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ABSTRACT

Emerging multicomputer architectures provide a
platform upon which to realize substantial performance
improvements in simulation. Parallel execution is the
means to these improvements, yet hurdles remain: the
synchronization of simulation time across
multicomputer nodes and whether sufficient model
parallelism can be identified to enable substantial
speedup. Overcoming these obstacles will make
speeding up the execution of simulations by several
orders of magnitude practical.

Simulation environments of the future must build on
traditional object-oriented methods and the new logic
program paradigms in a way which does not hide the
parallelism inherent in models. Distributed operating
system kernals and language run-time systems must
then be able to exploit this parallelism to support
concurrent execution of simulations on multicomputers.
Finally, these simulation kernels must support this
parallelism transparently, that is, without modification
at the model source code levels. Without this
transparency, models will have to be continually re-
written when moving from model develpment, testing,
and validation on sequential hardware to parallel
hardware for simulation experiments.

INTRODUCTION

Parallelism in the execution of simulations may make
substantial performance improvement possible. The
emerging multicomputer architectures that consist of
hundreds to thousands of powerful node computers
have tremendous potential for speeding up simulations.
Faster simulations will expand the kinds of problems to
which simulation can be applied. The ability to speed up
execution by several orders of magnitude would make
interactive, faster than real time, simulation possible
for problems in urban and transportation planning, for
example, which have not previously been feasible.

However, three issues must be resolved before
substantial speedup via parallelism can be achieved with
real simulation problems. The first involves the
synchronisation of simulation time in the concurrent,
distributed execution of system model components. The
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second involves the development of models in a way
which identifies potential parallism. The third issue is
whether sufficient inherent parallelism exists within
system models to make distributed, concurrent
execution practical.

In a multicomputer that consists of large numbers of
computing nodes, it is difficult to provide a globally
available clock. This implies agynchronous execution on
different nodes and thus a requirement to coordinate
the advance of simulation time across nodes. Recently, a
new "optimistic" synchronisation approach called
"Virtual Time" has been described by Jefferson that
may make greater parallelism possible for models of
arbitrary structure [Jefferson 85]. Past approaches have
been based on "conservative" mechanisms which are
easier to implement but which either restrict model
structure or the extent of parallelism achievable.

The second model development issue requires
modelling techniques and programming language
facilities that do not unnecessarily constrain parallelism.
For example, customers arriving at a service facility
may be served in order of time of arrival, i.e., first
arrived, first served. However, customers need not
arrive in this order in real time during a simulation,
e.g., C1 and C2 may arrive at respective simulation
times t1<t2 thus requiring that C1 be served before C2
but that they may actually arrive at the service facility
in either order.

The third issue, whether their exists sufficient inherent
parallelism within simulation models to enable
substantial speedup, cannot be resolved without further
experimental research. Even when there is substantial
parallelism in the system being modelled, it is not clear
that speedup via parallelism is possible during model
execution. A key unknown is the ratio of computation
overhead required for the synchronisation of simulation
time to the computation required to mimic model
behavior.

This paper outlines a process view of simulation built
on a message passing model. A simple example is
presented to illustrate how a model can be specified
using this view without regard for whether the
simulation will be executed as a sequential program or
as distributed parallel, program. This enables



simulations to be written in a away which is
independant of the underlying physical computing
architecture. It is also anticipated that greater speedup
will be possible than for alternative methods.

A COMMUNICATING PROCESS VIEW OF
SIMULATION

Modelling involves decomposing the system under
investigation into a set of interacting components. Then
each of these components can be considered a system
and thus further decomposed into interacting
components. Ultimately, the components at the lowest
level are represented as modules in a simulation
program. One widely used approach involves
representing operating component models by
"processes”.

The Process View

The process view of modelling and simulation
originated with the GPSS [Gordon 75] and Simula [Dahl
&Nygaard 66] languages. This "object-oriented"
approach was further elaborated in Demos [Birtwistle
85] and in [Franta 77]. Currently the process view, or
equivalently the object-oriented approach, has been
incorporated in some form in most widely used
simulation languages,e.g., Simscript (see [Kruetzer 86]
for a good discussion of this approach to modelling and
related language issues).

