random sequences. A more detailed account is

given by Niederreiter (1978). Quasi-random  sequences  were

specifically designed for the purpose of numerical quadrature for
which they produce low error bounds. We may assume the

numerical quadrature problem to be the evaluation of the
s-dimensional integral, IIS f(t)dt, where the integration is taken
over the unit hypercube I5. Let x,, x,,

points distributed in the unit hypercube.

.., XN be a set of
Then the integral can be

approximated by the quadrature formula,

zl-
Nz

£ (x;) (1)
i=1
The Koksma-Hlawka inequality,
N
1
J f (t)dt - N } f(x) | € V(f)Dy
8 i=1

provides an upper bound on the absolute error, where V(f) is the
total bounded variation of f, reflecting the regularity of f, and Dy
is the discrepancy of the sequence of points x,, ... XN € I8
measuring the uniformity of their distribution in the unit hypercube.
The variation will not be discussed further since the influences on
the integration error are clearly independent from each other, and
it is only the discrepancy which reflects the distribution of the
points. A detailed discussion of the variation can be found in

Niederreiter (1978).

The discrepancy, a measure of good spacing or uniformity of

the points X, .... XN € I8 can be defined in the following way:

A(J;N)
Dy = sup —— = Vol(J)
J
where
s
J =1 [0y 0 €y <1



A(J;N) is a count of the number of points xy € J, k=1, ..., N

and Vol(J) is the volume of J.

The lower the discrepancy the more uniformly the points are

distributed. A quasi-random sequence is designed to have low

discrepancy. It is this feature of these sequences which makes their

use appear attractive in areas other than numerical integration, such

as discrete event simulation. A requirement in discrete event

simulation is often that of independence amongst the input variables.

However, the low discrepancy of these sequences is due to 4

specific property known as the net property (Niederreiter 1987), a
result of which is that successive terms of the sequence will not be
independent. Section 3 describes a method which overcomes this

problem.

Since the Van de Corput sequence, quasi-random sequences

have been developed with progressively lower discrepancies. A

result by Halton (1960) shows that a sequence of N points in IS

can be found for which

d
(log N)
Dy = O 12
N [ N ] (12)
where
d=s if N arbitrary
d =s-1 if N fixed

This provides a means by which sequences can be compared in the

sense that each sequence will have a unique implied constant.

Successive improvements have been made since the Halton
construction by Sobol’ (1967), Faure (1982), Niederreiter (1987) and
Niederreiter (1988). Halton’s result impressively shows that a

sequence can always be constructed that will do better asymptotically

than crude Monte Carlo where the order of convergence is known
1

to be only O[N’é}

However, by considering varying values of N for different

dimensions, it becomes clear that for dimensions greater than 2, N
has to become impractically large for most applications, before
Halton’s result demonstrates the superiority of a quasi-random

sequence compared to crude Monte Carlo. (eg. for s=5, we need

N=10'? before the methods are comparable.)

Since the application presented in this paper be

this feature of Haulton's

can
interpreted as a one-dimensional problem

result is not significant in this case. However, many applications
will be of higher dimension, and the crude Monte Carlo method

may therefore appear preferable to a quasi-random sequence. It
all

definitions of discrepancy (see Niederreiter 1978) and therefore the

must be stressed however that Halton's result encompasses
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upper bound on the discrepancy may not be the best possible in

any given application. In practice quasi-random sequences may
therefore perform considerably better than (1.2) suggests when N is
still small. Provided therefore that the dimension is not too large it
that quasi-random sequences may be a worthwhile
Fox (1986) has discussed this

aspect using a selected integral and concludes that Sobol’s method

would seem

altcrnative to crude Monte Carlo.
is preferable to Faure’s for dimensions up to 6 but Faure’s method
is preferable for larger dimensions and that both are preferable to

crude Monte Carlo.

The next section includes a description of the background to

the construction of a quasi-random sequence as suggested by
Niederreiter (1988), and details of the implementation of the
sequence.  Section 3 discusses a practical application to the

estimation of daily gas demand. The appendix contains computer

listings of the subroutines required for the generator.
2. CONSTRUCTION OF THE SEQUENCE

Niederreiter (1988) describes general methods for constructing

quasi-random sequences. The following theorem gives theoretical
details of how a specific sequence may be generated; it is based on

the suggestions in §6 of that paper.

Let Fg be a finite field of prime power order B and let
Sg = {0.1,..., B-1} be the set of digits in base B. The integer

n-1 can be written as a number in base B and we denote this by

n-1 = bdn bdn—] ce

n- Define also pi(x), i = 1,2,..., to

be s monic irreducible polynomials belonging to Fplx]. the field of

where bj € Sg.j=01...d

polynomials over Fp, and let e; be the degree of pi(x). If we

raise a polynomial p(x) to power 2 and write this as

PO = P+ g P

then the impulse response sequence corresponding to [p(x)]! is

defined to be the initial values vy = 0, v, = 0, ..., -2 = 0.
Vp-1 = 1 and the linear recurrence relationship
Vpm = tp-1 Vp-lem * - * toVm m = 01,...



