-
~

Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

A SIMULATION OF DYNAMIC TASK ALLOCATION
IN A DISTRIBUTED COMPUTER SYSTEM

Ed Andert
Aerojet ElectroSystems
P.O. Box 296, Bldg 160, Dept 4216
Azusa, CA 91702, U.S.A.

ABSTRACT

Distributed processor systems are currently used for
advanced, high-speed computation in application areas such as
image processing, artificial intelligence, signal processing, and
general data processing. The use of distributed and paralle]
processor computer systems today requires systems designers
to partition an application into at least as many functions as
there are processors. Spare processors must be allocated and
function migration paths must be designed to allow fault
tolerant reconfiguration. The parallel process/ parallel
architecture control simulation (PPCS) models paralle] task
allocation on a distributed processor architecture. Parallel task
allocation is a first step in designing a dynamic parallel
processor operating system that automatically assigns and
reassigns application tasks to processors. Advantages of this
approach are: dynamic reconfigurability removing the need for
spare processing power reserved for failures; the reduced need
for fallback and recovery software for fault detection; more
optimized partitioning of functions; and better load balancing
over available processors. PPCS models various distributed
processing configurations, task dependencies, and the
scheduling of the tasks onto the processor architecture. The
PPCS system implements fifteen different heuristic scheduling
algorithms to map a set of tasks onto the processing nodes of a
distributed computer. The simulation shows the feasibilty of
using fast algorithms to heuristically schedule a system of
multiple processors allowing dynamic task allocation.

1. INTRODUCTION

PPCS is a parallel process/ parallel architecture control
simulation that models various distributed processing
configurations, task dependencies, and the mapping or
scheduling of the tasks onto the processor architecture. A
computer program can be written in such a manner that tasks
related by their data and order of execution are defined to take
advantage of inherent parallelism in the algorithm. Often
these task dependencies are represented by directed graph
data-flow diagrams. Certain tasks must precede other tasks or
groups of tasks which requires sequential execution of the
tasks. Some tasks may occur simultaneously with one another
which allows parallel or concurrent execution. This paper will

768

call the relationship of many such tasks in a single job a task
dependency structure. It is well known that programs and
algorithms can be written to take advantage of inherant
parallelism using parallel operations in a multiprocessor
environment. Data-flow languages such as LUCID (Wadge et
al. 1985) and OCCAM (May 1980) and other programming
languages such as ADA are available that allow the encoding
of parallel operations. Task dependency mappings can be
generated from programs written in these languages.

The PPCS system implements various scheduling
algorithms to map a set of tasks onto the processing nodes
(resources) of a distributed computer. The primary goal of
scheduling algorithms is to minimize the total time required to
execute a set of tasks on a finite system of processors. Most
current research in this area concentrates on problems in which
all tasks and their characteristics are known apriori, thus
requiring static partitioning algorithms and techniques. The
PPCS system on the other hand is directed at researching and
developing task scheduling algorithms that are dynamic and
adaptive. A major concern of this effort is the development of
general models and algorithms that, coupled with simulation
results, can be expanded upon to build a working parallel
control operating system. This generality is contrary to much
of the research in this area which concentrates on scheduling
models for specific applications (Degroot et al. 1981)
(Hennings et al. 1977) (Nutt 1977) (Stankovic et al. 1985)
(Stone 1985) (Sullivan et al. 1977) (Thomas et al. 1974).

2. TASK ALLOCATION MODEL

The assumptions about the characteristics and types of
algorithms needed for the task allocation scheduling problem
are as follows. The scheduling algorithms for this stage of the
research are confronted with a single set of tasks and task
dependency relationship. Depending on the scope and nature
of a particular application, expanding the model used here to
encompass a dynamic task set and/or dependency relationship
is not a difficult problem. The fundamental goal of each
scheduling algorithm is to minimize execution time through
the system for all tasks without violating the task dependency
structure. An additional concern for a scheduling algorithm is
the data-flow routing costs (hops). A hop occurs when the

Dynamic Task Allocation in a Distributed Computer System

data that results from one task executing on a processor must
be transferred to another processor for input to a successor
task. None of the algorithms contained in this discussion have
explicit capability for the minimization of routing costs, but all
are monitored for their performance in this respect in the
simulation. Preemption of tasks is not considered since in this
model it is not clear that preemption could offer any
advantage. The processing nodes are assumed to be identical
(homogeneous) and loosly coupled (each processor has it's
own memory). Hetrogeneous processors often occur in real
systems but the scheduling of hetrogeneous processors is
complex and resource dependent (Miller 1982), which makes it
difficult to show non-application-dependent simulation results.

