Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Automatic development of parallel simulation models in ADA

Carolyn K. Davis
Data Systems Division
General Dynamics
Fort Worth, TX

ABSTRACT

This paper introduces MultiSim, a prototype, user-
oriented tool specifically designed to automate the model
development process for parallel simulation models.
Targeted toward the simulationist and written in Ada for high
transportability among different numbers of processors,
MultiSim combines discrete-event simulation knowledge,
parallel programming knowledge, and target language
knowledge and represents this knowledge in frame-like
constructs. Through user interaction, knowledge of the
system to be modeled is abstracted and a parallel Ada
simulation model is automatically generated based on the
knowledge resident within MultiSim.

1. INTRODUCTION

To take advantage of parallel processing in simulation
applications, the simulationist must have parallel
programming knowledge in order to decompose a model into
a collection of separate modules that can execute
concurrently on multiple processors. The problems inherent
in parallel processing can make this decomposition process
quite complex. A tool called MultiSim has been developed
which seeks to overcome this complexity by incorporating
parallel programming knowledge into the development
software support system. It allows faster model development
because it reduces the simulation knowledge required of the
user and hides system details. MultiSim enhances the
simulationist’s ability to generate models without requiring
extensive understanding of parallel programming concepts.
The following sections discuss the knowledge needed in such
a tool and briefly describe how this knowledge is maintained
within MultiSim. A complete description of MultiSim,
including a discussion of implementation issues and
?{glsig)linary experiences in using the system, is given in Davis

2. REQUIRED KNOWLEDGE FOR PARALLEL
PROGRAMMING

To support parallel model development without
requiring extensive parallel programming knowledge on the
part of the simulationist, MultiSim follows an approach
developed by Murray and Sheppard (1988). Four types of
knowledge needed to construct parallel models are included
in MultiSim: domain, simulation, parallel programming, and
target language.

2.1 Domain Knowledge

Domain knowledge encompasses a particular
application area. A queueing network system [Banks and
Carson, 1984}] was selected as the domain for MultiSim.
Knowledge of these systems can be described by their arrival
population, arrival processes, the discipline and configuration
of their queues, and their service mechanisms. There may be
multiple customer types, multiple servers and multiple types
of service arranged in series or in parallel. Branching

Sallie V. Sheppard
Associate Provost
Texas A&M University
College Station, TX

339

William M. Lively, Director
Laboratory for Software Research
Texas A&M University
College Station, TX

customer paths and internal feed-back loops are common in
the system. Thus, queueing systems provide a realistic and
useful domain for inclusion in MultiSim.

2.2 Modeling Knowledge

Modeling knowledge must be included in MultiSim to
allow description of the general requirements of a model.
This tydpe of knowledge includes incorporating a modeling
methodology (i.e. world view) into the simulation model.
Three different world views can be modeled: activity-
oriented, event-oriented, and process-oriented [Banks and
Carson, 1984). Since parallelization of a model is very often
achieved by decomposing the model into processes sharing
entities, the process-oriented modeling approach best
matches this decomposition scheme. The process view is a
simple and natural way to define discrete-event simulation
models and was, therefore, selected for MultiSim.

General requirements necessary for implementing the
process-oriented view include characterization of entities and
their flow through the system. Two types of entities are
present in a simulation model: temporary entities and
permanent entities. Temporary entities are objects which are
created for a certain span of time and are then destroyed.
These entities flow through the system and have actions
performed on them. Permanent entities are objects which
once created remain for the duration of the simulation.
More commonly known as resources, these objects often
service the temporary entities.

Temporary entity flow information must be provided
to show the steps a temporary entity will take through the
system. It is the description and utilization of this entity flow
information which is at the heart of simulation model
development.

2.3 Target Language Knowledge

Target language knowledge includes an understanding
of the semantics of the target language to allow the proper
selection of constructs for model implementation.
Knowledge of the language syntax is also necessary to
produce an executable model.

Since one of the goals of MultiSim was portability of
arallel models, Ada was chosen as the target language.
%nlike other languages, Ada is designed to allow true
portability among architectures with differing numbers of
processors. Ada also offers concurrency at the source level
with the tasking construct and supports process-to-process
communication with the rendezvous mechanism. The use of
Ada precludes the need for load-balancing capabilities and
sched%ling strategies within the simulation support
environment as these are included in the Ada parallel
runtime system.

2.4 Parallel Programming Knowledge

Knowledge of parallel programming must also be
present to support parallel model development. This
knowledge involves two categories: model partitioning into
processes and communication among these processes [Babb,
1988]. Partitioning involves dividing the model into modules
that can execute in parallel. Communication among these
modules may be necessary to continue progress in the
simulation. A goal in partitioning is to divide the model so as
to reduce communication between processes by pinpointing
related sections of code which can.reside in ‘one module.
Because delineations might not be clear cut, a flow graph
representing data dependencies in the model can be
constructed and rearranged to form a newer, possibly less
complicated version with fewer dependencies. Once these
dependencies are understood the inodel can be partitioned to
reduce communication among modules.