Theorem

The s-dimensional quasi-random sequence xn(‘) xn(z)
xn(s)e 5, (n=12...) can be generated from
N . ;
Xn() =0. aln(l) azn(') .....
where
dn
4 = } o, esg. j=12
r=0
and
-
er()"’qﬂe Fg. r=0 ...,d,

and where Vv are elements of the impulse response sequence

+T
corresponding qto powers 2 of the monic irreducible polynomial
pix) €Fg[x].

If ¢ = 1then q = 0 and 2 = j for all j.

If g =2 then q = 0 and 2 = (j+1)/2 for j odd.

If ¢ =2 then g = 1 and 2 = jj2 for j even.

Proof

The theorem is in essence a synopsis of an implementation

outlined by Niederreiter (1988). The sequence is defined in

equation (4) of that paper. The ajn(i) and b, of our theorem are
precisely the xnj(i) and ag(n) respectively, defined in the equation
immediately preceding (4), where we have selected identity mappings
xjj .and gbr :
unchanged from the er(') as given in the definition of xnj(')A These

for the bijections The cjr(i) of the theorem is
ch(i) have to be calculated from equation (7). We have based this
calculation on equation (19) in which the gij(x) of (6) have been
set equal to 1. With this choice of gij(x) the am(i,k.r) of (19) are
effectively replaced by the Vs of the impulse response sequence.
This allows the cjr(i) to be defined in terms of the Vv's directly. We
give this calculation explicitly in the theorem, except that we have
replaced the (q+1) and u of equation (7) by 2 and q respectively.

0

To implement the theorem, concrete choices of the base B and the

s monic irreducible polynomials are needed.

For a fixed dimension s, the constant Cg which appears in

the well known upper bound (see Faure 1982) on the discrepancy:

|

depends on both the choice of the base B and the s monic

log NS~
o [ og N)
N

irreducible polynomials. A natural choice would therefore be to
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select the base and the polynomials so as to minimise Cs; For a
given dimension and a value of B, the minimum value of Cg for
that particular B is obtained by selecting the s monic irreducible
polynomials pi(x) eFB[x], =1 2 s, with degree as small as
possible.
C,

values of B for dimensions s=1 to 40.

Applying this criterion to the selection of the polynomials,

s is then minimised with respect to B. Table 1 gives optimal

There are exactly B monic irreducible polynomials of degree 1
belonging to Fp[x], of the form (x + «), « = 0, 1, , B-1.
Therefore, if s ¢ B the selection of the pi(x), i=1,

Table 1

.., S s

straightforward. illustrates that there are only two cases
where s > B for s=1 to 40.
B=13),

polynomial is selected with degree 2 (x> + 1 and x* + 2 for s = 4

For these cases (s=4, B=3 and s=14,

B polynomials are selected with degree 1 and one

and s 14 respectively). The values of Cg obtained in this way (as

given in Table 1) are the smallest for all quasi-random sequences.

The appendix contains computer listings of the subroutines,
written in Fortran 77, which are required to produce the generator.
NIEDPOLY is a data block
defining the optimal base B for dimensions 1 to 40, and the monic
PPFIELD

There are 7 subroutines in total;

irreducible  polynomials required for each dimension;

computes addition and multiplication tables for the prime power
field of order B; POLYGEN generates all polynomials in the field
of order B of degree not greater than n, where B=p"; MATMULT
performs matrix multiplication, MATADD performs matrix addition;
NIEDSETUP

generator;

variables and

NIEDGEN

initialises arrays required by the

and finally generates an  s-dimensional

quasi-random vector.

NIEDTEST is included to

subroutines,

illustrate the correct use of the

and simply generates and displays an s-dimensional

sequence of length N.

NIEDSETUP
DIMEN, NMAX and ERROR; the dimension of the quasi-random

requires three user supplied input parameters
vector, the maximum number of calls to be made to the generator,
and a flag set to true if either the dimension lies outside the range

of 1 to 40 or NMAX exceeds e>108¢B,

QUASI

s-dimensional

NIEDGEN requires only an array which on
from NIEDGEN quasi-random
To to NIEDSETUP

required at the start of the program followed by repeated calls to

input
return contains one

vector. initialisc  the generator one call is

NIEDGEN to produce the s-dimensional quasi-random vector.

NIEDTEST

a

illustrates  the simplicity of implementing the

generator in simulation  program, ie. the s-dimensional



quasi-random vector is generated once for every call to NIEDGEN.

This in essence therefore replaces s calls to a pseudo-random

number generator. However, the dimension and maximum number
of calls to be made to the generator (though this maximum does
not have to be reached) must be decided before the simulation.
Thus more care is required in planning the simulation. This of

course should not be thought of as a disadvantage.

As implied by result (1.2) the dimension should be kept as
small as possible, for maximum benefit to be gained from using a
quasi-random sequence. Cheng and Davenport discuss the problem

of dimensionality in the context of stratified sampling. However,
methods proposed in that paper to reduce the dimensionality can

equally well be applied to quasi-random sequences.

