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ABSTRACT

Although computer simulation is a well-studied and
highly structured research area, its use in industry is
still limited due to the fact that simulation modeling
requires expert knowledge. We believe that this
expertise must be embedded in an integrated simulation
software to provide non-expert user access to this
valuable tool. Simulation experts know very well that
there are similarities between the models they build for
different manufacturing systems. In this paper we
present a GT classification scheme for the manufacturing
simulation models which is developed by observing
those similarities. The GT scheme will constitute a basis
for creating a model base consisting of generic models
and submodels, within the framework of an intelligent
simulation environment. Specific user models will be
constructed by coupling, modifying, and configuring the
generic models rather than building from scratch,
reducing the effort expected of the user in the process of
model construction.

1. TAXONOMICAL APPROACHES TO
SIMULATION

Classification of simulation models is not an
entirely new idea. In fact various simulation taxonomies
available in the literature are commonly known and
already included in many simulation textbooks. Among
them, perhaps the most elementary classification is
discrete simulation versus continuous simulation which
is based on how the values of the system state variables
change. Other basic classifications are static versus
dynamic simulation, and deterministic versus stochastic
simulation.

In discrete event simulation, strategy-related
characteristics of simulation languages or models
constitute a basis for further classification. Hooper
(1982) presents an algorithmic analysis of the three
simulation strategies: event scheduling, activity
scanning, and process interaction. The algorithmic
differences between the strategies are, in most cases,
not transparent to the user and will not be discussed
here. World view of a language, however, differs
depending on the simulation strategy; when a certain
language is used in developing a model, the model must
be formulated in terms of concepts consistent with the
world view of that language.

Highland (1977) proposes additional classification
criteria based on the following characteristics of
simulation models:

- purpose of simulation (e.g., system evaluation,
prediction, optimization).
model characteristics (i.e., time frame, system
composition, system size, system state,
environmental interaction, and elemental
components).
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relationships among entities (e.g., symbiotic,
synergistic, replicative, antithetic).

attribute characteristics (e.g., time/space
relationships and volatility).

variable characteristics (i.e., statistical nature of
the variables, interrelationships between the
variables, environmental variables, and impact
state variables).

Finally, a common way of classification found in
the literature is by the application area. Highland (1977)
groups simulation applications in six main classes each
of which is further divided into subclasses. The main
classes are:
- Computer systems - Business, industry,
& agribusiness

- Governmental & social - Ecological &

systems environmental
systems
- World modeling - Biosciences

The above well-known classification schemes are
useful in documentation and training, but they offer
limited information regarding the simulation model
structure. They do not, for example, tell what the basic
simulation entities are for a particular domain, how
those entities interact, and what kind of material and
information flow characteristics are involved. They also
lack information regarding the structure of simulation
routines and how those routines should be interfaced.
The purpose of this paper is to discuss the development
of a model base consisting of generic models and/or
modules from which specific models can be constructed.
The constructed models must satisfy specific user
requirements or goals. These models will allow creation
of simulation scenarios without user abstraction, a skill
that has been found lacking in non-expert modelers. To
achieve these objectives, the knowledge regarding model
structures must be built into the model base. We have
chosen to define this knowledge through specification of
a classification scheme. This classification scheme will
constitute a framework for the development of such a
model base, and will be based on the structural
properties of simulation models.

2. TOWARDS THE AUTOMATION OF
SIMULATION MODEL DEVELOPMENT

As a result of recent developments in applied
artificial intelligence and knowledge based systems
(KB), many researchers from other disciplines focused
their attention on the potential utilization of AI/ES
techniques in their areas. KB can assist simulationists in
many ways such as model construction, input
preparation, and output analysis (designing and
performing statistical experiments). The emphasis of
this research is to build a generic simulation model base,
and to assist the user in developing the appropriate
specific model for his/her purposes through interaction
with the model base.