The basic idea is to decompose the system being
modelled into a set of components while identifying
subsets of similar components that have common
characteristics and operations. Similar components
form the basis for defining different component
“types". Here, instances of component types will be
called "objects" and the component types will be
referred to as "object types”, or just types. The
operation, or execution, of an object will be defined as
a "process”.

Objects & Processes

An object type is nicely represented as an "abstract
type" within a programming language which supports
this concept. Part of the implementation of a type is a
set of attributes which all objects of that type have in
common, i.e., variables whose values define
characteristics of specific instances of that type and
procedures which define common operations. For
example, a type "car" may have an attribute "color”,
and a specific instance of car might have blue as the
value of color; a car may also have a procedure
fill_with_gas which when invoked on behalf of a
specific car would increase the value of a variable
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called fuel_available.

DEFINITION - attributes (tp)- the attributes of
type tp are a set of variables and
procedures that all type tp objects have in
common.

The progressive decomposition of components and the
definition of types leads naturally to hierarchies of
types and objects if each new type can be defined as an
extension of at most one previously defined type. Then
the new type can be said to inherit some or all of the
parent type's attributes. Other inheritance rules are also
possible, as when a new type is defined as a refinement
of two or more previously defined types, e.g., as in
Lisp Flavors [Kreutzer 86, pg 103]. The hierarchical
approach to software design originated with Simula 67
and has since blossomed into the object-oriented
programming and language methodologies of Smalltalk,
C++ and Ada [Kreutzer 86].

A crucial element of the definition of an object type is a
sequence of instructions that defines the behavior of all
objects of that type. This sequence of instructions is
essentially a main program, possibly including local
procedure calls, which read and write attribute
variables and possibly invoke operations associated with
the corresponding type.

DEFINITION - program(ip) - a sequence of
instructions: {Ij, i = 1, ..., n} performed
by all instances of object type tp where
each instruction Ij may involve reading and
possibly changing the values of variables in
attributes(tp).

A program instruction may involve interactions with
the object's external world. This can be accomplished
by reading and writing the attribute variables, or
invoking local procedure attributes, of different
objects. It could also be accomplished via message
passing,

An object type tp is defined by the sets attributes(tp)
and by the program(tp). A number of specific instances
of this type can be created, e.g., object](tp),
object2(tp), ..., objectm(tp). The operation of a specific
object is represented by the execution of its program
which gives rise to a sequential "process”.

DEFINITION - process (tp)- a process p of type
tp is a sequence of tuples: <statej(p), Ii>, i
= 0,1,...,n where statei(p) is a set that
contains a value for each of the variables in
attributes(tp). Each statei(p) is generated
by the execution of the ith instruction, Ij,
defined in program(tp) as follows. The
initial state, stateQ(p), is the set of initial
values of variables in attributes(tp),
statej(p) is the set of values for variables in



attributes(tp) that result from performing
Ij on statej-1(p).

Saving the state of a process enables its execution to be
suspended and later continued. For example, the first k
instructions for process p could be executed producing
statek(p). Then this state could be saved along with the
value of k, another process executed, and at some later
time statek(p) and the value of k'could be restored and
the k+1st through nth instruction of p's main program
executed. Notice that k must be saved so that the next
instruction to be executed, i.e., k+1, is remembered.
This is exactly what happens in a multi-tasking
operating system, such as Unix, when the execution of
different user processes are interleaved in time.

The fact that process execution may have been
temporarily suspended by saving its state, then
executing some other process, and later restoring the
saved state and continuing execution, is completely
"transparent” to that process. That is, the successive
process states and results of any computation are
identical to what they would have been without
suspension and subsequent continuation.

Simulation Time

A simulation always involves associating a time with the
occurrance of object operations. Here this means that
each process instruction is executed at some simulation
time.

DEFINITION - simulation_time - a unique non-
negative real variable whose value
increases monotonically during a
simulation. Two atomic operations, called
time and hold, are defined on
simulation_time which can be performed
by any process in a simulation. A time call
returns the current value * of
simulation_time to the calling process and
hold(t) suspends the execution of the
calling process until the value of
simulation_time increases by t.

The time operation can be implemented as a simple
read of the value of a globally available
simulation_time variable. The hold operation is more
complex. A call to hold(t) by process p at
simulation_time s could be implemented by first saving
the current state(p), determining which process to
execute next, and insuring that the execution of p will
be resumed when simulation_time becomes s-+t. Later
we will discribe an alternative implementation of hold.