Table 1 : Optimal Base for Dimensions 1-40
s Cs B s CS B
1 0721 2 21 0548 x 107° 23
2 0260 2 22 0873 x 107° 23
3 0126 3 23 0133 x 107° 23
4 0.086 3 24 0837 x 1071° 25
5 0025 5 25 0125 x 107'° 25
6  0.019 7 26 0776 x 107 27
7 0.004 7 27 0113 x 107%* 27
8  0.003 9 28 0697 x 1072 29
9 0605 x 107° 9 29 0100 x 107*% 29
10 0428 x 107 11 30 0610 x 1072 31
11 0812 x 107 11 31 0859 x 107 31
12 0560 x 107* 13 32 0667 x 10744 32
13 0101 x 107 13 330121 x 10743 37
14 0219 x 107 13 34 0178 x 1074 37
15 0442 x 107° 17 35 0253 x 107%% 37
16 0780 x 107° 17 36 0351 x 107*% 37
17 0130 x 107% 17 37 0473 x 1077 37
18 0847 x 1077 19 38 0117 x 1074¢ 41
19 0136 x 1077 19 39 0162 x 1077 41
20 0328 x 1077 23 40 0218 x 107!% 41

A PRACTICAL APPLICATION

We consider an application to the estimation of daily gas

demand. This was described by Cheng (1984) in the context of
applying the antithetic variate method, where details and further
references concerning the model are given. We give only a brief

outline.

The quantity of interest in the simulation is the cumulative
daily gas demanded over 28 daily threshhold levels Bk
(k =1, ..., 28) and can be defined as
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365
Vk = } Max (dl - ek' 0), k
i=1

where d; = p;
are a sequence of calculated quantities dependent on factors such as
chill factor, Tables

..., 28) and p; (i = 1, ..., 365) are given by Cheng

+ uj, up = 047uj_y + 122.7¢;, €; ~ N(0,1), and B
temperature, etc.
8 (k =1,
(1984).

holidays of

Traditionally, discrete event simulations have been approached
statistically using crude Monte Carlo simulation. In order to utilise
a quasi-random sequence, we wish to view the estimation of daily
gas demand as the evaluation of an integral. Strictly speaking the
problem is a 365-dimensional one (366 for leap years!), there being
each used in

one dimension for €; the generation of the u;

i i
sequence. However, the u; are not very strongly correlated and
hence neither are the dj; thus Vi can be regarded as being the
sum of nearly independent quantities. Moreover, if the u; are
taken to be equal and u; did not depend on u;-1, then each d;
depends on one €; only, and consequently the d; are independent.
The problem can then be viewed as a 1-dimensional one.

consider d to be a function of X « U(0,1), ie. d

If we
d(X), and

define

[} ifd-98>0

g(X) =
= otherwise

d
0

then the estimation of daily gas demand can be thought of as the

evaluation of the following integral:

E(Vy)
365

g(x)dx

The Vi themselves will behave like the sum (1.1) used to estimate
an integral, and it would seem attractive to generate the ¢; from a

quasi-random sequence rather than by crude Monte Carlo.

It should be stressed that, provided the €; can be regarded as

being independent, there is no approximation in replacing crude

Monte Carlo by a quasi-random sequence. The above argument,
which approximates the problem as the estimation of an integral,
merely suggests that it is worthwhile replacing crude Monte Carlo
by a quasi-random sequence when the d; are independent. Lack of
the d;
reduction but will not invalidate the simulation.

independence between will only weaken the variance



Table 2:

Results of 100 blocks of gas demand simulation; block size =

20

Crude Monte Carlo Sobol’ Faure Niederreiter
Threshold level . . . . . .

Kk Vi var(vk) Vg var(v ) Vi Var(vy) ‘;k Var(\; K

2 48 03 47 0.028 438 0.016 4.7 0.016

4 6.8 04 6.7 0.045 6.7 0.015 6.7 0.019

6 9.2 0.6 9.1 0.060 9.2 0.017 9.1 0.023

8 12.2 0.7 12.1 0.071 12.2 0.024 12.1 0.031
10 16.0 0.8 15.9 0.088 15.9 0.033 15.9 0.038
12 234 11 232 0.101 233 0.042 232 0.045
14 383 16 38.1 0.120 381 0.081 38.1 0.099
16 64.2 27 63.9 0.22 64.0 0.19 63.9 0.18
18 110.2 5.8 109.8 0.23 109.8 021 109.8 0.23
20 1827 10.6 1821 0.25 182.2 0.16 182.1 0.17
22 554.3 22.8 553.1 0.51 553.3 0.23 5532 0.28
24 1800.8 57.5 1800.1 0.77 1800.2 0.50 1800.1 0.49
26 4096.2 94.4 4095.2 033 40953 0.12 4095.2 0.13
28 6787.7 98.1 6786.8 0.301 6786.8 0.059 6786.8 0.066

CPU time (secs) 12.6 185 2159 198.9

The stochastic input consists of a stream of normal random

= 1, ... 365) which can be generated by the inverse

variates €; (i
distribution function method,
X -~ U(0,1).

