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ABSTRACT

We present a real-world application of a

ranking and selection procedure for selecting the

best of a number of competing systems. Ye

concentrate on an indifference-zone normal means

procedure. Our example involves the selection of

an airspace configuration which minimizes airspace

route delays.

1. INTRODUCTION

This paper illustrates a real-world

application of a statistical procedure for

selecting the ©best of a number of competing

alternatives. The problem at hand concerns the

selection of an "optimal" airspace configuration

for a major European international and domestic

airport.

During the past five years, the Stockholm

airport experienced a significant increase in air

traffic; this increase is expected to continue at

the rate of 11% per year. The local Aviation

Authority in charge of air traffic control was

concerned that a third runway would be necessary

to handle the anticipated volume jump. To operate

the runway in the most efficient and safe manner,

the terminal airspace would have to Dbe

restructured, and new air traffic control

procedures would have to be developed.
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Our work involved simulating a number of
proposed alternative airspace configurations
(AAC's) for the airport. An airspace

configuration is characterized by a collection of
airspace routes for arrivals and departures which

traverse an airport's terminal airspace. The goal

was to select the best of the candidate AAC's on
the basis of various criteria of goodness. Ve
wished to determine the most "efficient” airspace
route structure. We hoped to differentiate among

the candidate AAC's by simulating each under
various levels and patterns of air traffic. Ve
also hoped to identify the limitations and points

of congestion for each of the AAC's.

We carried out the simulations using SIMMOD,

a fast, discrete-event airport/airspace simulation
model. Our SIMMOD simulation model directly
evaluates each AAC's capacity to handle the

anticipated future traffic increases. BEvent files
were generated for the current level of traffic,
and 100% increases in

as well as for 50%, 75%,

traffic.

The performance measures that were used to

differentiate among the AAC's are as follows:



« Qverall average route travel time

» Overall average route delay

» Individual average .route travel time
+ Individual average route delay

» Individual maximum route travel time

« Individual maximum route delay

Although the procedure presented herein can

be applied to any of the above measures, the

results in this article will focus on the

measurement and estimation of individual average

route delay. Airspace delays, and hence travel

times, are of a stochastic nature due to varying
route traffic levels and air traffic control
procedures (e.g., aircraft separation, airspegd

1
control); this stochastic nature is obviously what

makes the problem of finding the Dbest AAC
difficult.
The remainder of the paper concerns an

indifference-zone (IZ) procedure for selecting the
"best! among a number of competing alternatives.
discuss the normal means IZ

In Section 2, we

selection problem. A procedure for selecting the
best normal population is given in Section 3, and

an illustrative example is presented in Section 4.

2. THE NORMAL MEANS PROBLEM

In order to find the best AAC, and to more
clearly accentuate the differences among competing

AAC’s, it is desirable to rank the alternatives

based wupon their performances with respect to a

given quantitative measure of interest. Since the

446

goal is to find that AAC which has the smallest

average airspace route delay, it stands to reason

that the desired AAC is that which yields the
smallest simulated average route delay.
Unfortunately, since the simulated processes are

of a random nature, a ranking of sample means

alone is not sufficient for the purpose of finding

the best AAC. The variance of the associated

random variables from each system must be taken

into account when determining the sample size

required to adequately assess system performance.

¥e would like to he assured that the correct
selection (CS) of the best AAC from a group of k

competing systems will be made with at least a

certain high probability, say P*, where, to avoid

trivialities, 1/k < P* < 1. The higher we specify

the desired PJCS}, the greater the number of

sampling observations will be required.