A general model for a multiprocessor scheduling system of
this type proposed by Graham (1972) has the following
constraints:

1. A set of identical processors P; , i = 1,...,m.

2. Asetoftasks T;, j = l,...,n to be processed by the P; .
3.

A task dependency relation, < , on T which is anti-
symmetric and transitive.

4. A function, M: T ~» (0,»), which denotes the execution
time of each task, T;.

The performance goal of this model is to minimize the total
time required to execute the set of tasks, T, , on the set of
processors, P, , without violating the task dependency relation,
< This problem has been shown (Ullman 1973) to be
polynomial complete even if all tasks T require only one unit
of execution time, or all tasks T; require one or two units of
execution time and there are only two processors P; . Thus,
optimal task scheduling according to this model is
computationally intractable, i.e. computations increase
exponentially as the number of tasks and processors grow.

PPCS is a simulation of the operation of scheduling
algorithms that circumvent the NP complete problem of the
multiprocessor model by forcing limitations to the model
and/or producing suboptimal schedules. Two major categories
of algorithms are used in the simulation. The first type of
algorithm produces a level schedule and requires that the task
dependency structure be ”"N-free” to produce level schedules
that are nearly optimal. The level scheduling algorithms must
be implemented in a central operating system since they create
a single schedule for the entire set of tasks. The second
category of algorithms follows a general multiprocessor system
(GMS) model in which processors are assigned tasks from a
ready que whenever the processors become free. Tasks are
added to the ready que as soon as all of their predecessors
have been executed. The GMS algorithms are best
implemented in a distributed manner with each processor

769

executing the scheduler between tasks. A more detailed
discussion of both the PPCS simulation and scheduling
algorithms is contained in the following sections.

The task dependency directed graph can be represented in
an adjacency reduction matrix (ARM). A task dependency
ARM is a matrix of boolean values representing the
dependency of one task to another. The matrix rows and
columns represent the tasks of a particular job or computation.
A location in the matrix that contains a one indicates that the
corresponding column-task is dependent on the corresponding
row-task. An example of a directed graph data-flow diagram
and its associated adjacency matrix is shown in Figure 1. The
ARM representation of task dependencies is used in the PPCS
system as a convenient storage mechanism and processing
interface between the scheduling algorithms and the task
dependency mappings.

Task Dependency Diagram

123456789
N S PO
LoLUlidd

ceeecr e

A0 0O~ O UL LB =

Task Dependency Adjacency
Reduction Matrix (ARM)

Figure 1

Distributed architectures are similarily represented in an
ARM in the PPCS system. A distributed architecture topology
usually consists of independent processing nodes and node-
resident memory with fixed interconnections. The rows and
columns of the interconnection ARM represent the processors
of the architecture. A location of the matrix that contains a
one indicates that there is a interconnection from the
corresponding row-processor to the corresponding column-
processor. An example can be seen in Figure 2.

3. LEVEL SCHEDULING

A level schedule is one that partitions tasks into
computation levels according to the task dependency structure.
Those tasks with no predecessor tasks are assigned to the first
computation level, followed by the tasks whose predecessors
were assigned to the first level being assigned to the next
level, etc. Each computation level of tasks is executed on all
of the processors at one time with the next computation level

E.Andert

executing after the complete execution of the previous level.
The different types of level algorithms in PPCS assign tasks to
processors for each level via differing methods. A simple
example of a level schedule with in-order (of tasks found for a
new level) task assignment to processors is shown in Figure 3.

