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ABSTRACT

In this paper we develop some intuitive graphical methods for
designing, running, and analyzing simulation experiments. We first
concentrate on the analysis of output plots from a single run; the
concept of a standardized simulation output plot is presented and its
use illustrated. The remainder of the paper involves the design of
experiments that may involve several (sequential) simulation runs.
Experimental design discussions in simulation often focus on special
topics unique to the field. Control over random variables permits
design techniques such as antithetic variates and common random
number streams. Yet many of the general topics of experiment
design including confounding, fractional designs, and sample size
determination are important in a simulation setting. The second part
of this tutorial will focus on these general topics and present some
graphical tools for generating experiment designs: causal diagrams

and multidimensional point plots.

1. BACKGROUND AND ADVICE

When running simulation experiments several decisions must be
made.

1. What values for controllable input variables should be
selected for each of the runs?

This is discussed in detail in the second half of this paper.
2. In what order should the runs be made?

Simulation experiments are typically run sequentially, one run at
a time. The information from past runs is available to help in
making decisions concerning future runs. This is different from,
say, agricultural experiments, where the inability to compress time
makes sequential experiments impractical. However, care must be
taken in sequential experiments not to introduce undesirable
dependencies among the different runs. We give an example of this
when we discuss initialization bias. The running of simulation
experiments sequentially will most likely change as multiple
processor computers become more widely available, so

simultaneous ¢xperiments are also discussed in this paper.
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3. For a particular run:
What initial values should be chosen for the simulation input
variables?
How long should the simulation be run?
What output should be collected during the run?
Finally,
What should be done with the output?

The first part of this paper addresses the third set of questions
concerned with a single run. The second part of the paper is
concerned with the first two questions. We discuss what to do with

a single run before considering multiple runs.

However, before we address any of the above questions, our
single most important advice on simulation experimentation is given:
budget considerable time and money for running the model and
studying the output. This, of course, includes experiments for the
purposes of validating the simulation. Trying to control project
costs by skimping on the experiments is shortsighted; the major
payoff (although not the only payoff) from a simulation study comes
during experimentation. The costs of running a simulation and
studying the output are typically insignificant compared to the costs
of purchasing simulation modeling software, learning the system
and the language, and coding and debugging the model.

Sometimes many runs of the simulation are made but only
average values of output measurements are collected; this is at best
wasteful and at worst misleading. Unfortunately most simulation
languages encourage this practice with built-in summary statistic
computation. Individual observations should be collected and
plotted until the experimenter has a teel for the dynamics of the

simulation model.

It is not unusual to find practitioners devoting considerable
resources to building a simulation model and relatively little time
seriously studying the output. Two problems inherent in the field of
simulation probably contribute to this misappropriation of simulation
study effort. First, properly designed experiments and appropriate
output analysis appear to be more complicated than building a
simulation model. Articles on simulation methodology are often

irritatingly incomprehensible to the average practitioner while



simulation language documentation is, for the most part, easy to
understand. The second problem is that, unlike model building and
language support, support for experimental analysis from competent
consultants is not widely available.

We hope to address the first problem in this paper and help make
simulation experimental design and analysis more intuitive. As for
the second problem, we can only encourage simulation practitioners
to seek advice in the analysis of their models. This would help
create a market for simulation software vendors and consultants to
offer the user some real support in this area. In addition, we
continue to admonish college professors to include significant
simulation methodology in their courses and not merely teach
simulation model building while giving their students no clue as to
what they should do with the models they create. Assuming that the
reader has taken this advice to heart we move on to the main body of

our paper.

PART I: GRAPHICAL METHODS FOR OUTPUT

ANALYSIS

2. CONVENTIONAL OUTPUT PLOTS

We begin by considering the third set of decisions presented at
the beginning of this article. We will assume that the decision of
what data to collect during the run has been made. Suppose that
during a simulation run we observe values of a variable which we
denote as,

Y1, Yo, Yo |

A typical situation may have Y; represent the processing time for
the ith part in a factory. Alternatively, we might continuously
observe an output process, Y(t), t = 1 to n. An example: Y(t)
might be the length of a waiting line for a service system at time t.
We will discuss only discrete output series here but the material
extends in an obvious way to continuous output (see Nozari, 1986

for details on dealing with continuous output series).