e = FY(X),

For crude Monte Carlo, X is generated using a pseudo-random

number generator. For the application of a quasi-random sequence,

X is generated using the appropriate quasi-random  number
generator, ie. the Faure, Sobol" or Niederreiter generator. (The
Sobol’ and Faure generators are given by Bratley and Fox 1986,

and Fox 1986). The quantities to be estimated are the means of
the Vi, and to do this a set of L runs are made from which one
estimate of each of the {/k (k = 1, ..., 28) is produced. With a
quasi-random sequence, the simulation is structured so that each of
the L runs is computed simultaneously. Thus Xt(i). XL“)
are generated in a block from successive terms of the quasi-random
sequence to give L values of d;, for a fixed i. This means that
successive daily demands in a given year will be generated from

every L'th number in the quasi-random sequence, thereby breaking
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the requirement that they be generated from mutually independent

€5 (Section 1 discusses briefly the dependence between terms of

a quasi-random sequence). To overcome this problem, the X1(i)’

XL(i) are randomly permuted. It can be shown that this

reduces the correlation to O(1/L) between pairs of X's.  Thus,
though we do not have complete independence, we have an
approximation to it which is sufficiently accurate for practical

applications such as this. To produce an estimate of the variability

of the Vk the simulation is replicated N times.

Table 2
100.

contains results from the simulation taking L = 20 and
N =
All

resulted in substantial

Carlo,

three quasi-random sequences have

improvements compared to crude Monte particularly for

higher values of k. Both the Niederreiter and Faure sequences
have performed comparably, and seem to result in marginally better
the Sobol’

looked at alongside the timings given at the bottom of Table 2.

However this must be
It

generator is significantly faster than both

improvements then sequence.

is clear that the Sobol’



the Faure and Niederreiter generators. However, all three
generators, considering speed as well, have performed significantly
better than crude Monte Carlo. We conclude therefore that

quasi-random sequences are an important and attractive alternative

to the pseudo-random number used in crude Monte

Carlo.

generator

APPENDIX

PROGRAM NTEDTEST

PROGRAM ILLUSTRATES THE CORRECT USE OF THE GENERATING
SUBROUTINES NIEDSETUP AND MNIEDGEN, IE. ONE CALL TO
MTEDSETUP TO INITIALISE THE GENERATOR FOLLOWED BY
REPEATED CALLS TO NIEDGENM.

[sNeRsNel

INTEGER B,IS
DOUBLE PRECISION QUASI(40)
LOGICAL ERROR(2)

WRITE(H,*) 'DIMENSION OF THE SEQUENCE ?'
READ*, IS

JRITE(6,-) 'LENGTH OF THE SEQUENCE ?’
READ*, M

NMAX=N

CALL NTIEDSETUP(TS.:!MAX,ERROR)
IF (ERROR(1)) PRINT*, DIMENSION NOT ALLOWED: DIMENSION =',IS
IF (ERROR(2)) PRINT*,’'TOO MANY CALLS TO THE GENERATOR: ', MMAX
IF (ERROR(1).0R.ERROR(2)) THEN
PRINT*, ' PROGRAM ABORTED’
STOP
ENDIF
DO 10 I=1,N
CALL NIEDGEN(QUASI)
WRITE(6,100), (QUASI(J),J=1,1I5)
10 CONTINUE
100 FORMAT(45F8.4)
END

BLOCK DATA NIEDPOLY

C  POLY(I,J) CONTAINS THE POLYNOMIALS FOR THE OPTIMAL BASE I
C  BASE(I) CONTAINS THE OPTIMAL BASE FOR ALL 40 DIMENSIONS,
c I=1,..,40

INTEGER BASE(40),POLY(45,45)
COMMON /BLK1/BASE, POLY

DATA (BASE(I),I=1,40)/2,2,3,3,5,7,7,9,9,11,11,13,13,13,17,17,17
1 ,19,19,23,23,23,23,25,25,27,27,29,29,31,21
1 ,32,37,37,37,37,37,41,41,41/