Processor Topology Diagram

® @O0

123456789

@ O,

WO~ UTTSWN
o e s .
=
[y
[y
oy

Processor Topology Adjacency

Reduction Matrix (ARM)

Figure 2

58 &8 &8 &2

Figure 3: Example of Level Schedule of Figure 1 Task
Dependency onto 4-Node Nearest Neighbor Topology

A major attraction of level algorithms for scheduling is
that limitations on the general multiprocessing model can
reduce the worst case bound on the length (in time) of level
schedules. The worst case bound on the length of the
schedule produced by many known algorithms is (2 - 1/m)
times as long as the optimal schedule where m is the number
of processors (Chen et al. 1974) (Nett 1977). However, if the
task dependency relationship is “N-free” then the level
schedule is bounded by 3/2 times the length of the optimal
schedule (Nett 1977), An example of an “N” in a graph is
shown in figure 4. Task dependency structures that have been
reviewed and generated in this research have not contained
“N" structures and it is difficult to specify program data flow
structures for real-world problems that contain such structures.
Thus, using a scheduling algorithm that builds better schedules
(in the worst case) with the omission of “N” structures is
appealing for general multiprocessor scheduling problems. It
should be noted that the proofs for the bound on level
schedules in (Nett 1977) were done with the assumption of
unit task execution times. The scope of this research did not
include the presentation of a proof for a worst case bound for

770

an "N-free” level algorithm over varying execution times, but
it is assumed that level algorithms will produce good schedules
where task dependencies are "N-free”,

o4 &N

Task Dependency Containing "N”s Actual "N” Structure

Figure 4

Another attraction of level scheduling for a real-world
multiprocessor system is their symplicity. The basic level
scheduling algorithm as explained previously does not require
excessive comparisons and calculations on the task dependency
relationship which in essence make up the time cost of a
scheduling algorithm. This simplicity does not come without a
price. Since task execution time is not of unit length, it is
guaranteed that at each computation level all processors.
except for the one with the task load of longest execution
time, will remain idle waiting for the computation level to
end.

The level scheduling algorithm builds computation levels
and assigns tasks to processors for all tasks and processors in
the system at one time. For this reason the level scheduler
would be best implemented in a central processor, Thus, in
the PPCS system, level scheduling algorithms are considered
centralized scheduling algorithms.

3.1 Level Scheduling Algorithms

All of the level scheduling routines share the same
simulation environment program. The level scheduling
simulation programs differ only in the building of levels and
assigning of tasks.

The building of levels is done by two different algorithms
that vary only slightly. They produce two different types of
level assignments, one top loaded and one bottom loaded.
The top loaded version of the algorithm assigns all tasks to the
earliest possible computation level while the bottom loaded
version assigns tasks to the latest possible computation level.
The difference between the two level assignments is minimal
or non-existent for most data-flow task dependencies. In other
words, the more irregular the structure of the forks and joins
in the task dependency relationship, the larger the difference
between the top and bottom loaded level assignments.

The different level algorithms assign tasks to processors in
different order. Thus, this function varies for every different
level schedule. There are two different processor assignment

Dynamic Task Allocation in a Distributed Computer System

routines for each type of level scheduling algorithm; one to
handle top loaded level assignments and one to handle bottom
loaded level assignments. The processor assignment routines
are essentially the same except that they operate in reverse
order of one another.

The in-order top and bottom loaded task assignment to
processor algorithms schedule tasks to processors in the same
order that tasks are found and assigned to levels by the level
making routines. These algorithms are called LEVELTOP and
LEVELBOT.

The decreasing time order algorithms assign tasks to
processors in decreasing task execution time order which has
been used as an scheduling criteria in both bin-packing
problems (Coffman et al. 1977) and multi-processor problems
(Jensen 1977). An array is created during the environment
portion of the level program that contained the execution time
distribution from a corresponding specified file. This array of
execution times is indexed by task number and contains the
estimated execution times from the file. A quick-sort routine
is used that sorts integer pointers to an array of double-
precision real numbers into an order in which they point to the
real numbers in increasing order. The quicksort algorithm
used is a modification of the standard quicksort algorithm
(Aho et al. 1974) to sort a pointer array. The decreasing time
order task assignment to processor algorithms are called
LDECRTOP and LDECRBOT.