A simple plot of the data in the sequence that it was generated
can give a good feel for the dynamics of the system. In particular,
the effects of run duration and truncation point selection on the
model output might be detected. The value of such plots (after
smoothing) is illustrated quite well in Welch (1983). The reader is
strongly urged to consult this reference.

Smoothing the output plot tends to reduce the rapid fluctuations
of a noisy or "jittery" output series. This permits one to better see

the dynamics of the system. Methods for smoothing data include
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taking a moving average (averaging equal-sized overlapping groups
of observations) of the output. One can also average observations
across several independently seeded replications of the simulation.
Better still, one can average antithetic pairs of replications made at a
particular setting of the input factors. Consult any good simulation
text for a discussion of antithetic replication. When several
independent antithetic pairs of runs are made the experimenter might
want to give more weight to the average of pairs of observations that
are close together then to pairs of runs where the two output
measurements are far apart. When the two observations from an
antithetic pair of replications are close together, the output from the
two runs are likely to be near the center of their probability

distribution.

Batching the data (taking averages of non-overlapping, adjacent,
equal-sized groups of observations) can help smooth the output.
Batching the output (a technique called batched means) can also
reduce the volume of data to be plotted without losing too much
valuable information. By starting with a raw output plot on the
computer screen and sequentially doubling the batch size, the
experimenter can observe the output plot as the plotted points tend to
behave more and more like familiar independent, normally
distributed data. Computationally, this simply involves recursively
averaging adjacent pairs of observations. Ultimately the single value
for sample average is the result of this recursion. If the total number
of observations is not a power of 2, simply discard observations
from the beginning of the run. Sequential batching is much more

informative than just seeing the final average.

A plot of the cumulative average of the output computed during a
run is sometimes recommended. Define the cumulative average of
the first k observations as,

™M=

s _ 1
Yk‘_kf

Y.
!

Plotting cumulative averages is one of the more common types
of output plots. However, this plot can be misleading as it will
necessarily become smoother during the run, since the variance of

the cumulative mean decreases with run duration.

Histograms of the output can also be informative but also might
be misleading. Histograms of observations from a single run do not
account for the serial dependencies typical in simulation output.
Histograms of raw data across different replications of a simulation
do not account for the initialization bias in each run. Initialization
bias is discussed later in this paper.

3. STANDARDIZED OUTPUT PLOTS

We now discuss a different kind of output plot, the standardized



output series. These plots may seem a bit strange at first but they
are nevertheless very simple and powerful.

Standardizing simulation output exploits the central feature of
statistical analysis: the standardization (or "normalization") of
information. With standardized statistics, standard analysis can be
applied to a great range of problems. The same tables and tests can
be used in many fields. Statisticians can be "experts" in agriculture,
sociology, economics, engineering, medicine, etc. since all
normalized statistics tend to look and behave in a familiar manner no
matter what the source of the data. The most pervasive example of
this is the tendency toward a "bell shaped” or "normal” curve for
frequency plots or histograms of averages. This tendency is
validated by the familiar central limit theorem of statistics that tells us
that properly scaled and centered averages of independent and
identically distributed observations have a limiting standard normal
distribution as the sample size increases. The measurement of
magnitude of standardized statistics is (what else?) the standard
deviation. In fact, standardization is pervasive throughout all

objective statistics.

Here we standardize the entire output series from a simulation
run. This will permit us to use standard analysis techniques for
different simulations and gain cumulative experience that is
transferable to new simulation studies. This is because, after
standardization, the output from any simulation will tend to look
familiar to us no matter the source. (see Schruben, 1983 for some

technical details not necessary here.)

For n output observations, Yj, i=1,2,...n, we define the
(unscaled) standardized output series, Sp(k), as follows. Let

Sn(0)=0 and define

k
Sptk)y = Z (Y- Y,)
1=1

or equivalently, using the previous definition of cumulative means,

Spk) = k (Y- Yy)
or recursively, after observation Yp,,

S(k)y=S (k)+&m-1)(Y -Y)
m m-1 m m

Since we are concentrating on graphical presentation we do not
need to scale the length or magnitude of the output. Most plotting
software routines do this in a standard manner that is satisfactory for
our needs. Typically, plots are scaled to fill one window on the
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screen. Also, since we wish to emphasize the study of the dynamics
of the simulation, we suggest that the recursion given above be
used. The standardized output series is updated after each
observation. Of course, it makes sense here as it did earlier to
average batches of the raw output data and standardize the sequence
of batched means. We will drop the subscript on run length, n,
when it is not needed. S(k) can be interpreted as the cumulative
deviation of the output series about the sample mean. It is typically
uncorrelated and asymptotically independent of the sample mean; it

focuses on the dynamics of the output.

