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ABSTRACT

This paper discusses a modeling technique for creating
efficient instruction level simulation models of von Neumann pro-
cessors. In contrast to traditional approaches which use a software
interpreter, this technique employs direct execution of application
programs on the host computer. An assembly language program
for the target machine is decompiled to a high level language,
instrumented, and then recompiled and executed on the host com-
puter. A prototype implementation modeling the Motorola
MC68010 microprocessor is described, and the efficiency and accu-
racy of this prototype is reported. It is demonstrated that the direct
execution technique can be used to produce highly accurate simula-
tion models which are orders of magnitude faster than register
transfer level simulators.

1. INTRODUCTION

The simulation of computers using other computers is an
important but computationally expensive process which continues
to challenge the fastest available processors. This problem is espe-
cially acute when simulation of large multiple processor systems
containing hundreds or thousands of CPUs is required. As pointed
out by Heidelberger and Lavenberg (1984), new techniques are
required to improve the efficiency of simulators for such large sys-
tems.

In this paper we will focus attention on instruction level simu-
lation of computer systems, i.e., simulation which emulates the exe-
cution of application programs to the extent that the simulator per-
forms the same computations that the application program would
execute and generates the same numerical results. Instruction level
simulation is used extensively to evaluate the performance of single
and multiple processor computers (e.g., see Tamir 1981 and
Fujimoto 1983b). Such evaluation often takes place during the
design of the machine, before a physical implementation has been
realized. Under these circumstances, performance evaluation based
on measurement techniques are not possible (Ferrari 1978). Furth-
ermore, instruction level simulation may be used to evaluate the
performance of software systems to ensure that real time con-
straints are satisfied.

Traditional techniques for instruction level simulation use a
software interpreter to laboriously simulate the fetch, decode, and
execute cycle of each instruction. Such techniques often require
the simulator to execute hundreds or thousands of instructions in
order to reproduce the behavior of each instruction in the applica-
tion program (VanTuyl 1973, Tamir 1981, and Cragon 1983). Such
high overhead cannot be tolerated when simulating large multiple
Processor systems.

The direct execution technique greatly enhances the efficiency
of instruction level simulation. It is employed as one component of
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the Simon simulation system, a general purpose object-oriented
discrete event simulation package for modeling parallel computer
systems (Fujimoto 1985). A simulator for (say) a large MIMD
computer is constructed by combining processor models which use
the direct execution technique with simulation models for other
components of the system, e.g., the switching network. Interactions
between system components are simulated by exchanging time
stamped messages. Simon was designed to facilitate implementa-
tion on a parallel computer, so distributed simulation techniques,
such as those described by Chandy and Misra (1979 and 1981) or
Jefferson (1985), may be used to improve the performance of the
entire simulation as a whole. This paper addresses the problem of
efficiently simulating one portion of the system, namely, the pro-
cessors making up the parallel computer. The techniques which are
described may be used in conjunction with a distributed simulation
scheme or in a conventional, uniprocessor-based discrete event
simulation environment.

Throughout this paper, the host machine refers to the com-
puter on which the simulator is executing. The targer machine is
the processor being modeled. We distinguish between the
behavioral model which ensures that the computation performed by
the application program is faithfully reproduced by the simulator,
and the performance model which estimates the execution time of
the program on the target machine. It is assumed that both the host
and target machines are general purpose von Neumann processors.
Finally, a basic block is a block of sequential instructions such that
control enters only at the beginning of the block and leaves only at
the end.

Key features of the direct execution technique which distin-
guish it from others include:

e High performance. Direct execution of application programs
avoids the overhead associated with interpretive execution.

e High accuracy for a large class of processors. Exact timing
statistics can be derived for processors in which execution time
is not highly dependent on dynamic phenomena, e.g., pipeline
turbulence or cache miss penalties. Extensions of the technique
to accurately model these phenomena will be discussed.