The increasing time order algorithms assign tasks to
processors in increasing task execution time order. The
LINCRTOP and LINCRBOT algorithms are very similar to the
decreasing time order algorithms,

The random order assignment algorithms (LRANDTOP
and LRANDBOT) assign tasks to processors in a randomized
order. This has been used for a scheduling criteria for multi-
processor problems and can be used as a comparison for
ordered assignment algorithm performance (Jensen 1977).

Assignment of tasks to processors by pairwise interchange
(LRPAIRTOP and LTPAIRBOT) will produce the most nearly
optimal schedule for all of the level algorithms. Tasks are
assigned to processes in-order for each level and then
compared two by two until no improvement can be made to
each computational level execution time. This technique was
shown by Graham (1972) to produce a schedule execution
time worst case bound of (2 - 2/(m + 1)) times the optimum
schedule execution time where m is the number of processors
and there is no task dependency relationship. This bound
applies at each computation level of the schedule guaranteeing
that each computation level will be executed in close to the
shortest possible time.

771

The execution simulation program uses the schedule
produced by a level routine and simulates the schedule
execution compiling execution time, communication data
transfer (hop), and algorithm compute time statistics. The
execution simulation routine loops around the specified
processors using them over and over in the order given when
there are more tasks assigned than processors specified. The
algorithm CPU time usage is monitored on a VAX 11/785
which includes some VMS operating system overhead CPU
usage. For comparison reasons the simulations were run
under similar VAX loading situations.

4, GMS SCHEDULING

General multiprocessor system (GMS) scheduling is a way
of scheduling a task dependency relation onto a set of
processors suggested by Graham (1972). This type of
scheduling assumes the general multiprocessing system
constraints explained in the earlier conceptual overview. A
GMS schedule proceeds as follows: Initially, at time 0, all
tasks that have no dependency constraints (ie. have no
predecessor tasks) are available for execution and inserted in a
ready que. All processors are free and attempt to remove a
task from the ready que and execute it. If no tasks are in the
ready que and a processor is available then the processor will
remain idle until a task is entered into the que. As a processor
completes a task and proceeds to look into the ready que for
more work, tasks that are successors to the completed task and
have no other unexecuted predecessors are entered into the
ready que. This continues until all tasks have executed.

A major attraction for using the GMS model in solving the
multi-processor scheduling problem is the model’s strong
theoretical research background. Graham (1969) has done
extensive research into timing anamolies encountered in the
GMS model. Much related research has been done in finding
worst-case bounds in one-dimensional bin packing problems.
Optimal and sub-optimal algorithms have been developed to
evenly fit different sized objects into multiple bins or buckets
of equal size (all bins filled to the same height) (Graham 1972)
(Johnson 1974) (Demers et al. 1974). The bin packing
problem in one of its forms, namely sequencing to minimize
make-span, is very similar to the general multiprocessor
scheduling problem under discussion here. In this problem
the set of objects (records, tasks) must placed into a fixed set
of minimum sized bins (storage units, processors) which is
equivalent to the general multiprocessing system defined
earlier without a task dependency relation.

Another, perhaps more practical, attraction for the GMS
algorithms is their capability for being implemented in a
distributed manner. Each processor can execute a portion of
the scheduler upon it’s completion of a task and before it's
search for a new task to execute. Upon completion of a task

E.Andert

the processor can search the task dependency relation for new
tasks and enter them into the ready que. The processor can
then remove a task from the ready que and execute it. This
distributed scheduling capability is especially appealing with
the GMS type algorithm since it is much more complicated
and ¢omputationally intensive than the Level type algorithm.

4.1 GMS Scheduling Algorithms

The GMS scheduling environment consists of an
implementation of the GMS scheduling simulation, statistical
data accumulation and reporting, Data gathering is similar to
the level schedule simulation with schedule execution time,
communication data tranfers (hops), and algorithm compute
time statistics reported. All of the GMS scheduling routines in
PPCS use the same main GMS scheduling algorithm. All of
the actions in the algorithm are shared by all GMS scheduling
programs except for the ordering of the ready que tasks. The
methods used to order the ready que is where GMS algorithms
can be tuned for higher performance. The GMS routines in
the PPCS system each use a different method for ordering the
ready que.