Communication flow is not the only criterion on which
partitioning can be based. Granularity of the module can also
be considered. Granularity is the level of parallelism within a
module [Babb, 1988]. Coarse granularity allows more
computation to be performed in a single module thus
requiring less frequent interaction between the modules.
This is manifested in less communication. Unfortunately,
coarse granularity may not exploit all the parallelism in a
model since the activities within a single module will be
executed sequentially. Fine granularity, in contrast, reduces
the computation performed within each module, thereby
enhancing potential parallel execution of the modules.
However, less processing in a module may necessitate more
frequent communication with other modules. Thus, the cost
of communication is a significant factor when partitioning the
models. MultiSim utilizes fine granularity since this level of
granularity provides flexibility by allowing MultiSim to
eventually apply any level of granufarity when configuring the
model for parallel execution.

Once partitioning is complete a communication
mechanism must be selected whereby modules will interact.
The target architecture is usually the main consideration for

this decision and can be distributed (loosly coupled) or
concurrent (tightly coupled). A distribufed simulation
scheme has been incorporated into MultiSim. This scheme
contributes to MultiSim’s portability since distributed
simulation will execute on both loosely-coupled and tightly-
coupled architectures.

USER ~——

These four types of knowledge -- domain, modeling,
target language and parallel programming -- play an integral
role in the development of parallel simulation models.
Figure 1 illustrates the use of these knowledge bases in the
development process. Domain and modeling knowledge
enable the user to desctibe the model specification. The
specification is transformed into a parallel simulation model
by utilizing modeling, parallel programming and target
language knowledge.

The processing performed by MultiSim consists of
three stages as illustrated in Figure 2. In the first stage the
model specification is extracted from the user’s descrigtion of
the attributes of the model. This specification forms the basis
for the other two stages. During the second stage the model
specification is analyzed to identify and represent the entity
flow patterns within the modeled system. A representation
scheme is needed to assure easy and quick storage and
retrieval. In the final stage the parallel simulation model is
generated utilizing the knowledge obtained in stages one and
two. This knowledge is transformed into executable Ada
code.

The key to successful translation of a specification to
an executable parallel model is representation of the flow
pattern within the modeled system. A representation scheme
which allows easy storage of knowledge and which can still
represent the flow of the ‘entities through the system is
needed. The frame-based approach in artificial intelligence
offers this advantage. Originally proposed by Minsky [Barr
and Feigenbaum, 1982], frames are a method of organizing
knowledge in a way that directs attention and facilitates recall
and inference. Accompanying this methodology is the idea of
scripts. Developed by Schank and Abelson [Barr and

Feigenbaum, 1982] scripts are frame-like structures
specifically designed for representing sequences of events.

Frames provide a structure within which new data are
interpreted in terms of concepts acquired through previous
experience. Furthermore, the organization of this knowledge
facilitates éxpectation-driven processing, looking for things
that are expected based on the context one thinks he is in.
The representation mechanism that makes possible this kind
of reasoning is the slot, the place where knowledge fits within
the large context created by the frame.

SPECIFICATION~————§ PARALLEL MODEL

NN S

MODELING KNOWLEDGE
PARALLEL PROGRAMMING KNOWLEDGE
TARGET LANGUAGE KNOWLEDGE

MODELING KNOWLEDGE
DOMAIN KNCWLEDGE

Figure 1: Use of Knowledge Bases Structures for Knowledge
Representation

EXTRACTION ANALYSIS TRANSEFORM

Figure 2: Stages in MultiSim

340

After a particular frame or script has been selected to
represent the current context or situation, the primary
rocess in a frame-based reasoning system is often just filling
1n the details called for by its slots. These slots can be filled
in three ways: default, inheritance, and procedural attachment.
To fill a slot by default requires that a default value be
provided if no other indications of a value exist. Inheritance
allows a slot to be filled by another slot to which it is related.
Procedural attachment attaches procedures to slots to drive
the problem-solving behavior of the system. If a value does
not exist for a slot, the procedure is activated to obtain the
information.

These frame and script concepts suggested the
representation structures which were implemented in
MultiSim. Ada supports frame-based representation by
employing the record data structure. Each record contains
slots to be filled by the user. Procedural attachment was
achieved by encapsulating the procedures for the frame in a
package.