Another consideration in selecting the best

system concerns the difference between the

performance measures from the best and second best

systems. Suppose we denote the individual

expected route delay arising from AAC i by By»

i=1,...,k, and the associated ordered ui's by

M43 < Mr2] € oo £ M) (The Hy'ss p[i]'s, and

their pairings are completely unknown.) Since we

prefer individual average route delays to be as

small as possible, the mean difference between the

two best systems in the ongoing example is

The smaller this quantity is, the

H[2] = PLa3-

greater the amount of sampling that will be

required to differentiate between the two

systems. Naturally, if p[z] - ”[1] is extremely

small, say 1less than &* > 0, then for all

practical purposes, it would not matter which of

the two corresponding systems we choose as best;



any loss incurred would be negligible, and we

would be "indifferent'" as to which of the two was

chosen.

Procedures which attempt to select the bhest

of k competing systems on the basis of a

quantitative performance measure subject to the

considerations described above are known as
indifference-zone (IZ) selection procedures, and
were first proposed by Bechhofer (1954). A

particularly useful procedure for finding that one

of k normal populations which has the smallest
mean is given by Dudewicz and Dalal (D-D) (1975).
We note that the D-D procedure requires that the

observations taken within a particular system be

independent and identically distributed (i.i.d.),

luxuries rarely present in the simulation

environment. It will be necessary to alter the
D-D procedure in certain obvious ways so that it
can be applied in our simulation setting. To this
end, Iglehart (1977), Law and Kelton (L-K) (1982),
Koenig and Law (1982), Sullivan and Wilson (1984),
and others present a number of variations on the

D-D theme.

We implemented the L-K procedure to select

the best of a group of AAC's. The quantitative
measure by which they were to be evaluated was the
average delay incurred by aircraft on a certain

critical airspace route. Specifically, we

implemented L~K's variation of the D-D two-stage
IZ procedure for selecting the system with the
smallest mean. The procedure asks the user to
specify the aforementioned constants P* and &*,

and guarantees the probability requirement

P§CS? > P* whenever u[z] - }1[1] > &*%. (1)
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We remark that the L~K procedure can be

generalized to select good subsets from among the

k alternative systems.

3. A NORMAL MEANS PROCEDURE

Let the random variable of interest be
denoted as
nij
Dyj =L~ P/ ¢

where Dijm is the airspace delay incurred on the
critical route by the mth aircraft in the jth
iteration (i.e., "day") of the simulation for the

ith AAC, and nij is the number of aircraft

observed to have flown the critical route during

that iteration, i = 1,...,k, j = 1,2,... (n,, is

1]
the sample

a random variable.) Thus, D,. is

1)

average airspace delay incurred by flights
travelling the critical route in iteration j of
AAC i. We also let

Mg = E[Dij]'

The L~K procedure requires that for fixed i,

D D are i.i.d. normal random variables.

i1’
The

ig*="

system being modelled, i.e., the airspace

configuration and its activities, is assumed to
have the properties of a terminating simulation.
That is,

the system 'reboots' itself at midnight

each day, and there are no carryover effects from

one day to the next. This assumption is valid
since the airport in question operated from about

6:00 a.m. to 10:00 p.m. and experienced negligible

traffic between 10:00 p.m. and 6:00 a.m. At the
start of each "day,"” we independently re-seed the
active random number generators, and we initialize
the independent runs of a particular AAC under
conditions

sampled from a given distribution.



Thus, Dil’ Diz"" are i.i.d. with mean pi = pij
and variance o?, say. Of course, the o?'s are not
necessarily all equal; this is what makes the
problem difficult. The normality assumption is
reasonable for a number of reasons. Since the
Dij's are sample means of supposedly identically
distributed (but not necessarily independent)
Dijm's’ a central limit theorem allows us to
assume normality of the Dij's for sufficientlﬁy
large corresponding nij's. In our application,
the nij's were typically > 90. 4 fortiori, the D-D
procedure’s performance is claimed to be somewhat
robust against departures from the normality

assumption.