Notice that a simulation_time can be associated with the
execution of every object instruction. The
simulation_time at which any given operation Ij is
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performed is defined by the value that would be
returned by time if it were called just before execution
of Ij. We can now define the concept of an event.

DEFINITION - event(p,t) - an event occurs at
simulation_time t and at process p:
{stateQ(p),..., statek-1(p), statek(p), ...,
staten(p)} with program(tp): {Ij, j=1,...n}
if simulation_time<t when Ik-1 is executed
and simulation_time=t when instruction Ik
is executed,

This definition implies that simulation_time remains
constant between successive events, 1i.e.,
simulation_time can only advance upon the occurrance
of an event. In general, there will be a sequence of state
changes, {statej(p), ..., statek(p)}, associated with each
event(p,t) where simulation_time =t when Ik is
executed, and simulation_time is some constant value <t
when Ij, ..., Ik-1 are executed.

A Process View based on Message Passing

Interactions among system components must also be
represented within objects and processes. This can be
accomplished in several ways. Past approaches realize
the exchange of information among processes by
enabling program instructions to read and write global
variables and to directly access the attributes of another
object, e.g., as in Simula. Another possiblity is to
implement all process interactions as the exchange of
messages, i.e., object operations could also invoke
message send and receive primitives. The latter
approach is taken here. ‘

Here we restrict all process interactions to calls to two
message passing primities named "send" and "receive”:

DEFINITION - send(p,t,m) - a send is an atomic
operation that initiates the transfer of
message m to process p at receive time t. If
t' is the value of simulation_time when
send is called and t" is the simulation_time
when this call returns then t"=t'. Further, t
must be >=t'. The value of t specifies the
simulation_time at which process p must
receive m.

Notice that send can be implemented as a synchronous,
non-blocking procedure which is invoked with values
specified for all three of its parameters. The value of p
identifies a specific destination process, t defines the
earliest simulation time that m can be acquired by p and
the message m can be an arbitrary sequence of data
values.



DEFINITION - receive(p,m) - a receive is an
atomic operation which, when called by
process q at simulation_time t', returns at
simulation_time t" with values for p and m
such that process p called send(q,t,m) with
t'<=t"=t, where t is also less than or equal
to the receive times of all other messages
sent to q but not yet received by q.

This receive primitive is a synchronous, blocking
procedure which is invoked without values for either of
its two parameters. The procedure returns to its caller
with message m which has been sent by some process p.

It can be shown that all process interactions can be
accomplished via these two primitives. For example,
one way to implement hold(t) is as a "send(self, time+t,
nul)" followed by "repeat receive(src, msg) until
src=self". This implementation unfortunately throws
away any messages that arrive during the hold time t.
However, hold can also be implemented in a way which
retains messages which arrive for the process during
the hold. This latter implementation is assumed here
which corresponds to the familiar meaning of the hold
operation.

Discrete Event Simulation

A discrete event simulation can be defined as:

DEFINITION - simulation - a simulation on
[0,T] is a set of processes p1, ..., p2 that
are executed from simulation_time O up to
simulation_time T which produces result
R. Let the processes pl, ..., p2 be
represented by:
pl: {stateg(p1),I11,t10>, ..., <staten1(p1),
Ilnl,t1n1>}

p'n“: {<state0(pn).In1,mo>,
I < Statenn(pn) JInnn,tnpn>}
where tji-1<T<=tjj for j=1, ..n and i=nl,

ey I
Then R= {statent(p1), ..., statenn(pn)}.

Thus a simulation is defined by the set of final states of
its constituent processes after their execution from
simulation_time 0 up to T. Intermediate states may be
different between two simulations but if their final
states are equivalent, then the two simulations are
equivalent. Cases where intermediate results are
important can be represented by including these
intermediate results within process attributes in a way
that carries such results to the final state.

It is important to realize that the process view of
simulation arose primarily because it is a natural way to
develop models, not because of any underlying machine
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structure on which these models were to be executed.
The communicating process view defined above is
essentially equivalent to the original process view of
modelling and thus retains this advantage. In fact, the
execution of a sequential simulation that consists of a set
of processes must be translated, or mapped, into a
single sequential process before it can be executed. This
is the purpose of the sequential simulation scheduling
algortihm described in the following paragraphs.