Several characteristics of the standardized output, S(k), are
useful, the most important being that all standardized output plots
look similar no matter what is being simulated. Two quite different
simulation outputs tend to have very much the same standardized
plots. Just like the familiar use of normal summary statistics,
experience in the study of standardized output plots is cumulative.
The more standardized plots one studies the better one becomes in
their analysis.

Standardization permits experimenters to focus on any unusual
aspects of the run since any definition of “unusual” requires a
standard for comparison. When there is a standard simulation
output behavior to compare against (like the bell-shaped curve)
analysis becomes much easier.

4. ASSESSING THE ACCURACY OF THE OUTPUT:
CORRECTING INITIALIZATION BIAS

The starting conditions for each run of a simulation must be
completely specified. Often these conditions are arbitrarily set at
some convenient value. The simulation is then allowed to run for a
"warm-up" period. The sequence of events near the beginning of a
run is in general strongly influenced by these initial conditions. The
early behavior of the model is therefore atypical of the system being
modeled. In fact, the initial conditions for a run can have a greater
influence on the accuracy of the results than any other system factor.
This problem is referred to as simulation initialization bias. The
point in a run which data is discarded is called the output truncation
point.

Most simulation languages offer an easy method for
prospectively truncating the simulation output but none offer any
guidance as to what might be an appropriate warm-up period. Also,
retrospective data truncation after the run has progressed for a time
is much more sensible. Either way, practitioners are left to their
own devices for this problem or referred to the sometimes obscure
simulation methodology literature for help. We will see that the
standardized output plot makes initialization bias control a very easy
task.



Initialization bias can be very subtle. If a simulated factory is
initialized with no work in progress, parts banks fully stocked, and
all machines in perfect repair, then the simulated system behavior is
biased. The system is not initially congested, so the performance of
the factory will tend to look unrealistically good. Measures like part
make-span (delay) and throughput are biased. Bias due to having
no initial work-in-process is obvious but bias due to initial parts
inventory levels, machine repair status and maintenance schedules,

etc. are often overlooked or modeled incorrectly.

Even less obvious is the effect of the initial conditions on a
service center such as a walk-in medical clinic or bank that closes
every evening. The experimenter might think that starting each day
with "no customers waiting" is sufficient. Indeed, it may be
appropriate for the system as modeled. However, real service
systems typically can experience a backlogging of demand (eg.
follow-up appointments for the walk-in clinic, or customers
returning the next day if they find too long a line at the bank). To
simulate accurately the behavior of a system where there is a
potential for backlogging, a backlog must initially be set (e.g.
appointments scheduled) or be allowed to build up naturally.

Sometimes attempts to control initialization bias can introduce
unrecognized dependencies between runs that otherwise could be
assumed to be independent. For example, selecting a truncation
point for a simulation run based on the output of a previous run will
make the two runs dependent. Since it is not uncommon for the
initial conditions to have a greater influence on the output than many
of the system design factors, dependencies unwittingly introduced in
this manner can be very problematic.

The central question is: how long should the simulation be run?
The theoretical answer for many systems is that no run duration is
long enough to allow the influence of the initial conditions to
completely dissipate (there are some hypothetical systems that are
exceptions). For an estimator to converge, the run duration must go
to infinity so that both an infinite number of observations are kept
and an infinite number of observations are discarded (the truncation
point goes to infinity more slowly than the run duration.) For some
details on this see Glynn and Heidelberger (1989). Also, if the
system being simulated is inherently unstable then no warm-up
period will make it stable; however, some warm-up period for
unstable simulations is still to be recommended since the initial
conditions still influence the behavior of the system and these
conditions are most likely selected arbitrarily as a matter of
convenience. Fortunately, in practice, it is usually possible to

warm-up a simulation sufficiently.

