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ABSTRACT

In this paper we compare two different methods of spectral
estimates for Frequency Domain Experiments and present some
performance data. for execution on a SUN 3/50 workstation. We also
suggest an alternative method for generating the output serics by
replication and demionstrate that at least for some cases this is more
efficient than using a single run of longer length.

1. INTRODUCTION

Frequency Domain Experiments (FDE) were recently introduced
by Schruben and Cogliano [1987] as a means of factor screcning,
Essentially the method involves sinusoidally oscillating the input factors
over their ranges of interest and then examining or testing the spectrum
of the output series gencrated by the simulation model for ‘peaks’.
Spectral peaks at indicator frequencies signify that the corresponding
input factor significantly affects the output of the simulation modcl.

Once the output series has been generated, the primary
computational effort involves estimating the spectrum. There are two
basically different approaches for estimating the spectrum and in this
Ppaper we compare these and suggest situations where one may be more
useful than the other. We also suggest an alternative method of
generating the output series which may be more efficient than using a
single long run. The remainder of this paper is organized as follows:

Scction 2: Alternative Methods of Estimating the Spectrum
Scction 3: An Alicrnative Approach for Generating the Output
Scries

Section 4: Summary and Conclusions

2. ALTERNATIVE METHODS OF ESTIMATING THE SPECTRUM

Methods of estimating the spectrum fall under two basic classes:
a) Transforming the truncated autocovariance function, and
b) Smoothing the periodogram.
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The methods falling under (a) basically involve taking a Fourier
Transform of the truncated sample autocovariance ‘function using a
weighting procedure. Two of the popular weighting procedures arc
Tukey and Parzen windows. For the discussions that follow, we shall
assume a Tukey window since both Tukey and Parzen windows give
similar estimated spectrum for a given series [Chatfield, pp. 141]. -
Also, we shall not consider the Hanning and the Hamming windows
separately since the former is equivalent to using the Tukey window and
the Iatter is only slightly different from the former [Chatfield, pp. 143].

Altemative methods falling under (b) are based on smoothing the
periodogram [Chatfield, p. 133] by simply grouping the periodogram
ordinates in groups (of size m) and finding their average value. It is
also possible to use nonuniform averaging procedures to smooth the
periodogram.  However, in this paper, we shall assume that the
smoothing is uniform. We shall also assume that periodogram
ordinates are estimated using a Fast Fourier Transform (FFT). Without
the use of FFT, estimating periodogram ordinates are computationally
very expensive and are impractical except for output series of very small
length. For the purpose of this paper, we have used a FFT algorithm
described in Oppenheim and Schafer (1975, pp. 331). This algorithm
requires the length of the time series to be equal to 21, where n is a
positive integer.

2.1. Desirable Propetties of Spectrum Estimators

When using FDE, spectrum estimates should have the desirable
propertics of high resolution and low variance, For a given output
series length, this combination makes it casicr (both visually and
statistically) to identify the spectral peaks at indicator frequencies.
There is however, a trade off, High resolution can be achicved by using
a high value of window size (M) for the Tukey window or a low value of
'm' used for smoothing the periodogram. In both cases, the variance
increases. Figures 1 and 2 show how the resolution increases with
Tukey window size. (Note numerical values of estimated spectrum in
addition to plots.) In many cascs, therefore, it is necessary to have a very
long run length (to keep the variance low) and to use a large Tukey
window "M’ or a small value of 'm' (to achieve a good resolution). For

example, the authors have found that to detect the quadratic cffect of
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Figure 2

Run Length = 5000
Tukey Window Size = 200
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service time on the mean waiting time for an M/M/1 queue, a run length
in the order of one million observations and a Tukey window size of one
thousand is necessary.