The literature reveals that efforts for creating an
intelligent simulation environment are numerous.
Although various approaches are taken by different
researchers, four main schools of thought are identified
with regard to model construction: hierarchical modular
model development, object-oriented simulation, rule-
based modeling, and intelligent user interfaces.

Hijerarchical modular_model development: This
approach is based on the DEVS formalism developed by
B. P. Zeigler which is discussed in many articles,
including Rosenblit (1986), and Zeigler (1984, 1987). It
can be outlined, in simple terms, as (a) decomposing the
system to be simulated into its components to obtain a
hierarchical modular structure, (b) building submodels
for each component, and (c) coupling those submodels
in an appropriate manner to come up with a final form of
the model. An implementation of this approach, GEST,
is described in Oren (1984). A recent implementation in
the LISp-based, object-oriented environment of PC-
Scheme is discussed in Zeigler (1987).

Object-oriented simulation: The comncepts objects
and classes of objects are not entirely new to simulation.
They were introduced in Simula, one of the oldest
simulation languages. These concepts, however, and the
programming languages to handle them have not been
matured prior to the advancement of AI techniques. The
object-oriented simulation is based on defining the
simulation objects and interactions among them by using
their descriptive, structural, behavioral, and taxonomical
properties. Among the implementations of object-
oriented simulation are ISIS (Fox 1984), Transcell
(Bourne 1984), ROSS (Faught 1980) and Smalltalk
(Ulgen 1986).

Rule-based modeling: Production rules are utilized
in some object-oriented implementations such as ISIS
and ROSS. A group of authors suggest using purely
rule-based (goal-oriented) programming languages, such
as Prolog, for simulation modeling. A goal-oriented
simulation language, T-Prolog, is preseated in
Adelsberger (1984). T-CP (Cleary 1985), which is
based on Concurrent Prolog, is another language of this
sort. Swaan (1983) suggests using production rules
within the context of subsystem simulation approach.
Production rules can be used to build a number of
submodels for the subsystems of a system, and will
serve as the building blocks of the final model.

Intelligent user interfaces: An intelligent user
interface or intelligent front end is a program which
facilitates automated model construction and analysis in
a conventional simulation language. Implementations in
the literature differ on a wide range in terms of model-
building capabilities. Four groups can be identified:

1. A single general purpose model to be configured
(e.g., Miles 1986).
2. A number of complete generic models to be
modified (e.g., Mackulak 1987).
3. Model construction from smaller modules (e.g.,
Medeiros 1983).
4. Model building from scratch using simulation
languages (e.g., Haddock 1987)

3. THE INTELLIGENT SIMULATION
ENVIRONMENT

Some of the implementations mentioned above,
such as Zeigler's PC-Scheme implementation of
hiererchical modular modeling, object oriented
Smalltalk, and rule based T-Prolog, provide general
purpose programming tools for developing simulation
models in a modular fashion, and emphasize that the
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models must be built from smaller modules. None of
them, however, attempt to identify the modules that
might be required for a particular domain such as
discrete part manufacturing. The user is supposed to
identify the simulation entities, their attributes, and the
way those entities interact. The user also has to
construct the modules and specify the constraints under
which they can be coupled. Too much is expected of the
user in terms of learning new languages, gathering and
organizing information related with simulation entities,
and coding model modules.

Some implementations, such as ISIS or Transcel,
come with the built-in description of the entities and
modules, but these are problem-specific and too
restrictive to be general-purpose packages.

Cochran (1987) lists the features of a perfect
simulation environment, including no user coding of any
kind, and pre-existing (generic) models to modify rather
than build. Generic models and/or modules are indeed
essential to develop a general-purpose simulation
package for the discrete manufacturing domain which
eliminates user coding at the same time. The ultimate
purpose of the GT classification scheme presented in the
following section is to identify and construct the generic
modules in a model base, and use them as building
blocks of complete models.