A common bin packing algorithm that assigns each object
to the bin with the lowest current level is exactly the GMS
algorithm without task dependency considerations. The
objects can be ordered into increasing size or decreasing size
improving the worst-case performance of the algorithm in
terms of the schedule produced compared to the optimal
schedule (Coffman et al. 1977). Because of these results and
the simplicity of the algorithm, increasing and decreasing
estimated execution times are used a as sorting criteria in two
GMS ready que ordering algorithms. The same quick-sort
routine that was used in creating Level schedules is used here.
The quick-sort sorts the ready que as indexes to the array of
estimated execution times for the tasks in the system. A
decreasing ready que ordering algorithm is used in GMSDECR
and increasing order algorithm is used in GMSINCR.

Beyond the increasing and decreasing sorts of the ready
que, there are no algorithmic performance improvements with
a foundation in theoretical research that can be applied to the
GMS scheduling model. However, it seems probable that
some use of the task dependency structure in weighting the
tasks in the ready que would yield further performance
improvements. Thus, the concept that the level scheduling
model was based on will be used here as a heuristic sorting
criteria. The algorithm used in the GMSHLF program is a
highest level first (number of vertices from a task to it's most
distant successor) sort of the ready que. This criteria was used
in a simulation of a somewhat similar multiprocessing model
involving the parallelization of sequential FORTRAN
compilations. The highest level first algorithm was found to

772

produce better results than random or first-in first-out
orderings of a ready que (Jensen 1977).

Another heuristic that can be used to order the ready que
is the number of successors to each task. This can be done by
sorting the tasks based on their number of immediate
successors. This was also simulated in the above mentioned
study and found to produce schedules that were no better than
those produced using a FIFO or random ordering of the ready
que (Jensen 1977). The algorithm for ordering the que based
on immediate successors is much simpler than any of the other
heuristic orderings used here and therefore should be much
faster than the others. It also seems intuitive that a most
immediate successors first heuristic should perform much
better than a random ordering if the task dependency
relationship is of a parallel rather than sequential nature. The
most immediate succesors first algorithm was used in the
GMSMISF program.

A more accurate heuristic for ready que ordering based on
the number of successors to each task is a most total
successors first method. 1In previous simulation efforts this
criteria was found to produce resulting schedules of lengths
similar to the highest level first ordering (Jensen 1977). The
most total successors first algorithm was used in the
GMSMTSF program.

The most accurate heuristic for producing the shortest total
execution time for a set of tasks can be found in the critical
path method used in management science scheduling theory.
The critical path method suggests that the best schedule can be
found by searching for the critical path in the task network
(dependency relationship) and giving it the highest priority
(executing it first). The critical path is defined as the path
through the network from beginning to end that requires the
most total time to execute. This concept can be used in the
GMS scheduling model by ordering the tasks in the ready que
based on the path length of each task. The path length in the
GMS model can be defined for each task as the longest sum of
execution times required to get from the task to the last
possible successor task(s) for every possible path. A more
complicated (yet computationally easier) version of this
heuristic using likelyhood probabilities for each path (Martin
et al. 1969), used in the simulation discussed earlier, was
found to produce schedules of length similar to the level and
total successors heuristics (Jensen 1977). The longest path
length first ordering of the ready que algorithm was used in
the GMSLPLF program.

5. SIMULATION RESULTS AND ANALYSIS

The PPCS simulation programs were run for three
different task dependency structures, three different processor
topologies, and three different execution time distributions.

Dynamic Task Allocation in a Distributed Computer System

Running all of the PPCS algorithms on the varying parameters
created 432 schedules and execution simulations.