The standardized output plots can help determine if the system is
warmed-up. A characteristic feature of the standardized output,
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S(k), is that if the simulation output has a constant mean (say it has

"warmed-up"), then its expected value is zero. That is,
E[Yil =El[Yj] forallij => E[S(k)]=0

for all k; by definition S(0) = S(n) = 0. This tells us that if the
standardized output tends to vary about zero throughout the run, it is
likely that a sufficient warm-up period has passed before data
collection has begun. If the warm-up period is too short the
standardized plot will be pulled to one side of zero. Bias is very
clear since the standardized plot is off to one side a power faster than
underlying initialization bias. In fact, the standardized plots
suggested here are similar to the CUSUM plots used in statistical
quality control, the difference being that we are looking at the sum
of deviations about the cumulative sample mean rather than some
quality target. One of the criticisms of CUSUM control charts has
been that they tend to react to a change in the mean too quickly.
Here this sensitivity is good as it makes bias detection much easier

than with plots of the raw output series.

From the standardized plot we can easily make a correction for
initialization bias. This perhaps seems a bit like magic: we will
estimate the bias in a particular value of a sample statistic without
knowledge of the true parameter being estimated and using data that
is independent of the estimator. If the simulation has warmed up by
observation, say T, then the expected slope of S(k) from 71 to the
end of the output is equal to the bias in the sample mean. That is, if
the actual mean being estimated is [ then

E[ slope S(k), k=t...n] = bias[ Y, |

This result can easily be verified by substituting p for E[Yj] in
the expected value of S(k+1) - S(k) for k >t. This slope is simply
added to the sample mean as a bias correction. This is actually
equivalent to truncating the output at the last point the dotted line

crosses the standardized output series.

In summary: if there is a drift in the mean of the simulation
output (likely due to initialization effects) then the standardized
output will be pulled off to one side of zero. If the standardized
output looks linear near the end or the run then add an estimate of
the slope to the sample mean as a bias correction. Estimation by eye
is usually sufficient. If the standardized output does not appear to
be linear near the end of the run then it is likely that the run duration

15 not long enough for the process to stabilize (it may never stabilize
1f the system is not itself stable),

5. ASSESSING THE PRECISION OF THE OUTPUT:
INTERVAL ESTIMATION

Itis widely recognized in the better simulation methodology
texts that a simple estimate of some system performance measure is



in itself not very helpful. Some measure of the precision of the
estimate is also needed. Knowing that the observed output has a
value of, say 48, is not nearly as meaningful as knowing that it is
likely to be between 47 and 49 if the simulation is run again. A
different decision might result if all that is known is that the true
value of the quantity being estimated as equal to 48 is (loosely
speaking) likely to fall somewhere between 5 and 91. Just as the
experimenter needs to establish faith in the validity of a simulation
model and the input data, some idea of the confidence that should be
placed in the experimental results is needed.

A confidence interval for the true value of the output or a
prediction interval for the output for the next simulation run (or k of
the next m runs) value is important. Probably the best practical
interval estimator available today is derived from the standardized
output series. This estimator is known by the overly descriptive
moniker, the weighted-area standardized time series interval
estimator pooled with the classical batched means interval estimator.
Expressions for this interval estimator are given in Goldsman and
Schruben (1989) and will not be repeated here. This interval
estimator is easily computed: it is recommended that all simulation
output series be used to compute this interval estimator once
initialization bias effects are dealt with satisfactorily.

A careful experimenter can with a single run of a simulation
produce an accurate estimate of measures of system performance
and also an estimate of the variance of the estimator. If care is taken
then it is not necessary to have extra runs to permit "degrees of
freedom for error” as in classical experiments. It is also easy to
estimate the correlation between estimators at different input factor
settings (details are given in Schruben and Margolin, 1978). Thus
in simulation experiments, it is possible to use Generalized Least
Squares analysis (with estimated error dispersion matrix) with what
would ordinarily be a saturated experimental design (as many runs
as unknown regression model parameters). We discuss some of

the concepts of the design of multiple run experiments next.