¢ Generality. The technique requires few restrictions on the
machine to be modeled. Only the instruction set for the target
machine must be specified. A physical realization need not
exist.

o Portability. An assembler program for the target machine is
decompiled to a high level language (C was used in the proto-
type implementation), and recompiled for execution on the host.
This process may take place on a wide range of hosts, assuming
the appropriate high-level language compiler is available. The
prototype implementation was demonstrated on Sun™ worksta-
tions as well as VAX™ computers.

e No interference. Measurement tools which monitor the execu-
tion of programs through the insertion of software probes may
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alter the behavior of the machine, invalidating the information
which is collected. The direct execution technique simulates the
target processor rather than measuring an existing processor’s
performance, so no interference can occur.

o Flexibility. The technique is a software based-simulation tool.
No special purpose hardware is required.

The central limitation of the approach lies in the modeling of
sophisticated processors in which execution time is highly depen-
dent on dynamic phenomena such as pipeline turbulence and cache
memory performance. In situations where the execution time of a
sequence of instructions is dependent on complex interactions
-among them and contention for hardware resources, exact execu-
tion times can only be derived from modeling of the internal struc-
ture of the CPU. It is possible to extend the approach to perform
detailed modeling of such phenomena, but this will in general incur
a significant performance penalty. We note however that (1) the
modeler is afforded the flexibility to trade off between simulator
efficiency and accuracy by selecting either efficient, approximate
performance models or slower but highly accurate simulation
models; (2) even if detailed simulation models are used to obtain
good accuracy, the simulator will still be more efficient than a
detailed register transfer level simulation because the entire proces-
sor need not be simulated in such great detail, and one need not
always simulate the processor down to the register transfer level to
derive accurate performance statistics. For example, if memory
access times for a cache hit and miss are known, one need only
simulate the cache in sufficient detail to determine whether a hit or
a miss occurs on each memory access. This requires much less
computation than simulating the operation of the cache at the regis-
ter transfer level.

The remainder of this paper is organized as follows: In section
2 we review related work. The proposed direct execution technique
is introduced in section 3. Details of the approach are described by
example in section 4 where a prototype implementation of the
MC68010 microprocessor is described. Section 5 contains an
evaluation of the prototype. Both the accuracy and efficiency of
the implementation for several benchmark programs are reported.
Finally, extensions of the technique to model dynamic phenomena
and areas of future work are discussed.

2. RELATIONSHIP TO PREVIOUS WORK

Register transfer level simulation models are most frequently
used for instruction level simulation (Lipovski 1977). Registers,
condition codes, and other forms of system state are represented by
program variables, and the fetch-decode-execute cycle is imple-
mented with a programmed loop. The direct execution method also
uses program variables to model system state, but eliminates the
software loop for interpreting instructions. In effect, this loop is
implemented by the instruction interpretation circuitry of the host
‘machine. This accounts for the improved efficiency of the tech-
nique.

Hardware and firmware emulators essentially perform register
transfer level simulation but utilize special purpose hardware to
speed up the simulation (Drummond 1973 and Svobodova 1976).
Although execution time can be significantly reduced by this
approach, there are several important disadvantages. Most impor-
tantly, extension of this technique to model parallel computer sys-
tems is not straightforward because the special purpose hardware

must be shared among several distinct simulation models. Expen-,

sive multitasking hardware is required to avoid significant context
switching overhead. Also, special purpose hardware and software
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support is expensive to develop and maintain, and firmware emula-
tors are difficult to debug. Finally, the resulting simulator is not
portable,

Variations of the direct execution technique proposed here
have been described. The most simple form involves the insertion
of timing probes into a high level langnage (HLL) application pro-
gram. The number of required probes can be optimized by simple
control flow analysis of the program structure (Oldehoeft 1983).
Several ‘‘software performance systems’ or ‘‘performance
profilers™ using this strategy have been reported in the literature
(e.g., see Booth et al. 1984, DePrycker 1982, and Fishwick 1984).

However, it is difficult to tune these models for specific machine

architectures because the timing model is derived by estimating the
execution time of HLL primitives on the target machine. Such esti-
mates can only be rough approximations unless specific assump-
tions are made about the machine code generated by the HLL com-
piler. Furthermore, it is difficult to extend the technique to model
the effects of pipeline turbulence and cached memory because the
analysis is conducted at such a high level representation of the pro-
gram. Finally, an implementation of the model is only applicable
to a single HLL and compiler.