DATA (POLY(2,I),I
DATA (POLY(3,1),I
DATA (POLY(4,1),1
DATA (POLY(5,I),I

DATA (POLY(7,0),I=1 7)/7 3, ) 10 11,12,13/

DATA (POLY(9,I),I=1,9)/9,10,11,12,13,14,15,16,17/

DATA (POLY(11,Z),[:l.11)/11,12,13.14.15,16.l7,18 19,20,21/

DATA (POLT(13,1),I=1,14)/13,14,15,1n,17,18,19,20,21,22,23,24,25
1 L1717

DATA (POLY(17,I),[=1,17)/17,18,19,20,21,22,22,24,25,26,27,28,29
1 L30,21,32,33/

DATA (POLY(19,1),I=1,1%)/19,20,21,22,23,24,25,26,27.28,29,20,31
1 V32,232,243 ,J0,37/

DATA (POLY(23,1),1=1,23)/23, -4,‘5 26,27,28,29,30,31,32,33,34,35
i L36,37,238,29,40,41,42,43, 44, “ﬁ/

DATA (POLY(25,1),I= 1,~,)/25 ’6.27,28.29, 031,32,33,34,35,36,37
1 V38, 0w, ], 82,80, 4b, 45,46 47,48, 49/

DATA (POLY(27,1),1=1,27)/727,28,29,20,21,32,23,34,35,36,27,38,3
1 L40,41,42,43,44,45,46,47,48,49,50,351,52

1 153/

DATA (POLY(29,1),I=1,2)/29,20,31,22,33,34,25,236,37,28,29,40,41
1 Le? 43,40, 45, 46,47,48,49,50,51,52,53,54

1 155,596,577/

DATA (POLY(31,I),1=1,21)/31,32,33,34,35,36,27,38,39,40,41,42,43
1 44, 45,46,47,48,49,50,51, 52,53.5&.55,56

1 ,57,;8,/W,60.n1/

DATA (POLY(32,1),1=1,32)/32,33,24,35,36,37,38,39,40,41,42,43,44
1 ,45,46,47,48,49,50,51,52,53,54,55, 56,57

1 ,598,94.60,61,62, 03/

DATA (POLYT(37,1),0=1,37)/37,28,39,40,41,42,43,44,45,46,47,48,49
1 ,90,51,52,53,54, 55 56,57,58,57,60,61,62

1 J63,64,05, nh,u7 68,69,70,71,72,73/

DATA (POLT(4L,1),1=1,41)/41,42,43,44,45,46,47,48,49,50,51,52,53

1 ,54.55,50‘57,53,59,60,61,n2,63.64.65,60
1 ,67,68,69,70,71,72,73,74,75,76,77,78,7%
1 ,80,81/

END
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SUBROUTINE NIEDSETUP(DIMEN,NMAX,ERROR)

o000 0000000O00O000O00O0O0O0O0000O000000

o0

aoaao

aoaa

THE SUBROUTINE CALCULATES THE IMPULSE RESPONSE SEQUENCE
CORRESPONDING TO EACH OF THE POLYNOMIALS POLY(DIMEN,I)
I=1,...,DIMEN RAISED TO A POWER J ; J=1, ,DMAX+1.
AN(L, M, N) CONTAINS THE IMPULSE RESPONCE SEOUENCE
CORRESPONDING TO THE POLYNOMIAL POLY(DIMEN,L) RAISED TO THE
POWER M, OF LENGTH N=1,...,DMAX+1.

IT CHECKS THAT DIMEN AND NMAX ARE REASONABLE INPUTS
AND CALCULATES AN(L,M,N) FOR THESE GIVEN VALUES.

VARIABLES

AN(I, J,K) INITIALLY CONTAINS THE COEFFICIENTS OF POLYNOMIALS
P(X)**J, J=1,,,0DMAX+1, FOR I=1,,,DIMEN  POLYNOMIALS
IN ITS FINAL FORM AN(I,J,K) CONTAINS THE INPULSE
RESPONSE SEQUENCE CORRESPONDING TO P(X)**J

B : OPTIMAL BASE

BP : REAL B

BASE(40) : OPTIMAL BASES FOR ALL 40 DIMENSIONS

COEFF(I,J): COEFFICIENTS OF POLYNOMIALS I=1,,,DIMEN; P(X)

DEG(I) : DEGREE OF POLYNOMIAL I

DI(J) : REPRESENTION OF NCALL IN BASE B

DIMEN : DIMENSION OF SEQUENCE

DMAZL : UPPER BOUND ON NUMBER OF DIGITS IN BASE B
REPRESENTATION OF MNMAX

ERROR : SET TO FALSE IF EITHER DIMEN<1 OR DIMEN>40 OR

DMAX>S0.
FIELDDADD(I,J) : ADDITION TABLE FOR FIELD OF PRIME POWER

ORDER B.
FIELDMLT(I,J) : MULTIPLICATION TABLE FOR FIELD OF PRIME POVER
ORDER B.
NCALL : CURRENT NUMBER OF CALLS TO NIEDGEN.
INITIALISED TO 1
NEWV : “IMPULSE" TO IMPULSE RESPONSE SEQUENCE
( REF: INTODUCTION TO FINITE FIELDS AND
THEIR APPLICATIONS :- R. LIDL AND
H. NIEDERREITER. CAMBRIDGE UNIVERSITY
PRESS, 1986 )
NMAX : USER SPECIFIED MAXIMUM MUMBER OF CALLS TO NIEDGEN
NOD : NUMBER OF DIGITS IN BASE B REPRESENTATION OF NCALL
POLY(I,J) : J=1,... POLYNOMIALS FOR BASE I
RECBP(I,J): MULTIPLICATION TABLE

INTEGER
INTEGER
INTEGER
INTEGER

DIMEN, POLY(45,45),COEFF(45,5),DEG(45)
AN(45,0:51,0:51),DMAX,B,BP,DI(0:51)
TEMP(S1),V(51),NEWV,NOD,NCALL,NMAX, U
BASE(40),FIELDADD(50,50), FIELDMLT (50, 50)
INTEGER X1,X2,X3,44,X5,X6,X7

INTEGER BB

DOUBLE PRECISION RECBP(45,351)

LOGICAL ERROR(2)