PART II: GRAPHICAL METHODS FOR DESIGN
6. MOTIVATION

What is the purpose of ¢xperiment design for a series of runs?
At the highest level, one wishes to choose parameter settings for a

set of simulation runs in a way that will either:

i) maximize the amount of relevant information generated for a
fixed number of runs
or
ii) minimize the number of runs required to gain the relevant

information with a given degree of accuracy.
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The ability to control the nature of random variation in
simulation models provides unique opportunities in experiment
design, and these are discussed regularly in WSC sessions. General
topics in experiment design are given relatively little coverage in our
presentations, yet many are relevant in a simulation setting. This
section of the tutorial will focus on traditional topics of experiment
design, treated in a non-traditional way. We will present graphical
tools for designing experiments. The emphasis will be on two
particular tools, causal diagrams and multidimensional point plots,
and their role in the overall design process.

Historically, graphical methods for experiment design have not
been recognized as an entity. A computerized literature search of
scientific journals gave zero entries with keywords graphical and
experiment design in the last ten years. Yet graphical methods have
been used by outstanding statisticians to develop well known
designs, including Box's central composite design.

Before presenting the graphical techniques, we define some
fundamental concepts in experiment design and briefly discuss some
of its important topics. The concepts are presented in a concise
format for easy reference in the following section. The next section
discusses the steps in designing an experiment, and how graphical
techniques can be useful in several of these steps. Later sections
give examples of causal diagrams and multidimensional point plots,
and instructions for their construction.

7. TERMS AND TOPICS

Definition:
An experiment is a set of one or more runs (of a simulation model)

made to meet a particular set of objectives.

Definition:
An independent variable is a parameter of the (simulation)

system that can be explicitly adjusted by the experimenter.

Definition:
A dependent variable is an output of the (simulation) system that

can be measured by the experimenter.

Definition:
An intermediate variable is a parameter of the (simulation)
system that is affected by the settings of independent variables, and

in turn affects the dependent variable(s) of interest.

Definition:
A design factor is an independent variable that will have its value
changed during the course of an experiment.



Definition:

A design frame is a specification of
-which independent variables will be held fixed(& their values)
«design factors(& their ranges)

«what system outputs will be measured.

Definition:
An experiment design is a set of specifications of design factors
for an experiment, along with a single specification vector for the
settings of the independent variables that are not design factors.
Experiment designs can be classified in several ways:

« purpose (pilot, screening, explanatory, confirmatory)

« run conditions (sequential or simultaneous specification)

« kinds of factors (continuous, discrete, mixed)

Definition:
A factorial design is an experiment with one or more runs for each
possible combination of factor levels. If all factors are at two levels,
then runs correspond graphically to vertices of an n-dimensional
cube. For fractional factorial designs not all vertices are
included in the design (see Figure 1 below). Two-level factorial

designs can be used with both continuous and discrete design

factors.
T e
z &
2 3
factor 1
q
© [}
Full Factorial Fractional Factorial
23 (3 factors) 23-1 (3 factors)
Figure 1. Graphical display of fractional and full factorial designs.
Definition:

A design matrix depends on the model to be fitted, and it is an
experiment description usually reserved for general linear models.
These models are of the form y; = X B Filxi1Xia....xjp)+error;,
where the values of the constants Bj are to be estimated but the
functions fj(-) are given. There is a row for each (simulation
model) run and a column in the matrix for each Bj term in the model
(usually including B¢, where fo(x1.x2,....xjp) = 1 for every run).
The ith row of the matrix holds the values of the model terms
fi(xi1:X12,..xjp) for the corresponding run. This is illustrated by
the example in Figure 2. The design points on the left are numbered
according to their order in the design matrix. This order serves only
to identify the points, and may or may not relate to the order in
which the runs were made.
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The variance-covariance of least-squares estimates of the Bj's is
given by the matrix Y, f= 62(XTX)-1. Thus one can assess the

quality of the estimates that a design will produce before ever

running the experiment.

1 Koo KiHp
3 2 1 1 2 2
4 ° °
1 3 4 12
1 1 4 4
1,5 4
2 4 o 13 2 6
T T 1 1 2 2
1 3
DESIGN DESIGN MATRIX

( CALLED 'X')
( Model: yj = By + Bixj; +B2xj2 + B3xjixj2 + errorj )

Figure 2. Example of graphical representation and the design
matrix.

In addition to these definitions, there are several topics that will
be important in our discussion of graphical methods. These are
highlighted briefly below.