A variation of this approach is to compile an HLL application
program to the host machine and insert a timing probe into each
basic block of the resulting assembler (Fujimoto 1983a). This
approach is sometimes used as a measurement technique to bench-
mark existing processors. The timing may be based on weighted
instruction frequency counts or periodic examinations of a real time
clock, provided a clock of sufficient precision is available. The
central disadvantage of this approach is the poor accuracy of the
timing statistics, Since timing information is based on execution®
times on the host machine, these must be converted into the-

.corresponding times on the target machine. But in general, no

tractable relationship exists between execution times on the host
and those on the target, so timing statistics will be inaccurate. Even
if the host and target machines are the same, some inaccuracy may
be incurred when real time clocks are used due to interference - the
probes affect cache and pipeline behavior. The approach is useful
only if approximate timing statistics are adequate.

Recently, techniques have been proposed which use direct
execution in a manner closer to that proposed here. These tech-
niques use a direct assembler-to-assembler translation of target
machine code to that on the host (Huguet et al. 1987, May 1987).
Although this approach can lead to good performance, direct

,assembler-to-assembler translation requires detailed analyses of

both the host and target architectures, and can be difficult if the
machines are very disimilar. For example, the condition codes in
the target may not map very easily to those on the host. More
importantly, the resulting translator suffers from a lack of portabil-
ity. Huguet et al. (1987) also proposes compiling an application to
both target and host machine code, and establishing a correspon-
dence between the basic blocks of the two. This approach relies
however on both compilers generating code in which both the same
number of basic blocks are created, and the order in which the
blocks are executed is the same. As the authors point out, this is
not the case for many compilers.

3. THE PROPOSED STRATEGY

A new strategy was developed to address the deficiencies
associated with existing techniques. In this proposed approach, the
target assembler is first translated to a standard intermediate.
representation. During this translation, code for the performance
model is also inserted into the program so that timing statistics can
be compiled as the program executes on the host. The resulting
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program is then translated into machine code for the host machine
where it is executed.

We assume in this discussion that the original application pro-
gram is written in a high level language, and that a compiler for the
target machine already exists. Alternatively, the application pro-
gram may be a hand coded assembler program for the target
machine. In this case, we simply skip the first step in the procedure
outlined below.

It is convenient to use a high level language (HLL) for the
-standard intermediate representation since this eliminates the need
to develop a new compiler for the host machine. The translation of
the target machine code to the intermediate representation is there-
fore a decompilation process. The HLL used for the intermediate
representation need not be the same as that in which the original
application program was written however.

The strategy consists of the following steps (see figure 1):

(1) Compile the HLL program into assembler for the target
Pprocessor.

(2)  Analyze the assembly language code to construct the tim-
ing, i.e., performance model.

(3)  Translate, i.e., decompile the target assembly language pro-
gram into a high-level language program that performs the
same computation. The timing code is also inserted into
the program either during this translation or as a separate
pass after the decompilation is complete.

(4) Compile the instumented program for execution on the
host processor.

This strategy allows timing analysis and instrumentation to be
done at the granularity of the target machine instruction, thereby
eliminating many of the problems encountered earlier. Use of a
standard intermediate representation enhances portability. These
positive factors led us to explore this approach in greater depth, A
prototype implementation for the 68010 microprocessor was
developed (Campbell 1985). The next two sections describe this
prototype and report results concerning execution efficiency and
the accuracy of the timing model.

4. MODELING THE MC68010: A CASE STUDY

A prototype implementation of a simulation model for the
MC68010 was developed to evaluate the proposed approach. The
C programming language was chosen as the intermediate language
because of its rich set of low-level operators. One could obtain
greater efficiency by decompiling to a lower level intermediate
form, e.g., a three-address format like that commonly used in com-
pilers. Therefore, the performance results derived from the proto-
type should be viewed as conservative. In this study, the original
application programs were either written in C or were coded by
hand in assembler for the target machine.