Our problem is to find the AAC corresponding
to the smallest expected airspace route dela},‘j,
“[1]’ subject to the constraints given in (1).
The procedure consists of two stages of sampling.
The first stage takes an initial sample of nfo
independent days of each AAC's daily average

critical route delays. The purpose of the first

stage is to estimate the c?'s so that efficient
sampling can be carried out in the second stagé.
The choice of the first stage sample size is up to
the user. We note that a very small ng might
result in poor estimates of the 0?’3, and the
subsequent second stage of sampling might then
require a larger than necessary sample size. On
the other hand, if nO is "too large,'" then waste

occurs in the first stage.

We define the first stage sample means and

variances as follows:

0’ i=1,...,k

g _yvo0
D=} Dij/n
and

_ 542
oy Py 0T
;=L T ,» 1=1,...k

=1 0

Ye wuse S? as an estimator for 0?. The total
sample size required from system i (first stage

plus second stage) is

2
Ny = max S, [ns¥/(smP8

where [z|| is the smallest integer that is greater
than or equal to z. The constant h depends on k,

P*, and g3 it is the unique solution to

J'fm [Feem) ¥ Yar(x) = p= ,

where F(-) is the cumulative distribution function
of the t-distribution with ng = 1 degrees of
freedom. Tables of h-values can be found in L-X

or D-D.

The second stage of the procedure consists of
taking Ni - Ry additonal replications (days) from
system i, 1 = 1,...,k, and obtaining the second

stage sample means

=(2) _ i )
52 = zj=n0+1 D, /(Ny-ng) -

We then define weights

n, N, 1~ N0 )% o %
= 1 i'0
wew [ [—E—]T1]
i 0 hSi
and
'ia= 1 —'ii’ i=1,...,k.

The formidable form of the ¥'s is necessary to
guarantee the probability requirement (1).

Finally, we define the weighted sample means

3 =w. 5D 5(2)
b, = v, Do 4w D

448



The system with the smallest weighted sample mean
is the one selected as the best of the AAC's with

respect to average daily critical route delays.

4. AN EXAMPLE

We illustrate the use of the procedure with a
simple example.

AAC's which minimizes certain expected delays.

Management had narrowed down the problem to that

of selecting the best of k =3 AAC's. Choice 1

had traffic fly over the top of the airport, while
the other two choices required more direct routes

to the airport. The parameters for the example

were as follows: P* = 0.90, &* = 0.365 minutes

(after some initial empirical investigation), and

= 20 days. Computer time for running the

Mo

necessary simulations was regarded as expensive;

so it was desirable to be parsimonious with
observations. From the tables in I-K, we have
h = 2.342. After the first stage of sampling, we
calculated

=(1)_ R _ _

D1 = 4,35, 31 = 1.39, N1 = 58

5D- 215, s2=o0.79, N, =33

ﬁ§1)= 1.78, s°=0.64, N, =27

3

Thus, in the second stage of sampling, we had to

run 38, 13, and 7 additional days worth of

simulations for AAC’'s 1, 2, and 3, respectively.

After the second stage of sampling concluded, we
had the following weighted averages.

~

B, = 475, P, =2.12, D, =1.81.

R 3

Since AAC 3 corresponded to the smallest sample

mean, we selected that as best. Note, however,

¥We wanted to select that one of k
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that AAC 2 came in a "close second" (i.e., within

5* of AAC 3).

We conducted analogous simulation runs for

other values of P*, &*, and LAY and found that

AAC 3 was almost always the winner.

§. CONCLUSIONS

¥Ye have seen that the IZ normal means

procedure due to D-D and modified by I~K is a
viable and applicable procedure for the evaluation
of alternative or competing simulated and real-
world systems.

The procedure considered here is

useful in situations where estimation of the

measure of interest is made difficult by the

highly variable stochastic nature of the systems
under study; in such cases, it is not feasible to
select the best system solely on the basis of
point estimates for the mean. The procedure
discussed in this paper is easy to understand and
simple to use. Generalizations of this procedure

(e.g., select the m best of k competing systems)

are also readily available.
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