2.2. Computational Complexity

When transforming the truncated autocovariance function (using
the Tukey window), the computational complexity ~ run length x Tukey
window size (M). Therefore for a given run length the computation
time increases in direct proportion to the Tukey window size. Using
the smoothed periodogram (with the Fast Fourier Transform), the
computational complexity ~ run length x logy(run length). (We are
assuming that run length = 20, where n is an integer). Method (b)
therefore is more efficient than method (a) as long as run length < 2M,
where M is the Tukey window size. In many cases of practical interest,
driving frequencies must be very low (<0.001) to detect higher order
effects by FDE. In such situations, band width requirement (see
Schruben and Cogliano) dictates that M > 1000, It therefore follows
that method "b’ will be more efficient as long as run length < 21000 (¢,
almost always).

It is apparent in method (a) that the computational complexity is
determined by the required resolution since the Tukey window size is
In method (b), the
computational complexity can be considered as indcpendent of the
required resolution (since there appears no 'm' in the approximate
expression for complexity). We wish to point out that Fast Fouricr

- Transforms can be used for method (a) also. In that case, the
computational complexity is largely independent of the Tukey window
size, but one needs a transform of the original data and then a
retransformation [Chatfield, pp. 149], thus potentially requiring twice as
much computation as method (b).

primarily decided by the required resolution.

2.3. Sample Results

Table 1 shows the CPU time required for estimating the spectra on
a SUN 3/50 workstation using the alternative methods described above.

TABLE 1
Performance Data for Alternative Spectrum Estimation Methods
Case Method (a) Method (b)
Run length = 32,768

m = 874
CPU time = 5 minutes

Run length = 32,768
1  Tukey window size, M = 50
CPU time = 14 minutes

Run length = 65,536
2  Tukey window size, M = 100
CPU time = 40 minutes

Run length = 65,536
m = 8§74
CPU time = 11 minutes

Run length = 65,536
3  Tukey window size, M = 300
CPU time = 116 minutes

Run length = 65,536
m =291
CPU time = 10 minutes
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The output series for these estimations was gencrated from an M/M/1
queueing model with oscillating mean service time. Tukey window size
M and m were chosen so that both methods generate a spectral estimate
having approximately equal variance (see Chatfield pp. 154).

3. AN ALTERNATIVE APPROACH FOR GENERATING THE
OUTPUT SERIES

The basic aim of the spectrum estimates is to detect sinusoidal
patterns in an output series. In the presence of noise, the detection is
made easier if a longer series (i.e., longer run length) is available. That
is why spectral estimates improve as run length is increased. The other
alternative is to reduce the noise. This can be easily done by
replication. Preliminary investigation by the authors suggest that noise
reduction by replication may be more efficient than using a long run
length. Figures 3 and 4 show the estimated spectrum by using these
two methods. As before, we used an M/M/1 queue with oscillating
mean service time with an oscillation frequency = 0.1, Spectrum
shown in Figure 3 is based on an output series of length 45,000.
Spectrum shown in. Figure 4 is based on an output series.of length 5000.
Each observation in this latter series is the average of nine (9)
independently seeded replications each of length 5000. It can be easily
seen that spectral peak in Figure 4 is much sharper than the spectral

peak in Figure 3. (Note the numerical values as well as the plots.)

Two things can be noted from these figures. First, the difference
between the spectral peak at frequency 0.1 and the level of spectrum
immediately surrounding it is approximately the same (i-c., = 80) in both
cases. This implies that strength of the input signal is equally well
detected in both cases. Second, the noise (represented by the gencral
level of the spectrum) is an order of magnitude lower for Figure 4.
Since the statistical tests described in Schruben and Cogliano, and
Sanchez are based on the ratio of the detected signal strength and the
noise, it appears that the method of replication should give better
statistical results,

4. SUMMARY AND CONCLUSIONS

In this paper we compared two alternative methods of spectrum
estimation and showed that where high resolution is needed, it is
preferable to use a smoothed periodogram using Fast Fourier Transform.
We also suggested an alternative method of gencrating the output serics
by replication and showed that at least for some situations this is more
efficient than increasing Lhe run length,
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