COMMON /NIED/IS,B,NCALL,AN,NOD,BP,DMAX
COMMON /NIED2/DEG,DI

COMMON /NIED3/RECBP

COMMON /NIED4/FIELDADD, FIELDMLT

COMMON /BLK1/BASE, POLY

INITIALISE VARIABLES AND PERFORM ERROR -
CHECKS ON USER SUPPLIED INPUT
IF ERROR THEN RETURN TO CALLING PROGRAM ---

IP=0
IS=DIMEN
B=BASE(IS)
RB=REAL(B)
NCALL=B**IP+1
BP=B**(IP-1)
FIRSTN=B**IP
NOD=1
DMAX=NINT(LOG(REAL(NMAX+FIRSTN))/LOG(REAL(B)))+1
ERROR(1)=.FALSE.
ERROR(2)=.FALSE.
IF ((DIMEN.GT.40).0R.(DIMEN.LT.1)) ERROR(1)=.TRUE.
ERROR(2)=DMAX.GT. S0
IF ((ERROR(1)).0R.(ERROR(2))) RETURN
DI(0)=-1
CALCULATE RESULTS OF MULTIPLICATIONS
REQUIRED BY NIEDGEN, SAVING ON FUTURE
COMPUTATIONAL TIME
D0 3 I=1,DMAX-1

DI(I)=0

DO 4 J=1,B

RECBP(J,I)=(J-1)*(RB**(-1))

CONTINUE
CONTINUE
CALL PPFIELD(FIELDADD,FIELDMLT,B)

FOR EACH OF THE IS POLYNOMIALS; P(X),
COMPUTE P(X)**J, J=1,,,DMAX+1 ———
00 1 [=1,IS
M=0
J=POLY(B,I)

DO WHILE (J.GE.B)
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J=J/B
M=M+1
ENDDO
DEG(I)=M
J=POLY(B,I)
AN(T,0,1)=1
IF (DEG(I).EQ.1) THEN
INTV=1
LOOPE=DMAX
COEFF(I,1)=MOD(J,B)
DO 20 J=1,DMAX+1
AN(I,J,1)=1
X1=AN(I,J-1,J)+1
X2=COEFF(I,1)+1
AN(T,J,J+1)=FIELDHLT(X1,X2)

CONTINUE
DO 30 J=1,DMAX+1
DO 40 K=J+1,DMAX+1
X1=AN(I,K-1,J+1)+1
X2=COEFF(I.1)+1
X3=AN(I,K-1,J)+1

AN(I,K,J+1)=FIELDADD(X1, (FIELDMLT(X2,X3)+1))

CONTINUE
CONTINUE
ELSE
IF (DEG(I).EQ.2) THEN
INTV=2
LOOPE=DMAX+1
COEFF(I,1)=MOD(J,B)
COEFF(I,2)=(J-(B*B+COEFF(I,1)))/B
AN(I,0,1)=1
AN(I,0,0)=1
IC=3
DO 60 J=1,DMAX-1
AN(T,J,0)=0
AN(I.J,1)=1
X1=AN(I,J-1,IC-2)+1
X2=COEFF(I,1)+1
AN(I,J,IC)=FIELDMLT(X1,X2)
AN(I,J,IC+1)=0
IC=IC-2
CONTINUE
DO 75 J=1,DMAX+1
A1=AN(I,J-1,1)-1
K2=COEFF(I,2)+1
(3=AN(I,J-1,2)+1
X4=COEFF(I,1)~1
XS=FIELDMLT(X1,%2)+1
X6=FIELDMLT(42,%4)~1
AN(I,J,2)=FIELDADD(XS5,X6)
CONTINUE
DO 70 J=INTV.LOOPE
D0 30 ¥=(J-1),J
D0 90 L=J,DMAX+1
“l=AN(I,L-1,J+K-1)-1
COEFF(I,2)+1
“2=AN(T,L-1,J-K-2)+1
£4=COEFF(I,1)«1
K AN(I,L-1,J+K)+1
LY.l
TELDMLT(%3,44)+1
'TEHP FIELDADD(¥6,47)+1
AM(I,L,J+¥)=FIELDADD(ITEMP,X5)
CONTINUE
CONTINUE
CONTINUE
ELSE
RITE(6,*), POLTNOMIAL HAS DEGREE>2.’
JRITE(6,*), ' PROGRAM ABORTED’
STOP
ENDIF
ENDIF
K=INTYV

h.¢

COMPUTE THE IMPULSE RESPONSE SEQUENCE FOR P(X)**J,

7'S GIVEN IN SECTION 2.

DO 100 Il=1,DMAZ+1
DO 110 II=1,K-1
TEMP(II)=0
CONTINUE
TEMP(K)=1
DO 120 II=1,DMAX+1
Y(II)=TEMP(1)
NEWV=0
KK=K+1
DO 130 JJ=1,K-1
X1=NEWY+1
A2=TEMP(JJ)+1
A3=AN(I,I1,KK)+1
HEWV=FIELDADD(X1, (FIELDMLT (42,
TEMP(JJ)=TEMP(JJ+1)
KK=KK-1
CONTINUE
A1=NEWV+1
12=TEMP(K)+1
X3=AN(I,I1,2)~1
TEMP(K.)=FIELDADD(X1, (FIELDMLT(#42, %2

12)+1))

)+1))

IE. THE
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120 CONTINUE
DO 140 II=1,DMAZ+1
AN(I,I1,II)=V(II)
140  CONTINUE

IF (K.LT.DHMAX) F=K+INTV
100 CONTINUE
1 CONTINUE

RETURN

END

SUBROUTINE NIEDGEN(QUASI)

A CALL TO NIEDGEN GENERATES ONE QUASI-RANDOM VECTOR

QUASI OF DIMENSION IS.