3. CLASSES OF FRAMES

Based upon the type of objects identified in simulation
models, three classes of frames were implemented in
MultiSim: entity-class, action-class, and simulation-class. The
entity-class characterizes temporary and permanent objects.
The action-class describes actions performed in the model.
This class is used to develop entity scripts. The simulation-
class encompasses experimental characteristics such as name
of the modeled system, length of simulated time, a list of
resources in the system, and a list of entities in the system.
This frame allows separation of experimental data” from
model data. A change in only this frame can affect a change
in the entire simulation. For example, assigning a new value
to the slot run-time affects a new run without modifying other
frames. ~While there can be several permanent and
t?lmpo?ry frames, only one simulation-class per model is
allowed.

3.1 Frames in Ada

. The frame concept has been implemented in MultiSim
using the record comstruct of Ada. As depicted in Figure 3,
each object is represented by a record with slots for
characteristics such as distribution, type of resourcé, name,
etc.

TYPE entity class (distribution: dist:=unknown)

IS RECORD

name : vstring;

kind : entity-type := unknown;

time-units : units;

stream : integer;

next-entity : entity-class-ptr;

CASE distribution IS
WHEN random => null;
WHEN uniform => min,max : float;
WHEN normal => nmean,stan : float;
WHEN exponential = > emean : float;
WHEN poisson => pmean : float;

END CASE;

END RECORD;

Figure 3. Frame in Ada

Figure 3 represents the entify-class frame. An entity-,
type and a distribution are associated with each instance of
entity-class. An entity can be of kind temporary or permanent
and can have a distribution of poisson, random, normal,
exponential or uniform. Entity-type, dist, vstring, and unils are
programmer defined types. The values of unknown indicate
this s a generic frame which can be instantiated for a specific
object.

341

Procedural attachment is established by encapsulating
the frame description and the procedures for acquiring slot
values into Ada packages.

3.2 Scripts in Ada

Crucial to the design of a parallel simulation model is
the analysis of data dependencies between the various
processes. It is necessary to understand these interactions
between the processes in order to properly establish
communication links. Stage two of MultiSim performs this
analysis on the model specification extracted from the user.

Upon acquiring the flow information MultiSim must
store this information in a structure which can be easily
manipulated. While frames were directly utilized to store
knowledge in the knowledge bases, the frame and script
concepts were merged in MultiSim to form the entity flow
graph (efg) structure. Similar to frames and scripts and
incorporating flowchart techniques, the efg combines the
advantages of all three by actually flowcharting or graphing
the script for each entity.

An efg is associated with each temporary entity type.
The nodes of the graph represent actions performed on the
entity. The edges represent direction of flow through the
system. This diagram is the script the entity will use when
traversing the system. Each node is a frame or event in the
script. By analyzing the entity flow graph’s nodes and edges it
is possible to "know" where the entity is going and where it
came from, and therefore, establish the correct

communication paths between the "sender" and "receiver”
?rocesses. Figure 4 illustrates an extended entity flow graph
or a TV Inspection Station scenario. Its components and
organization are described below.

action-class
name : inspection
percentage : 100.0
resource : gen-television
depart : false
next-action :

end action-class

action-class
name : adjustment
percentage : 0.25
resource : adjustor
depart : false
next-action :

end action-class

action-class
name : packing
percentage : 0.75
resource : packer
depart : true
next-action : null
end action-class

Figure 4. Entity Flow Graph for TV Inspection Station

Since scripts are basically a list of actions, an action-
class frame was defined in Ada using. the record data
structure. Each instance of an action is a node of the efg
structure. The edges of the efg are represented by previous-
action and next-action pointers. Many instances of action-
class are eventually linked to form the entity script.

The user describes the appropriate linking by listing in
chronological order the steps an entity will follow. For
example, assume three resources in a TV Inspection Station
have been described as 1) inspection, 2) adjustment, and 3)
packing.

These possible actions are displayed on the screen
with the question, "What js the next action?" The user
selects action 1, 2 or 3. This process continues until the
entities depart the system. In this manner the user builds an
efg structure for each type of entity in the system.

If the flow involves probabilistic branching the user
specifies the number of branches to be taken and names of
the branches and what percentage of entities travel that
branch., Total percentage must add to 100.0. Based on this
branching knowledge MultiSim elaborates each branch by
utilizing a recursive depth first traversal guiding the user’s
input with questions specifically designed to assist the user in
spegifying one complete path before elaborating another
path.

Once all entities have been diagnosed for entity flow,
MultiSim recursively traverses the entity flow graph setting in
motion the pointers, frames, and scripts necessary as input to
the translator which will insert appropriate mechanisms for
proper tasking.

4. TRANSLATION OF EFG TO ADA

The construction method needs to allow the
transformation of the frames and entity flow graphs into
target language structures. The efg is used to outline the
basic structure of a model. Non-valued slots in the outline
are then assigned values as available from other frames to
build structures for a complete executable model. These
structures declare and define permanent entities, instantiate
statistics collection facilities, etc.