SEQUENTIAL / PARALLEL EXECUTION OF
SIMULATIONS

The following example is used to illustrate the process
view for simulation models. After presenting this
example, its execution as a sequential simulation, and
then as a distributed simulation are described.

Health Care System Example

The governments of many developing countries provide
health care for the majority of their populations
through a multi-tiered system of services and referrals.
The pyramid structure of the health system in each
province of a country might include the following
facilities: health posts, health centers, local hospitals,
regional hospitals, and one provincial, university
teaching hospital.

At each level in the system, certain services are
provided and designated problem situations are
referred to the next level. A simplified view of this
system where people living in "villages" travel to and
from health care "clinics” for services is shown in
Figure 1. In this simplified example, people always first
go to the clinic attached to their village. Most of them
are assessed and treated at this nearest clinic and then
return to their home village. Some of them, however,
have problems which can't be treated at this local clinic
and so are sent to the local clinic at the next level up in
the hierarchy, e.g., from the local health post to the
local health center, or local hospital to regional
hospital.

Clinic & Village Objects

The objects in this model are specific clinics and
villages. Clearly, we can identify two types of objects,
the types clinic and village. Attributes of a village
might include total population, frequency of different
kinds of health problems, and lists of people currently
recovering from different health problems or
treatments. Attributes of a clinic might include
distributions of assessment and treatment times.

The programs for these simple clinic and village object
types are outlined in Figures 2 & 3. The execution of



legend: .o
2-way flow
1-way flow —

clinic

clinic village .o

clinic clinic

clinic

village

Figure 1 Structure of a Health Care System

The program for a clinic:

1) receive( v_or_c, np)

2) <assess problems for np, determine
assessment time, at>

3) hold(at)
units.

4) if <treatable or this clinic is a provincial
hospital> then hold(treatment_time)
send(home_village, t, np)

else send(parent_clinic, t, np)

5) repeat
Figure 2

The program for a village:

1) <determine next time, nt, and next
person, np>

2) send(self, time+nt, null)

receive(sre, t, m)

3) ifmisnull
then send (np, t, my_clinic)
else <update local attributes>

4) repeat
Figure 3
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Comments:

: wait to receive the next person,
np, either from the local village
or a lower level clinic,

: wait for at simulation time

: either treat np & send home or
send to next higher level clinic
where t is time+travel_time.

Comments:

: determine the next time and
person that needs to go to a
clinic.

: send null message to self and
wait until either nt time passes
or a person returns from a
clinic.

2 t=time + travel_time

: person returning, record
service completion statistics
and any necessary followup
treatment.




the clinic program, for example, gives rise to a specific
clinic process. A health system simulation would consist
of multiple interacting clinic and village processes.

Sequential Discrete Event Simulation

As defined in the previous section, a simulation can be
viewed as the execution of a set of communicating
sequential processes. A sequential simulation requires
scheduling the execution of these processes so that
object operations are performed in the appropriate
order. For example, in the above health care system
example, a person must be sent by a village to a clinic
before the clinic can receive this person. Unix process
scheduling, in contrast, attempts to minimise user
process waiting times and maximise throughput. Here,
scheduling must be based on the concepts of "simulation
time" and "event”.

A sequential simulation schedules the execution of
processes so that all events occur in non-decreasing
simulation_time order. A simple algorithm that
implements sequential simulation can be defined as
folows. An events_list is maintained which contains an
ordered list of pending events, i.e., events_list:
{event(pl,tl), event(p2,t2), ...} where tl<=t2, etc. The
value returned by time will be t1 and process pl is
scheduled for execution until pl either calls kold(t) or
requests suspension of its execution for some other
reason. If p1 calls hold(t) then t1 is changed to t1+t and
this first event in events_list is re-inserted into the
events_list so that the list remains in event time order.

In the health care system simulation, we can define two
different types of system state changes, i.e., types of
events, that can occur. One type of event occurs when a
village sends a person to a health clinic. This "arrival”
event may also involve waking up the clinic if it is idle
when the person arrives. The only other type of event
in this model is the "completion" of service, or
treatment, for a person. This completion event may also
involve waking up an idle village object to put the
treated person in a list of people recuperating from
surgery, for example.