Nuisance variables: randomization and blocking
Nuisance variables are known to influence the results of the run, but
are not controllable and/or not of direct interest. When the nature of
the nuisance variable's influence is understood, it is treated like any
other design factor. This approach is called blocking. When the
nature of the influence is not understood or not repeatable, the run
conditions should be assigned to values of the nuisance variable at
random. This approach is called randomization. Examples might
include the value of the random number seed, starting conditions,
and time.

Confounding:
A particular experiment design may not allow the independent
estimation of two or more model parameters. For example, if two
design factors have their values changed from the previous run, and
simulation output improves, which change (or both) caused the
improvement? The effects of these factors are confounded.
Resolution is a mathematical measure of the nature of

confounding for various fractional factorial designs.

Bias:
Most experiment designs are constructed with a particular model of
system response in mind. What if the postulated model is wrong?
What impact will this have on parameter estimates?



Optimal Design:
The concept of optimality in experiment designs is only applied in a
limited mathematical sense. Definitions of optimality are usually
based on properties of the matrix XTX, where X is the design
matrix. For example, a D-optimal design is one which maximizes
the determinant of XTX (for a fixed number of rows in X and
constraints on the Xjj values). Again, this concept usually refers to
designs for estimating parameters from general linear models. As
the D-optimal example shows, optimality depends on the particular
model that is assumed.

8. STEPS IN EXPERIMENT DESIGN

Developing an experiment design involves five steps:

. establish purpose.

. identify and classify variables,

. entertain possible models and select design factors,
. choose a design, and

w» e W o =

. validate the design.

The goodness of a design depends on the goals of the
experiment. These must be established clearly at the outset. Next, it
is necessary to identify which variables are important for this
experiment, and to classify them as independent, dependent,
nuisance, or intermediate variables. The independent variables are
divided into two groups; those that will be varied in the experiment
(the design factors) and those that will be held fixed. Some design
factors may be quantitative, others may be qualitative. One or more
tentative models of system response are entertained to help decide
which variables to include as design factors in step 3. The goodness
of designs considered in step 4 depends on the postulated response

model as well.

Given the number and kinds of design factors and a target
number of runs, one attempts to find a suitable standard design.
Often no known design will precisely fit the goals that the
experimenter has in mind. Mathematical and graphical techniques
have been proposed which can be used to create new designs with
specific properties. For example, the DETMAX program constructs
D-optimal designs for a given model (Mitchell, 1974). Graphical
methods include Taguchi's linear graphs (Taguchi and Wu, 1980)

and multidimensional point plots.

The final validation step includes checking the number and kinds
of runs for feasibility, verifying that the variance of the estimates
will be acceptable, and checking any confounding of effects allowed
by the design. For general linear models, the latter two steps require
a check of XTX and/or (XTX) 1.

Graphical methods are particularly useful in steps 2,3 and 4 of
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this process. For steps 2 and 3, we will describe the use of causal
diagrams. For step 4, we will show how to create and manipulate
multidimensional point plots.

9. CAUSAL DIAGRAMS

Causal diagrams are particularly useful for establishing the
design frame. Ishikawa 'fish-bone’ diagrams are easy to construct
and provide a view of the relationships of design factors,
intermediate variables, and dependent variables. Figure 3 illustrates
the use of this diagram to describe factors affecting vinyl disk warp
in a vinyl videodisk pressing process. The final measure, disk
warp, depends on a number of factors, which are presented as
branches off the horizontal main. Each of these factors may in turn
be due to other conditions, drawn as secondary bones or branches.
Only factors at the end of these chains are directly controllable. All
others are intermediate variables which cannot be used as design
factors.

Fish-bone diagrams provide a graphical representation for the
study of variable interactions and dependencies. These diagrams
can also be a vehicle for communicating model structure to clients,
and so they are useful in the development and validation phases of
simulation modeling as well. A detailed description of this
diagramming technique can be found in Ishikawa (1982). Horace
Andrews also used high level diagrams for developing experiment
designs, with more artistic content than the abstract fish-bone tool.
For examples, see Andrews (1964).