4. THE GT CLASSIFICATION AND CODING
SCHEME

In developing the classification scheme, first the
main components of a simulation model (and a system)
are identified from a structural perspective. Those
components are outlined in Figure 1. A subscheme is
developed for each main component based on a GT
approach. In Figures 2 through 6, those subschemes are
illustrated again by tree diagrams. Nodes in a tree
diagram represent subcomponents of a main component,
or properties of those components. A horizontal line
joining the branches of a tree means that one or more of
the following components may be included in the model,
whereas a regular branching corresponds to an
"either/or" situation. Based on the tree diagrams, a GT
coding subscheme is created by defining a group of
digits for each component. The overall coding scheme
will be obtained simply by appending groups of digits.
The coding scheme is a hybrid one rather than a
monocode or polycode, hence the total number of digits
varies for each model.

In the following sections, the subschemes
developed for each of the main system components--
including stations, material handling equipment, jobs,
queues, equipment breakdowns and  scheduled
maintenance--are discussed in detail.

4.1. Stations

All kinds of resources that may be found in a
discrete manufacturing system are considered under this
component with the exception of material handling
resources.

The concept of work stations is a common way of
classifying manufacturing activities on the shop floor.
Therefore, the basic shop floor unit is assumed to be a
work station with a number of identical parallel servers.
Three types of stations are identified: machining,
assembly, and inspection. Machining stations are for
typical discrete manufacturing processes such as drilling
and milling of a single type of job at a time. Assembly



operation is treated separately because it involves
multiple jobs arriving at a station as separate entities,
and leaving the station as a single entity. Inspection
differs from both machining and assembly operations
since it implies a branching (defectives/nondefectives)
which is a structural model property.

Therefore, unlike the primary resource, secondary
resources are not necessarily utilized during the entire
operation. An operation is divided into three
suboperations--setup, machine loading/unloading, and
processing--which define the usage pattern of the
resources. A secondary resource may be used for any
combination of these suboperations.

physical system.
Tesources jobs queues equipment
[Figure 4] [Figure 5] breakdowns
and scheduled
maintenance
{Figure 6]
stations material handling
[Figure 2] (transportation)
[Figure 3]
Note: A horizontal line joining the branches means that one or more
of the following nodes may be included in the model
Figure 1
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Figure 2

Presence of a station means that there are one or
more identical servers which will be treated as the
primary resource. Interpretation of the primary resource
is up to the user. It may be a machine tool for a
machining station, inspector for an inspection station, or
simply a bench on which the assembly operation is
carried out. The primary resource will be seized when a
job arrives at the station, and released when it leaves.

In Figure 2, the branching at the machining stations
(node A) describes features of the stations which will be
repeated for assembly and inspection stations as well.
There may be one or more secondary resources for each
type of station such as human operators, robots, and
transportable tools (jigs, fixtures, cutters, etc.).
Secondary resources are those that are shared by the
parallel servers of a station (within station), or by a
number of stations (between stations). If a secondary
resource is not shared at all, there is no point in treating
it as a separate entity. For example, if a human operator
is assigned to one and only one machine tool, the

machine and its operator will be represented as a single.

entity, the primary resource.

In a flexible manufacturing system, work stations
may be automated at various levels. For example, actual
processing may be completely automated at a station, but
the machine setup may require a human operator.
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Coding scheme.

machining : MogM1(M21M31)(M22M32)...
assembly : AQA1(A21A31)(A22A32)...
inspection : IoI1(121131)(122132)...

where

Mo, Ag = 0,1 (machining and assembly stations exist
or not)

Ip = 0,1,2 (no inspection, inspection without rework,
inspection with rework)

M;i, Ag, I1 = 0,1,2,...,r (number of secondary
resources)

Mai, Azi, I2ij = 0,1 fori=1,2,...,r (ith resource is
shared within or between the stations)

M3i, Asj, I3; = 0-6 fori = 1,2,...,r (usage pattern of
ith secondary resource).

