Proceedings of the 1989 Winter Simulation Conference

E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

THE SIMKIT™ SYSTEM: KNOWLEDGE-BASED SIMULATION AND MODELING
TOOLS IN KEE®

Marilyn Stelzner
Jack Dynis
Fred Cummins
IntelliCorp, Inc.
1975 El Camino Recal West
Mountain View, California 94040

ABSTRACT

The SimKit™ system is an integrated set of general-
purpose simulation and modeling tools built in and on
the Knowledge Engineering Environment® (KEE®)
software development system. SimKit is used to build
"knowledge-based" simulations. By knowledge-
based, we mean an approach that utilizes a variety of
techniques that have emerged from artificial
intelligence including:

» The LISP programming environment
High-resolution bitmap graphics
Object-oriented programming

Frame-based knowledge representation with
inheritance

Active values or "demons"

Rule-based reasoning.

Knowledge-based simulations are more
understandable, interactive, accessible, and
extensible than simulations built using

"conventional” techniques. In addition, knowledge-
based simulations can easily be integrated with other
knowledge system applications.

1. KNOWLEDGE-BASED SIMULATION
TOOLS IN KEE

The SimKit system 1s an integrated set of general-
purpose simulation and modeling tools built in and on
the KEE software development system. KEE provides
tools used in the construction of knowledge-based
systems. Many of KEE's tools facilitate the modeling
of domain knowledge, a goal that knowledge-based
systems share with simulation. Because SimKit is
built in and on KEE, it takes full advantage of the
expressive representation, powerful reasoning, and
user-friendly interface tools that KEE provides.

SimKit is explicitly designed for two classes of
users: library developers and model builders. Library
developers are programmers who use KEE and SimKit
to build libraries, sets of domain-specific object
classes and relationships. A factory library, for
cxample, would include detailed descriptions of
machines and the potential relations between those
machines (e.g. downstream, on-top-of). Model
builders, whoa re frequently not programmers, use a
library and SimKit's interactive graphic interface to
rapidly and easily build, modify and run models.

232

SimKit puts sophisticated simulation and modeling
tools in the hands of problem-solvers.

2. MODELING AND SIMULATION

A model is a description of a system that includes
both the system's structure and its behavior. The
structural model includes representations of the
system's components and the relationships between
those components, while the behavioral model
describes how a system's state changes. The goal of
simulation is to gain an understanding of how a
system's behavior emerges from the behavior of its
interrelated components.

Models and simulations are usually built to study
system phenomena that are impractical, undesirable,
or expensive to generate and study in the real world.
For example, while it is of obvious value to
understand the cost-benefit tradeoffs of alternative
configurations of a manufacturing facility, it is
prohibitively expensive to build, reconfigure and
operate such a facility for this purpose.

Ideally, it would be possible to derive mathematical
equations for calculating with certainty the values of
interesting state variables as a function of time.
Unfortunately, only the most simple (and, therefore,
the least interesting) systems yield to this approach.
Once a system consists of more than a few interacting
components, it becomes difficult to predict system
behavior with any accuracy or reliability. The goal of
modeling and simulation is to create within the
computer a representation of the system of interest
that mirrors the real-world system in sufficient
accuracy and detail to answer specific questions.

3. MODELING AND THE DEVELOPMENT
OF KNOWLEDGE-BASED SYSTEMS

In IntelliCorp's® experience supporting users of
the KEE system, we have noted that many routinely
build structural models as a means to the end of
developing applications that reason about those
systems. Within the context of knowledge-based
system development, models play roles both in
knowledge acquisition and in system validation and
extension.

In the case of knowledge acquisition, a structural
model can be of use first in helping domain experts

examine and isolate the system parameters and
behavior that are relevant, and then in understanding
how experts respond to and reason about such
phenomena. The model thus serves as a medium for
making expert knowledge explicit, well-organized,
and accessible

4. MODELING AND SIMULATION
KNOWLEDGE-BASED ENVIRONMENT

IN A

When we speak of a knowledge-based approach to
modeling and simulation we mean an approach that
utilizes a variety of technologies and methodologies
that have emerged from programming efforts directed
at representing human knowledge ("artificial
intelligence"). Those of greatest importance to our
discussion include:

e LISP programming environment, a hardware and
software environment optimized for symbolic,
rather than numeric computation; this includes the
extensive editing, tracing, and debugging facilities
that have amassed around the LISP language.

« High-resolution bitmap graphics that support
windows, mouse-and-menu operation, and the
creation of graphic interfaces for developers and
end-users.

» Object-oriented programming. Objects, which are
autonomous and self-knowing (i.e. they contain the
code that defines their behavior), can be replicated,
modified, or deleted without modifying the model
itself, a feature that results in tremendous
flexibility and extensibility.

* Frame-based knowledge representation with
inheritance. Frames, which can be thought of as
extended data records, can be organized into
hierarchies (e.g. a machine "template” can have
several sub-classes, including a lathe "template;”
that latter template can be further specialized into
different types of lathes, etc. Inheritance helps
developers describe complex systems quickly and
consistently by starting with generic descriptions
and specializing them.

« Active Values or demons, a mechanism for localized
reasoning and analysis that is activated by a state
change.