ALL COEFFICIENTS REQUIRED IN THE CALCULATION OF AN ELEMENT
OF THE VECTOR HAVE BEEN COMPUTED IN NIEDSETUP, AND STORED
IN AN(I,J,K). THEREFORE NIEDGEN SIMPLY SELECTS APPROPRIATE
VALUES AND CALCULATES THE AJN(I) AND XN OF THE THEOQREM.

VARIABLES

XN : A QUASI-RANDOM NUMBER

A : AJN(I) OF THEOREM

EOBCALC : =TRUE WHEN NCALL CALCULATED IN BASE B

QUASI(I): VECTOR OF QUAST-RANDOM NUMBERS

ZERO : =TRUE WHEN IMPULSE RESPONSE SEQUENCE ELEMENTS HAVE
BEEN SELECTED FOR POLYNOMIAL P(X)**J

[sEsNsNeNsNoNeNeoNoNoNoNoRoNoRoNel

INTEGER C,DI(0:51),BP,NOD,A
INTEGER AN(45,0:51,0:51),B,DEG(45),DMAX, X1
INTEGER FIELDADD(50,50),FIELDMLT(50,50)
LOGICAL ZERO,EOBCALC
DOUBLE PRECISIOM RECBP(45,51)
DOUBLE PRECISION XN,QUASI(40)
LOGICAL ERROR(2)
COMMON /NIED/IS,B,NCALL,AN,NOD,BP,DHAX
COMMON /NIED2/DEG,DI
COMMON /NIED3/RECBP
COMMON /NIED4/FIELDADD,FIELDMLT
IF (NOD.GT.DMAX) THEN
PRINT*, 'NUMBER QF CALLS ON GEMERATOR EXCEEDS SPECIFIED
1 NUMBER’
STOP
ENDIF

s EeNel
=
a
>
=
[l
—
=
@
>
©»
™
w

EOBCALC=.FALSE.
J=-1
DO WHILE (.NOT.EOBCALC)
EOBCALC=.TRUE.
J=J+1
DI(J)=DI(J)+1
IF (DI(J).EQ.B) THEN
DI(J)=0
EOBCALC=.FALSE.
ENDIF
ENDDO

000

DO 38 LOOP=1,IS
WN=0
ZERO=.FALSE.
J=1
IF (DEG(LOOP).EQ.1) THEN

DO WHILE (.0NOT.ZERO)

A=Q

ZERO=.TRUE.

DO 33 IR=1,NOD
C=AN(LOOP,J,IR)
K1=FIELDMLT((DI(IR-1)+1),C+1)+1
A=FIELDADD(A+1,X1)
IF (C.NE.O) ZERO=.FALSE.

33 CONTINUE

AN=XN+RECBP((A+1),J)

J=J+1

ENDDO

ELSE

00 VUHILE (.NOT.ZERO)

A=0

ZERO=.TRUE.

I[F (MOD(J,2).EQ.0) THEN
U=1
I01=J/2

ELSE
U=
Inl=(J+1)/2

ENDIF

DN 34 IR=1,MOD
[2=1).17
C=ANCLOOP,IQ1.12)

A1=FIELOMLT((DI(IR-1)«1}),C+1)«1

A=FIELDADD(A+1,%1)
IF (C.NE.0) ZERD=.FALSE.
34 CONTINUE

“N=XN-KECBP((A-1),))
I[F (U.EQ.0) ZERO=.FALSE.
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@

J=J+1
ENDDO
ENDIF
QUASI(LOOP)=XN
CONTINUE
IF ((NCALL).EQ.BP) THEN
BP=BP*B
NOD=NOD+1
ENDIF
NCALL=NCALL+1
RETURN
END

SUBROUTINE PPFIELD(FIELDADD, FYELDMLT,BASE)

[o}
c

OO

(e}

1

—

[sXeKs}

aoaooa

SUBROUTINE GENERATES ADDITION AND MULTIPLICATION TABLES FOR A
PRIME POWER FIELD OF ORDER BASE, CHARACTERISTIC P, ORDER B

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

N,P,BASE, IRRPOLY(S,10)
POLYN,A(50,10.10),SUMA(S0,10,10),0LDA(50,10,10)
POLY(0:50,0:50),FIELD(50,10,10)

A2(50,10,10)