Uniform, gaussian, and bi-modal execution time
distributions were created by a BUILDTIME program. The
uniform distribution contained double-precision real number
values for task execution times uniformly (randomly)
distributed between 0 and 100. This creates task execution
values that represent a uniform mixture of long, medium, and
short task computation times. The gaussian distribution
contained real values between 0 and 100 with a mean of 50
and a standard deviation of 10. This represents a set of tasks
all having about the same execution time. The bi-modal
distribution was made up of real values between 1 and 100
with two modes that are equally likely. One mode was at 30
and the other at 70 both with a standard deviation of 5. The
bi-modal distribution represents a set of tasks with either long
or short execution times. Also, the estimated execution times
used by the scheduling algorithms were gaussian
approximations to each execution time value. Each estimated
time was picked from a distribution with a mean of the actual
execution time and a standard deviation of 5.

The task dependency relationships used in the simulation
runs attempt to represent general multiprocessing problems.
The task dependency structure used in GEN1 shown in figure
5 was suggested in (Jensen 1977) as a model of a computation
graph considering compiler analysis of typical programs. The
task dependency graph was modified within the constraints of
the graph model in (Jensen 1977) to emphasize parallel
operations rather than sequential. Even with these
enhancements the structure for GEN! is very sequential and
looks like a parallelization of the operations specified by a
sequential language program. GEN2 shown in figure 6 is a
modification of GEN1 to allow as much parallelism as
possible. Thus, GEN2 represents a sequential computation
with many parallel operations at different stages. GEN3 as
shown in figure 7 is the most parallel of all of the task
dependecy relationships. It is a binary tree with branches and
leaves pruned randomly to decrease the regularity of the
graph. GEN3 represents a common search graph found in
many artificial intelligence and image processing applications.

The processor topologies used in the simulation runs were
made up of 12 or less processors. Any more processors would
limit the utility of the scheduling algorithms due to the size of
the task dependency relationships. The largest of the three
task sets contained 198 tasks but by the nature of the task
dependencies, the task sets often could not offer much more
than 12 competing tasks at any one time. Simulating larger
task sets and processor topologies would produce limited
additional general multiprocessor system results and is thus
beyond the scope of this effort. The three processor
topologies, NEAREST, PLANAR-4, and CUBE as used in the
simulation are shown figure 8. These topologies were chosen
because of their size and varying interconnection schemes.

773

Figure 5: GENI1 Task Dependency Structure

Figure 6: GEN2 Task Dependency Structure

E.Andert

Figure 7: GEN3 Task Dependency Structure

85

Nearest Neighbor 9-Node Processor Architecture

e

7

Q>

N

=

o:

7

Planar-4 9-Node Processor Architecture

T

Cube 12-Node Processor Architecture

Figure 8: Processor Architectures

Graphs of the performance of the scheduling algorithms in
terms of execution time for the schedules produced and the
algorithm computation time are shown in figure 9 averaged
over three representative parameter sets. The performance in
terms of execution versus algorithm time of all of the
simulation runs closely resemble those shown in this figure.
No significant performance variation was found in the results
from either the time distribution or the processor topology.
There was, however, minor performance variation caused by
the task sets. The performance of the level algorithms in

774

terms of task execution time was fairly stable over the task sets
but the level algorithm computation time in terms of top-
loaded versus bottom-loaded level partitioning algorithms
varied between task sets. The GEN3 task set caused the
bottom-loaded algorithms to execute faster than top-loaded
algorithms while the GEN1 and GEN2 task caused just the
opposite. This not surprising considering that the top and
bottom loaded partitions are done by searching the task
dependency graph from opposite ends and would be easily
affected by the width and depth of the search caused by the
task dependency relationships.