+ Rule-based reasoning, a technique that allows
heuristic knowledge, or "rules of thumb,” to be
represented as IF-THEN rules.

While all of these technologies and methodologics
contribute to the effectiveness of the knowledge-
based approach, it is the last four that most strongly
differentiate it from conventional programming.

Modeling and simulation are concerned with the
creation of a computational representation of a
system of interest. The approach supported by

233

conventional programming languages -- including
nearly all of the specialized simulation languages -- is
to create a procedural program that describes the
system as a whole. The process of defining structural
and behavioral models are very tightly coupled, and
the descriptions of both kinds of models are
intertwined in a program: definitions of structural
elements of the system are intertwined with the
procedural code. This non-modular and potentially
inconsistent approach leads to programs that are
difficult to modify and extend.

In knowledge-based (i.e. object-oriented) modeling
and simulation, procedural components of the system
are embedded within structural components,
effectively reversing the relationship between
procedure and structure that is characteristic of
conventional approaches. While procedures are still a
vital part of the knowledge-based model, the
procedures are localized within discrete data structures
that represent system objects and their attributes. The
system as a whole is represented as a structured,
modular, consistent collection of such objects -- a
knowledge base -- that can easily be modified and
extended.

S. CONVENTIONAL APPROACHES TO
SIMULATION

The use of models to explore "what-if" scenarios
has long been the goal of conventional simulation
languages. We were, in fact, guided in our
development of the SimKit product by a study of
conventional computing approaches to simulation,
and sought to overcome the limitations in these
approaches that have hampered their widespread use
and acceptance. Conventional simulations are
frequently:

* Opaque. The "black box" syndrome -- the obscurity
of the programming language makes it difficult for
users to validate the accuracy of a model's output.

* Non-interactive. = Modified models must be
recompiled before effects of the modifications can
be observed, resulting in lengthy turn-around time.

» Inaccessible. Only programmers experienced in the
language can develop and modify models (other
than changing certain paramaters).

» Inextensible. Eae of use is usually inversely
proportional to ease of extensibility.

6. BENEFITS OF THE KNOWLEDGE-BASED
APPROACH

Knowledge-based simulations are understandable,
interactive, accessible, and extensible. In addition,
they can easily be integrated with other knowledge
system applications.

+ Understandable. KEE's expressive, object-oriented
knowledge representation makes it easy to describe
objects and the relationships between them in a
model. This is because the symbolic underpinnings
of the knowledge-based approach allow the
programmer to describe knowledge declaratively. A
shovel, for example, can be described in familiar
terms. Once described, it can be inspected using
those terms (WEIGHT, COST, BLADE SHAPE, etc.).
It may even be asked -- assuming it contains the
appropriate function -- how many shovel-fulls it
would take to fill a3 x 3 x 3 hole.

SimKit's tightly integrated graphics and
representation make models visually inspectable at
all stages of development. A model builder can see
and manipulate icons and symbols that are natural
and familiar. The interactions between the
elements of the simulation can be seen, and hence
understood.

+ Interactive. The SimKit environment is wholly
interactive. Modifications at the graphic level
occur instantaneously at the deeper representation
level. The end-user is never separated by a wall of
"compilation time" from the most recent state of
the system under study.

» Accessible. Conventional languages do not
support the sort of inspection possible with KEE
and SimKit. Typically, variables used to represent
attribute values in conventional languages are
declared at the beginning of a program and assigned
values as the program executes. While the current
value is cached in an array and is programmatically
accessible, it is not readily inspectable as is a slot
value in KEE.

The inspectability of frames and slots in KEE and
SimKit arises from their predictable structure. We
know, for example, that every frame will have a
name, lists of its parent and children, and a list of
its slots. This predictable structure has been
successfully exploited in constructing powerful
graphic interfaces for creating, editing, and
examining knowledge bases.

Such general-purpose editors and utilities are not
available in conventional simulation languages
since the structure of a conventional program relies
almost entirely on the discipline of its creator. As
a result, as a program grows larger it becomes
increasingly difficult to manage its complexity and
understand its function. This has given risc to the
familiar black box complaint that has hampered the
acceptance of simulation.

+ Extensible. SimKit libraries are designed as
flexible templates. A library can be modifiecd and
extended to form one or more sub-libraries for more
specific purposes (e.g. a manufacturing library can
be specialized for printed circuit board production).

234

Once a system is described in KEE and SimKit, the
free-standing model that results can be re-used for
additional applications (e.g. a knowledge-based
system for machine diagnostics).

7. A SYNERGISTIC COMBINATION

SimKit and KEE combine two classic approaches to
problem solving: reasoning and simulation. The two
techniques can be used in combination to attain
results neither could attain alone. For example, a
generative process planning knowledge-based system
could be "tested" by a simulation, or, a knowledge-
based system could be used to analyze simulation
output. Alternatively, the two techniques could be
intermingled, as in a factory simulation that reacts to
random machine failures by invoking a knowledge-
based system to recommend alternative part routings.

ACKNOWLEDGMENTS

INTELLICORP and KEE are registered trademarks of
IntelliCorp, Inc. KNOWLEDGE ENGINEERING
ENVIRONMENT and SIMKIT are trademarks of
IntelliCorp, Inc.