TEST(50,10,10), FIELDADD(50,50), FIELDMLT(50, 50)
INTEGER COUNT,SIZE

LOGICAL FOUNDIT

COMMON /BLK2/P

DATA
DATA
DATA
DATA

(IRRPOLY(1,J),J=1,3)/1,0,1/
(IRRPOLY(2,J),J=1,3)/2,0,1/
(IRRPOLY(3,J),J=1,4)/1,2,0,1/
(IRRPOLY(4,J),J=1,6)/1,0,1,0,0,1/

IF (BASE.EQ.9) THEN
POLYN=1
P=3
N=2
ELSE
IF (BASE.EQ.25) THEN
POLYN=2
P=5
N=2
ELSE
IF (BASE.EQ.27) THEN
POLYN=3
P=3
N=3
ELSE
IF (BASE.EQ.32) THEN
POLYN=4
P=2
N=5
ELSE
POLYN=1
P=BASE
MN=1
ENDIF
ENDIF
ENDIF
ENDIF

CALCULATE COMPANION (A(l, , )} aND IDENTITY {A(O, , )} mATRICES
A2(1,1,N) = P-IRRPOLY(POLYN,1)
DO 10 I=1,d-1
A2(1,I+1,1)=1
A2(1,I+1,M) = MOD(P-IRRPOLY(POLTN,I+1),P)
A2(0,1,I)=1
CONTINUE
A2(0,M,M)=1
0O 11 I=1,3-2
Call MATMULT(42,42,42,0,1+1,1,1)
CONTINUE

GEMERATE ALL POLYNOMIALS WITH DEGREE<N IN FP

COMPUTE ELEMENTS OF THE FIELD FQ, WHERE Q=P**N
A= (AD I) + (AL A) » (A2 A*¥*2) + ... + (AN-1 A**N-1)

Do 20 I=1,
o0 50 J
Do 3

A(J-1,L1,L2)=M0OD((A2(J-1,L1,L2)~POLY(T, J)),P)
CONTINUE
CONTINUE
CALL MATADD(FIELD,FIELD,A,d,I,I,(J-1))
CONTINUE
CONTIIUE
SIZE=N**2
DO 12 I=1,24SE
00 13 J=1,BASE
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CALL MATADD(TEST,FIELD,FIELD,N,1,I,J)
L1=1

FOUNDIT=.FALSE.

DO WHILE (.NOT.FQUNDIT)

COUNT=0
D0 14 L2=1,N
D0 15 L3=1,N
[F (TEST(1,L2,L3).EQ.FIELD(L1,L
1 2,L3)) COUNT=COUNT+1
15 CONTINUE
14 CONTINUE
IF (COUNT.EQ.SIZE) THEN
FOUNDIT= . TRUE.
FIELDADD(I,J)=L1-1
ENDIF
L1=L1+1
ENDDO
C oo
C  MULTIPLICATION TABLE
C mmmm e
CALL MATMULT(TEST,FIELD,FIELD,N,1,1,J)
L1=1
FOUNDIT=. FALSE.
DO WHILE (.NOT.FOUNDIT)
COUNT=0
DO 16 L2=1,N
DO 17 L3=1,N
IF (TEST(1,L2,L3).EQ.FIELD(L],L
1 2,13)) COUNT=COUNT-+1
17 CONTINUE
16 CONTINUE
IF (COUNT.EQ.SIZE) THEN
FOUNDIT=.TRUE.
FIELDMLT(I,J)=L1-1
ENDIF
L1=L1+1
ENDDO
13 CONTINUE
12 CONTINUE

END
SUBROUTINE POLYGEN(POLY,N,P)

o} GENERATES ALL POLYNOMIALS IN A FIELD OF ORDER NPOLY OF
C OF DEGREE<N

INTEGER I,J,K,N,P
INTEGER POLY(0:50,0:50)

NPOLY=P**N
DO 10 I=1,NPOLY
00 20 J=1,N
INTG=INT((I-1)/(P**(J-1)))
POLY(I,J)=MOD(INTG,P)
20 CONTINUE
10 CONTINUE
100 FORMAT(10I4)
RETURN
END

SUBROUTINE MATMULT(A,Al,A2,N,I,J,K)

c MATRIX MULTIPLICATION: A=A1%A2, IN MODULO P
C WHERE A,A1,A2 ARE N*N MATRICES AND
C I,J,K INDEX THE CORRECT MATRIX.

COMMON /BLK2/P

INTEGER A(50,10,10),A2(50,10,10)
INTEGER A1(50,10,10)

INTEGER P

DO 40 Ll=1,N
DO 50 L2=1,N
A(L,LL,L2)=0
DO 60 L3=1,N
A(T,L1,L2)=A(I,L1,L2)+Al(J,L1,L3)*A2(K,L3,L2)
CONTINUE
A(L,L1,L2)=MOD(A(T,L1,L2),P)
CONTINUE
CONTINUE
FORMAT(1014)
RETURN
END

60

50
40
100

SUBROUTINE MATADD(A,B,C,N,I,J,K)

C MATRIX ADDITIOM: A=B+C, WHERE A,B,C ARE N*N MARICES
C  AND I,J,¥ INDEY THE CORRECT MATRIX.

COMMON /BLK2/P
INTEGER A(S50,10,10),B(50,10,10),C(50,10,10)
INTEGER P



DO 10 L1=1,N
DO 20 L2=1,N
ITEMP=B(J,L1,L2)+C(K,L1,L2)
A(I,L1,L2)=MOD(ITENP,P)
CONTINUE
CONTINUE
RETURN
END

20
10
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