Examples. 10-0-10 machining stations without
secondary resources, no assembly stations, inspection
without rework and with no secondary resources.

10-12(03)(16)-21(00) : machining stations with no
secondary resources, assembly stations with two types
of secondary resources (first one shared within the
assembly stations and used for processing only, second



one shared by all the assembly stations and used for
loading/unloading and processing), inspection with
rework, and one secondary resource which is shared
within the inspection stations and used during the entire
inspection operation.

With this scheme, it is possible to code a wide
range of manufacturing systems having discrete part
processing, inspection, or assembly operation only, or
any combination of the three. Furthermore, the scheme
supports different levels of abstraction. Secondary
resources can be omitted for a higher level of
abstraction, or their usage pattern can be ignored by
specifying Mj3, Az, I3 as’ 0 (used for the entire
operation).

4.2, Material Handling

By material handling, transportation between the
stations is implied. Material handling within the stations
is ignored since a station consists of identical parallel
servers, but machine loading/unloading is taken into
account in the stations component.

Various types of material handling equipment may
be used in a simulation model (see Figure 3). The
equipment type can be specified for each pair of stations
when configuring the model, or each job type can be
assigned an equipment type depending on the featutes of
the job, such as size or weight. In the former case, the
linkage between the stations will be fixed throughout a
simulation run, whereas it will be flexible in the latter
case.

Coding scheme. T;T2T3T4

where
Ti, T2, T3 0, 1 (existence
transportation, conveyor and agv)
T4 = 1, 2 (equipment specified for station pairs or
job types).
T4 will be used when more than
digits is nonzero.

of manual

one of the previous

Examples. 000 : transportation is ignored.
001 : agv only,.

0112 : no manual transportation, conveyor, and
agv, equipment type specified for each job type
(flexible).

4.3. Jobs

Jobs are the entities flowing through the system,
such as orders, parts, or subassemblies. In Figure 4,
jobs are classified as discrete parts and assembly jobs.
Discrete parts are individual parts or batches that do not
require assembly. Assembly jobs may be physical
assemblies, or paper work and the raw material to
manufacture an order can also be treated as an assembly
job since production cannot begin unless both are
available. A combination of the two is also possible, For
example, two parts may be assembled after being
processed separately at different machining stations, and
the subassembly may be routed to another machining
station for further processing. For consistency
purposes, discrete parts and assembly jobs may be
specified only if machining stations and assembly
stations exist, respectively.

material handling
(transportation)

N

ne manual manual
» transportation transportation
Ty=0 =

no conveyor

T2=0

conveyor

no agv agv

T3 =0 Ty=1
equipment equipment
specified for  specified for
station pairs job types
(fixed) (flexible)
Ty=1 Ty=2
Figure 3
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Jobs are thought of as batches since, from model
structure  perspective, other types of discrete
manufacturing--such as mass production, flow line, and
job shop--are all special cases of batch production. If
batch splitting/overlapping is to be allowed, then
conditions for splitting and overlapping must be
specified when configuring the model.

An important characteristic of a job shop Iis
alternative operations routings for the jobs. In flow line
production, on the other hand, the typical question is
whether the set up times are sequence dependent or not,
For this reason, J2 is used to differentiate between the
two production types, and J3 is specified accordingly.

In assembly line balancing, estimating the buffer
stock sizes is a significant problem, and the scheme will
allow the existence of buffer stocks by choosing K2 as
1. Note that subcontracted parts can also be simulated
using the buffer stock concept.

The user may also want to specify nonzero arrival
times and due dates for assembly and discrete
manufacturing jobs. This will be necessary especially
when simulating "hot jobs." The last two digits of both
discrete and assembly job codes deal with this property.