AFTER PRESS WARP
AUCK COMPOSTION
CYCLE TIME
RAM VELOCITY
Fri e

TWME TO 12 INCHES

HiLO TEMP DIFFERENCE /
BEAD-HUB DELTA » .
FULL CLAMP PRESSURE. \

DIBK WEIGHT

PRESSURE PHBNOMBNON
# POST SOAK
SPEED OF MMERSION WARP

TR S
CONDMEr & TEMPERATURE

STOPAGE

CoNDTONS

TIME
TEMP GRADIENT

CONDITIONS BETWEEN

PRESSING AND BATH
BATH CONDITIONS

Figure 3. An Ishikawa fishbone diagram for variables affecting
videodisk warp. From Young, Moore, and Girard

(1987).

10. MULTIDIMENSIONAL POINT PLOTS

Why should we be interested in graphical methods for
generating experiment designs? One reason is that standard designs
often don't fit circumstances exactly. For example, one point in a 33



factorial design may correspond to infeasible operating conditions.
How should the design be changed? With a graphical view of the
design, such changes are easy to explore. For example, see Snee
(1985b). It is easier to create new designs or change existing ones
using graphical tools that interact with the creative right side of the
brain (Edwards, 1979). Finally, the graphical representation of the
design can be used as a frame on which to display the resulting
simulation model output, making interpretation of results simpler.
See, for example, the plots in Snee (1985a). In this section we
describe the mechanics of multidimensional plots, and graphical
rules for generating good designs.

Each experimental run is described by the values of the
independent variables. Since only the (k) design factors will change
over the course of the experiment, one can represent a single run by
a point in the k-dimensional design space. Since k is often greater
than two or three, we need techniques for graphically representing
high dimensional sets of points. For points in general position, this
is a difficult task. The general position problem is an important one
in data analysis, and a number of attempts have been made to find
useful representations, including the use of icons, multiple
projections, and dynamic rotaton of point sets.

Projections of point sets into two or three dimensional views is
easier if the points are located on a regular grid rather than in general
position. Fortunately this is the case for many useful experiment
designs, including the factorial, fractional factorial, and central
composite designs. By our definition above, latin squares, Plackett-
Burman designs, and incomplete block designs can be viewed as
examples of fractional factorial designs, and so they are good
candidates for graphical presentation. Even designs created
mathematically by programs like DETMAX can be viewed
graphically if the set of candidate points for the design are limited to

a relatively coarse grid.

In Figure 1 we showed multidimensional point plots for 23 full
and fractional designs, but these can naturally be represented in three
What about 24 and higher designs? We will

incorporate two tools for point sets in higher dimensions: icons and

dimensions.
compound plots. Figure 4a shows a representation for a 24
fractional design. The icons Il and A e used 1o represent the
high and low levels of the fourth factor. Figure 4b gives a template
for a full or fractional design for six variables at two levels. Here
we use a compound plot with nested cubes to represent the levels of
all six factors.

The second and third parts of the figure can be used as templates
for generating new fractional designs. Placing a circle at a vertex
indicates that it is one of the experimental conditions that will be run.
A number inside the circle can indicate run order, but for checking

S8

a. A 2% " Fractional Design

c. A 253" Factorial Design

Figure 4. Multidimensional point plot templates.

the confounding of run order with main effects, a graphical
representation of run order (shading or size of circle) is probably
better. The design can easily be extended to several factors by using
the icons from a. Figure 4c shows a 2531 design template. A 2532

design template would consist of three of these plots side by side.

Checking confounding of main effects with up to third order
interactions is easy with multidimensional point plots. Figure 5
shows three 24-1 fractional designs with different confounding
patterns. These three patterns are easy to see and easy to create for
factors at two levels.

d=H-A
A
C C C
A
a b a b a b
d d d
con[opnded confounded confounded
with with with
a ac abc

Figure 5. Confounding patterns for main effects and two and three
way interactions.



Block

+ + - 1 + - —

+ — + - + +

- - + + - +

- + + 3 - - +

4+ - - - - —

+ +  + 4 + 4+ +
Figure 6. Good and bad blocked designs in traditional format.

Can you tell which is bad?

Next we will illustrate a more complicated blocking design with
three factors and four blocks of size 2. Box, Hunter, and Hunter
(1978) present two designs for this situation, one good and one bad.
These are illustrated in the traditional way in Figure 6. Can you tell
which is good and which is bad? Figure 7 presents these designs
graphically. We see that the blocks are confounded with the main
effect of factor a in the bad design, but with the good design, effects
due to differences in blocks are confounded with the two-way
interactions, higher order terms that are presumably of less interest.
The difference in the designs is particularly evident when one looks
at projections of the designs along each axis. These projections are
presented above, behind. and to the left of each cube.