The frames and scripts as represented in MultiSim are
easy to transform into executable Ada. The construction
rules which govern this transformation are:

1 Each permanent frame is a resource.

Each temporary frame is an entity to be
declared and created.

Each simulation-class frame give overall model
specifications.

Each temporary frame and permanent frame is
equivalent to a process.

L
3.
4

To describe a process in Ada requires two parts: a
receive-entily section and a service-entity section. The receive
part specifies what entity is to be received and from where.
‘The service part describes the service performed on the entity
and states where the entity will go next. Once the
construction stage is complete, ie. all components of the
basic model have been transformed into target language
structures, these structures can be formatted and written as
statements in files with the appropriate syntax and proper
punctuation of the target architecture.

5. CONCLUSION

Parallel simulation requires a different approach to
programming. Instead of requiring the user to learn this
approach it is more practical to incorporate parallel

rogramming techniques into the development process.
ultiSim does this. by incorporating four types of knowledge
into the support software. Through interactive dialog,
knowledge of the system is specified and stored in structures
similar to frames and scripts. The vital flow information is
stored in an entity flow graph. The efg is then translated into
executable Ada code. ~ MultiSim, therefore, automatically
generates parallel simulation models yet requires no parallel
programming knowledge on the part of the user.

MultiSim has been implemented in Ada and is
executable on a Sequent Balance 8000. A prototype
environment, ParSim, has also been implemented which
allows the user to interface the models developed in
MultiSim to a parallel execution environment. This
environment integrates a time synchronization algorithm,
simulation support routines and MultiSim via the ParSim
command language.

342

A comparison of results using the sequential and
parallel run time environments on the Sequent Balance 8000
were given in Sheppard, Davis and Chandra (1987). A
complete scenario of parallel model development and
?ngggion using MultiSim and ParSim is given in Davis
1988).

6. REFERENCES

Babb II, R.G., Editor (1988). Programming Parallel
Processors, Addision-Wesley Publishing Company,
Inc., Reading, Massachusetts.

Banks, J., and Carson II, J.S. (1984). Discrete-Event System
Simulation, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey.

Barr, A, and Feigenbaum, E.A., Editors (1982). Knowledge

representation. In The Handbook™ of Artifical
Intelligence Vol. 1. William Kaufmann, Inc., Los Altos,
California.

Davis (Hughes), C. X., Chandra, U., and Sheppard, S. V.
1987). © Two Implementations of a Concurrent
imulation Environment. In Proceedings of the 1987

Winter Simulation Conference (A. Thesen, H. Grant,
W. D. Kelton), 618-623.

Davis, C. K. (1988). A Generator for Parallel Simulation
Models in Ada. Unpublished Ph.D. Dissertation,
Computer Science Department, Texas A&M
University.

Murray, K. J. and Sheppard, S. V. (1988). Knowledge-based
?imulation Model Specification, Simulation, 50, 3, 101-
11,

AUTHORS’ BIOGRAPHIES

CAROLYN DAVIS received her Ph.D. in Computer
Science from Texas A&M University in August 1988. She is
currently employed by General Dynamics in the Data
Systems Division where she is involved in research to apply
the Ada programming language to real-time simulation using
multiple processors. She is a member of IEEE Computer
Society, ACM, and SCS.

Dr. Carolyn K. Davis
Data Systems Division
General Dynamics
Fort Worth, TX 76112
(817) 777-8483

SALLIE V. SHEPPARD is Associate Provost for
Honors Programs and Undergraduate Studies and is a
Professor in the Department of Computer Science at Texas
A&M University. Her research interests include simulation
and artificial intelligence for software engineering. She
received her Ph.D. in Computer Science in 1977. Dr.
Sheppard is a member of JEEE Computer, ACM, and SCS.
She is on the Board of Governors for the IEEE Computer
Society and is their representative to the Winter Simulation
Conference Board.

Dr. Sallie V. Sheppard, Associate Provost
Honors Programs and Undergraduate Studies
103 Academic Building

Texas A&M University

College Station, TX 77843-4233

(409) 845-3210

WILLIAM M. LIVELY is Director of the Laboratory
for Software Research and Associate Professor in the
Department of Computer Science at Texas A&M University.
He received his Ph.D. in Electrical Engineering and
Computer Science from Southern Methodist University in
1972. His research interests relate to applying knowledge
base techniques and software development environments to
automate the software development process. Dr. Lively is an
active member of the IEEE Computer Society and is
currently a member of a SIGADA working group developing
and refining the METHODMAN document.

Dr. William M. Lively

Laboratory for Software Research
Department of Computer Science
Texas A&M University

College Station, TX 77843-3112
(409) 845-5480

343