Coding scheme. J1J273743s - K1K2K3Ky
where

J1, K1 = 0,1 (batch splitting/overlapping required
or not)

J2 =1, 2 (job shop or flow line)

J3 =0, 1 (varies depending on the choice of J3)

Ko = 0, 1 (existence of buffer stocks)

J4, K3 =0, 1 (arrival times specified or not)

Js5, K4 = 0,1 (due dates specified or not).

Ji will be used if My <> 0, and K; will be used if
Ag <> 0.

4.4. Queues

Queues are where the jobs and the resources
interact, and they must be treated as separate entities
(see Figure 5). Obviously, the most important feature of
the job queues is the dispatching rule. A number of
alternatives can be considered for removing the jobs
from the queues, including FIFO, SPT, LPT, SRPT,
LRPT, etc. Choice of the dispatching rule does not
change the model structure, but it may affect the
attribute set. For example, if the minimum slack (due
date - remaining processing time) is to be the criterion
for removing entities from the queues, we need to ask
for and store due dates in one of the transaction
attributes.

Remaining digits for the queues are self-
explanatory, except that parallel queues for each station
(Q2 = 1) may not be feasible because of the limitations
of using a microcomputer.

Coding scheme. Q1Q2Q3Q4Q5

where

Qi = 1- ? (dispatching rule)

Q2 = 0, 1 (single queue or multiple queues per
station)

Q3 = 0, 1 (queue sizes limited or not)

Q4 = 0, 1 (balking option)

Qs = 1, 2 (push or pull inventory system).

Q4 will be used if Q3 = 1, and Q5 will be used if Q4
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queues
dispatching rule
Q=12
single queue parallel
for each station queues
Q,=0 Q,=1
no limitation limited
on queue size queue size
Q3 = Q3 =1
balking balking entities
entities block previous
destroyed station
), =0 Q=1
push inventory pull inventory
system system
Qg=1 Q=2
Figure 5

4.5, Equipment Breakdowns and Scheduled
Maintenance

Equipment breakdowns are one of the main sources
of uncertainty in the manufacturing environment. In
addition, scheduled maintenance activities may cause
unavailability of resources for certain time periods. The
coding scheme which is illustrated in Figure 6 considers
both equipment breakdowns and scheduled maintenance.
Separate model modules can be created to simulate
breakdowns and/or maintenance, and can be added to the
final model if the user wants to simulate them.
Breakdown and maintenance modules will be very
similar, except that in the former interarrival times
between breakdown transactions will be probabilistic,
whereas in the latter those will be constant.

Coding scheme. B1B2
where
By = 0-3 (breakdowns and/or maintenance

considered or not)
By = 1-5 (resource types involved).

Maximum length of the overall coding scheme can
be e}sltimated although it will vary from one model to
another.

Stations : 18 digits (two secondary
Material handling H resources per
Jobs 9 station)
Queues 5
Equipment breakdowns
& scheduled maintenance : 2

38 digits



equipment breakdowns
and scheduled maintenance

/N

no breakd, b i botht own
or maintenance ol only and maintenance
Bi=0 B;=1 By=2 1=
Tesource types involved
2=15

primary resources only

primary and secondary resources

transportation only

Pprimary resources and transportation

primary and secondary resources,

and transportation

Figure 6
§. EVALUATION

The scheme has been developed based on expert
knowledge of discrete manufacturing models and review
of 40 simulation studies found in the literature. Those
studies have been carefully analyzed in terms of the
characteristics  of physical systems, modeling
assumptions, and objectives of simulation. The common
entities and their properties are identified and used in
deciding the digits of the scheme. Our goal is to develop
a scheme which can classify and code 85 to 90 percent
of all discrete manufacturing models. A sample size of
40 is not sufficient. Therefore, we plan to review 200 to
300 models, and try to code them for evaluating and
improving our scheme. We also want to use cluster
analysis techniques to identify families of models to
decide on what generic models and/or modules will be
needed in the model base to simulate a significant
portion of the systems. Our results through application
of this coding scheme will be reported in a later
publication.
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