22
:
X
:
c DB,IB
;
: £
i
° P
n
T
i
:
e
17 Y

2.0 2.25 2.5 15 50 85

Algorithm Run-Time (Sec.)
LEGEND:

LT = LEVELTOP RT = LRANDTOP GD = GMSDECR
LB = LEVELBOT RB = LRANDBOT GI = GMSINCR
DT = LDECRTOP PT = LTPAIRTOP HL = GMSHLF
DB = LDECRBOT PB = LTPAIRBOT MI = GMSMISF
IT = LINCRTOP MT = GMSMTSF
IB = LINCRBOT LP = GMSLPLF

Figure 9: Algorithm Run-Time Performance

The most conclusive comparison that can be made from
these simulations is between the performance of the different
algorithms on any of the task sets. As can be seen from the
graphs, the most striking observation is that the GMS
algorithms require far more computation than the level
algorithms, often in excess of ten times as much computation
time. Although the performance of the GMS algorithms in
terms of task execution time is better than that of the level
algorithms, it is generally not much more than a 50%
improvement. It is also important to note that in every case

Dynamic Task Allocation in a Distributed Computer System

that the GMSMISF algorithm performed equally as well as the
GMSHLF and GMSMTSF algorithms at a substantially
reduced computation cost. The GMSLPLF algorithm
produced the best of all of the execution times in most cases
but at a high computation cost and, as can be seen in figure
10, at a high communication data transfer cost. It is difficult
to make a generalization about the performance difference
between the GMSDECR and GMSMISF algorithms in terms
of execution time or algorithm computation time, but as can
be seen in figure 10, the GMSMISF algorithm often produces
schedules with a lower data transfer cost. It is also difficult to
make a performance comparison between the increasing and
decreasing level algorithms beyond the fact that they perform
better in terms of execution time than the random and in-order
level algorithms. The pair-wise interchange level algorithms
consistently offer the best execution times out of all of the
level algorithms with little algorithm computation time
penalty, but with a higher data transfer cost.

56

o
;
:
:
:
o]
;
n
t
38

1600 2000 2400

Execution Time

Figure 10: Hopcount Vs. Execution Time
Algorithm Performance

The conclusions that can be drawn from these observations
and applied to the general multiprocessor scheduling problem
are as follows. Because of the regularity of the task execution
time performance data over all of the parameter sets in terms
of the different scheduling algorithms, it is safe to say that
those algorithms that performed well in this simulation are
likely to perform well for applications that fit into the
mulliprocessor model. For applications where the
computation time spent in scheduling tasks is a large concern,

775

then the global, level scheduling algorithms are the best
choice. Where a small amount of computation time and data
transfer time can be spared, the pair-wise interchange
algorithm is the best choice. Otherwise the increasing and
decreasing algorithms are the best alternative. The choice
between a top-loaded and bottom-loaded level algorithm is
application dependent requiring analysis of the expected task
dependency relationships. Those applications that are most
concerned with task execution time and/or data transfer costs
are best implemented using the GMSMISF algorithm. If task
execution time is the sole concern then the GMSLPLF
algorithm is the best choice.

It is probable that the performance of the GMS algorithms
could be significantly improved in terms of algorithm
computation time by keeping more information about the tasks
in the system than the ready que and task dependency
structure. Making computed data reusable would significantly
reduce the recomputation required by the GMS algorithms.
This would, however, immediatly incur a large data
communication penalty to offset the advantage of
implementing the GMS algorithms in a distributed manner.
An jmportant improvement that would have to be made if the
algorithms from PPCS were to be implemented in a system
without an optimized hardware ARM processing capability,
would be a sparse matrix implementation of the ARM:s.

ACKNOWLEDGMENTS

Part of this study was performed by the author as a
graduate research project at California State University,
Fullerton.

REFERENCES

Aho, Hopcroft, and Ullman (1974). The Design and Analysis
of Computer Algorithms. Addison Wesley, Mass. p 92.

Chen, N. and Liu, C. (1974). On a Class of Scheduling Algo-
rithms for Multiprocessor Computing Systems. In: Parallel
Processing Proceedings of the Sagamore Computer
Conference. 1-16.

Coffman. Leung, and Slutz (1977). On the Optimality of First-
Fit and Level Algorithms for Parallel Machine Assignment
and Sequencing. In: Proceedings of the 1977 International
Conference on Parallel Processing. Institute of Electrical
and Electronics Engineers, San Francisco, California, 95-
99.

E.Andert

Degroot, Jenevein, and Lipovski (1981). A Hardware Support
Mechanism for Scheduling Resources in a Parallel
Machine Environment. In: Proceedings of the 8th Annual
Symposium on Computer Architecture. 57-65.