An example execution sequence for one clinic and one
village process is shown in Figure 4. At time 0, the
village process executes for one unit of real time at the
end of which it schedules person pl to arrive at the
clinic object at time 1 by calling "send(clinic, 1, p1)".
The village object is then idle for 2 units of real
execution time. At simulation_time 1 person p1 arrives
at the clinic which then begins execution to assess and
treat this person. After 2 units of real time, the clinic
calls hold(4) which suspends its execution until
simulation_time 5. The village then executes for 1 unit
of real time at simulation_time 2, and again at
simulation_time 4, scheduling the arrival of persons p2
and p3 at the clinic.
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Figure 4 Process Scheduling in Sequential Simulation

The process view of simulation was partly an attempt to
eliminate the necessity for the modeller to identify’
events at this level. At the lowest level of a discrete-
event simulation we have the scheduling and execution
of events. The clinic and village processes define the
operation of these types of objects at a level above the
occurrance of events, as in Figure 2. The execution of
an object process, e.g., steps (1) to (5) above, may, in
general, involve arbitrarily many events and event
types.

Potential Parallelism

Since we have conveniently defined a simulation to be
the execution of a set of communicating processes, it
seems quite natural to attempt to execute these processes
concurrently. This is the intent of distributed
simulation. We may observe in the segential health care



system simulation above that all the events do not have
to be executed in simulation_time order. For example,
the clinic could serve person pl while the village is
generating p2 and p3. The clinic can serve p2 and p3
while the village receives and processes the return of
pl, and so on.

A valid execution schedule for the two clinic and
village objects is shown in Figure 5 where it is assumed
that two processors are available, one for each object.
From the figure we see that each object has its own
version of simulation_time, i.e., at a real time of 3 the
village and clinic simulation_times are 4 and 1,
respectively. Notice that the village object can proceed
to generate p2 and p3 immediately after producing pl.
Further, the clinic object need not wait to complete pl's
service before its simulation time advances to 5 when
this service period is completed. The village does have
to wait until the clinic sends pl back home before it can
receive this person and the clinic does have to wait for
the village to send another person if doesn't already
have a person waiting for service.

In general, the execution of events in a simulation need
only be partially ordered. Sequential scheduling
algorithms, as defined here, enforce a partial order on
event execution which is free only in the ordering of
simultaneous events, i.e., events which have identical
simulation_times can be executed in arbitrary order.
However, as illustrated in Figure 5, this can be overly
restrictive. We only need to order events which are
causally related. In the health care system example, the
village object causes a person to arrive at a clinic, and
completion of service by the village causes the person
served to return to the village. These two constraints
still leave room for substantial parallelism.

The potential for parallelism is much greater when
hundreds of clinics and villages are simulated. Many
simulation experiments of interest will involve very
few interactions outside of the nearest village/clinic
pairs. Then, not only can we acheive partly parallel
execution of the nearest clinic/village pairs as shown in
Figure 5, but we may also be able to execute hundreds
of these process pairs in parallel. The difficulty of
course is how do we schedule these processes in a way
which orders causally related events but still allows
substantial parallelism.

The Synchronization of Simulation Time &
Speedup

Two classes of mechanisms for scheduling simulation
process execution have been defined: optimistic
mechanisms and conservative mechanisms [Unger &
Jefferson 88]. There is a clear demarcation between
these two mechanisms in that an optimistic mechanism
risks synchronization errors which require correction
by rolling back the process to a previous state and again
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Figure 5 Distributed Process Scheduling

computing forward [Jefferson 85]. Conversely, a
conservative mechanism never risks synchronization
errors but instead risks deadlock by waiting to be sure
its safe to continue computing [Chandy & Misra 81].

Although one can clearly define the line between
optimistic and conservative synchronisation meéthods, it
is not so easy to define a purely optimistic mechanism.
It seems possible to increase optimism by having a
process make more and more assumptions about its
environment , e.g., by guessing the source and contents
of messages it has not yet received. It is also easy to
introduce conservatism into an optimistic mechanism by
having a process wait before taking a risk.

Our limited experience with mixed optimistic &
conservative mechanisms suggest that greater optimism
results in greater execution speedup [West 88], [Baezner
891.
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