B

A

Dﬂ ‘U Cﬂ cﬂ c
BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4

0 U

8 2= L= »

IE 10 18 1D,

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4

Figure 7. Good and bad blocked designs presented graphically.
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Two primary issues that must be resolved in the choice of
running conditions (i.e. design factor values) are [leverage and
biaslestimabiliry. In general these are conflicting objectives, as
illustrated in Figure 8. Consider the case of estimating the
relationship between a simulation model response variable, y, and a
single design parameter, x. If a linear relationship between x and y
is postulated (y = By + f)x + error), placing half the runs each at the
lower and upper limits of x will provide the greatest leverage. That
is, the variance of ﬁl will be as small as possible for a fixed
number of runs. This design, design A in the figure, is not
reasonable if there is some uncertainty about the linear relationship.
In this case, one or more intermediate points of x must be run, as
illustrated in design B. For a simple linear relationship, however,

design B is less efficient than design A.

lower upper lower upper
limit limit limit Limit
of x of x of x of x

DESIGN A DESIGN B

Figure 8. Two designs for estimating parameters of a simple linear
model.

These issues can be described in graphical terms as well:
maximizing leverage corresponds to placing the points at the
extremes of the design space. Minimizing bias corresponds to
distributing the points uniformly over the design space. How
uniformly must the points be placed to minimize bias with minimal
sacrifice in leverage? The answer is given by Box and Draper

(1959):

"t is proved (Appendix 1) that if a polynomial of any
degree d; is fitted by the method of least squares over any
region of interest R in the k variables, when the true
Sfunction is a polynomial of any degree d, > d;, then the
hias averaged over R is minimized for all values of the
coefficients of the neglected terms by making the moments
of order d; + d» and less of the design points equal to the

corresponding moments of a uniform distribution over R."

Thus the degree to which points must be spread uniformly
across the design space depends on the highest order model we wish
to guard against. The bad blocking example above illustrates how
projections are constructed. In the bad design, the points were not
placed as far apart as possible. For the good design they were.
How do we check graphically for this property? For designs
involving many factors, it is important to check projections of the

design space for uniform coverage.



A balanced design will have equal or roughly equal numbers of
design points in each region of a projection. An aid in constructing
such designs is to build them up from smaller geometric sets whose
balance is easy to understand. The points of a central composite
design, for example, can be constructed from two component sets of
points: the vertices of a cube and points on the coordinate axes. All

points are taken to be equidistant from the origin.

We have described several useful concepts for generating good
designs from multidimensional point plots. These are summarized
below:

RULES FOR GRAPHICAL DESIGN

1. COVER THE DESIGN SPACE UNIFORMLY

2. DECOMPOSE COMPLICATED DESIGNS
SUBCOMPONENTS

INTO GRAPHICAL

3. SPAN THE WHOLE DESIGN SPACE: ADDED POINTS SHOULD BE
FAR FROM EXISTING POINTS TO MINIMIZE VARIANCE OF FIRST
ORDER EFFECTS

4. CHECK PROJECTIONS OF THE DESIGN FOR BALANCE

11. GRAPHICAL METHODS; SUMMARY
Multidimensional point plots and causal diagrams are only two
of many graphical tools for experiment design. There are
nomographs for estimating sample size, network models relating
connectivity to estimability of contrasts (Butz, 1982), graphical
representations for nested designs (Andrews, 1964), mixture
experiments (Snee, 1981), and many more. All of these techniques
share some common strengths: a creative advantage from right-brain
activity, easy to use and remember, easy to communicate to non-
statisticians, robust to a degree, and easy to teach. Itis also easier to
make tradeoffs and accommodate design constraints graphically.

These methods also share a number of weaknesses. They are
not usually quantitative; when they are (e.g. nomographs) they have
little numerical precision. For multidimensional point plots, there
are dimensional limitations which icons, compound plots, rotation,
and projection can only relieve but not remove.

Graphical methods for experiment design should supplement
rather than replace other methods for generating designs such as
selection of existing designs and computer generated 'optimal’
designs. When a new or modified design is necessary, the creative
step of graphical design should always be paired with quantitative
checks on the design validity.
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