Demers, Johnson, and Ullman (1974). Worst Case Perform-
ance Bounds for Simple One-Dimensional Packing
Algorithms. SIAM Journal on Computing 3, 299-326.

Graham, R. (1969). Bounds on Multiprocessing Timing
Anomalies. SIAM Journal on Applied Math 17, 416-429.

Graham, R. (1972). Bounds on Multiprocessing Timing
Anomalies and Related Packing Algorithms. In:
Proceedings of AFIPS 1972 Spring Joint Computer
Conference. 205-217.

Hennings, Schindler, and Steinacker (1977). Schedules for
General Monitor Systems with a Minimal Number of
Processors. In: Proceedings of the 1977 International
Conference on Parallel Processing. Institute of Electrical
and Electronics Engineers, San Francisco, California, 26-
30:

Jensen, J. (1977). A Fixed Variable Scheduling Model for
Multiprocessors. In: Proceedings of the 1977 International
Conference on Parallel Processing. Institute of Electrical
and Electronics Engineers, San Francisco, California, 108-
117.

Johnson, D. (1974). Fast Algorithms for Bin Packing. Journal
qf Computers and System Science 8, 272-314.,

Martin, D. and Estrin, G. (1969). Path Length Computations
On Graph Models of Computations. JEEE Transactions on
Computers C-18, 530-536.

May, D. (1980). OCCAM. 1EEE SIGPLAN Notice 18.

Miller, L. (1982). A Heterogeneous Multiprocessor Design
and the Distributed Scheduling of its Task Group Work-
load. In: Proceedings of the 9th Annual Symposium on
Computer Architecture, 283-290,

Nett, E. (1977). On Scheduling Algorithms for N-Free Task
Dependency Structures. Proceedings of the 197 Inter-
national Conference on Parallel Processing, Institute of
Electrical and Electronics Engineers, San Francisco,
California, 100-107.

Nutt, G. (1977). A Parallel Processor Operating System Com-
parison. IEEE Transactions on Software Engineering SE-
3, 467-475.

776

Shen, C. and Tsai, W. (1985). A Graph Matching Approach
to Optimal Task Assignment in Distributed Computing
Systems Using a Minimax Criterion. IEEE Transactions on
Computers C-34, 197-203.

Stankovic, Ramamritham, and Shengchang (1985). Evaluation
of a Flexible Task Scheduling Algorithm for Distributed
Hard Real-Time Systems. IEEE Transactions on
Computers C-34, 1130-1143.

Stone, H. (1985). Parallel Processing with the Perfect Shuffle.
IEEE Transactions on Computers C-20, 1130-1143,

Sullivan, Bashkow, and Klappholz (1977). A Large Scale,
Homogeneous, Fully Distibuted Parallel Machine 1 and 1I.
In: Proceedings of the 4th Annual Symposium on
Computer Architecture. 105-124.

Thomas, A. and Davidson, E. (1974). Scheduling of Multicon-
figurable Pipelines. In: Proceedings of the [2th Annual
Allerton Conference on Circuit and System Theory. 658-
669.

Ullman, J. (1973). Polynomial Complete Scheduling Prob-
lems. Technical Report 3, Department of Computer
Science, University of California at Berkeley.

Wadge, W. and Ashcroft, E. (1985). LUCID, the Dataflow
Programming Language, Academic Press, London.

AUTHOR’S BIOGRAPHY

ED ANDERT is a member of the technical staff at Aerojet
ElectroSystems company. He is also a part-time associate
professor in the School of Computer Science at California
State University, Fullerton. He received a B.A. in business
management and computer science at CSU Fullerton in 1984,
and a M.S. degree in computer science from CSU Fullerton in
1986. His current jnterests include advanced sensor
processing, distributed and parallel systems, distributed
operating systems, and artificial intelligence. He is a member
of AAAI, ACM, and IEEE.

Ed P. Andert

Aerojet ElectroSystems

Bldg. 160, Dept. 4216

P.O. Box 296

Azusa, CA 91702-0296, U.S.A.
(818) 812-2571