The model is divided into two distinct parts, one describing
the processor’s behavior and the other its performance. The
behavioral model is obtained by decompiling MC68010 assembler
into a functionally equivalent C program. This C program is then
instrumented by the performance modeling program, compiled, and
executed on the host processor.

while cond do
begin
S1; S2; §3;
end;
compile to L.
target assembler L1: jmpc cond,L2;
. decompile to HLL jump L%
L1: if cond then L2:...
goto L2;
goto L1; instrumentation
L2:... clock:=clock+10;
L1: clock:=clock+2;
if cond then
goto L2;
executable . clock:=clock+21;
module compile .
goto L1;
for host .
C L2:...
machine

Figure 1: The proposed strategy.
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A machine architecture is defined in terms of the data types it
supports, the machine state visible to the assembler program,
addressing modes, and the operations which are provided. The
HLL to which the assembler program is decompiled must provide
constructs to support each of these aspects of the target machine
architecture. Implementation of these facilities for the 68010 archi-
tecture is described next, followed by a discussion of performance
models.

4.1. Data Types

The 68010 supports the data types byte (8 bits), word (16
bits), and longword (32 bits) (Motorola 1984a). The host machine
must support data types with sufficient precision to model each of
these. If it does not, abstract data types and necessary operators
must be defined. To simplify the discussion, we will assume that
the data types with the necessary precision are provided in the host.

The data types b, w, and ! are defined in C to correspond to
these types of the 68010:

typedef unsigned char b; /* byte data (8 bit) */
typedef unsigned short w;  /* word data (16 bit) */
typedef unsigned long 1; /* longword data (32 bit) */

4.2, Machine State

The target machine state consists of data storage locations and
registers. Data storage is modeled as a single, contiguous block of
memory. Registers are modeled by program variables.

Data directives in the assembler program reserve blocks of
memory and may optionally specify initial values. Label identifiers
are associated with the reserved blocks, and used in the decompiled
program when assembler instructions reference memory locations.
These data labels are modeled as constant offsets into a single
block of dynamically allocated memory.

For example, assume an assembler program contains the fol-
lowing data directives:
LO:  .byte’d’,1,2,3 ; four bytes (8 bits each).
L1:  .word 10, 12, Oxff ; three words.(16 bits each).
L2: long0 ; one longword (32 bits).

The following C code would be generated by the decompiler:

#define LO (vars + 0)
#define L1 (vars + 4)
#define L2 (vars + 10)

char *vars;

init()

{
vars = (char ¥) malloc( STACKSIZE );
*(char *)(vars + 0) = b’}
*(char *)(vars + 1) = 1;
*(char *)(vars +2) =2;
*(char *)(vars +3) = 3;
*(short *)(vars + 4) = 10;
*(short *)(vars + 6) = 12;
*(short *)(vars + 8) = Oxff;
*(long *)(vars + 10) = 0;

By convention, program variables are stored in low addresses of the
runtime stack. The stack grows from high addressed locations to
low. The init routine is invoked prior to the execution of the

instruction modeling code. STACKSIZE indicates the amount of
memory allocated for the stack.

A single structure variable models the MC68010 address and
data registers and condition codes. The m_state structure, defined
in Figure 2, contains the necessary definitions. The condition codes
are modeled as distinct integer variables because packing them into
a single word would require extensive bit extraction and insertion
operations and would save only a negligible amount of storage.
Two “‘scratch’ registers #0 and ¢/ are used to hold intermediate
results necessary for the modeling of some instructions and condi-
tion codes. Member names in the d_reg and address union struc-
tures correspond to the byte, word, and longword register modes of
the MC68010. The stack pointer variable is initialized to point to
the top of the simulated runtime stack.

typedef union {
b *b; /* Pointer to byte */
w *w; /* Pointer to word */
1% /* Pointer to longword */
} address;
typedef union {
unsigned char b; /* byte register */
unsigned short w;  /* word register */
unsigned long 1; /* longword register */
} d_reg;
typedef struct {
address a0; /* Address registers 0-6 */
address al;
address a2;
address a3;
address a4;
address a5;
address a6;
address sp; /* Stack pointer register */
d_reg d0; /* Data registers 0-7 */
d_reg d1;
d_reg d2;
d_reg d3;
d_reg d4;
d_reg d5;
d_reg d6;
d_reg d7;
d_regt0; /* temporary registers */
d_regtl;
/* Condition Codes: */
long N; /* Negative Flag */
long Z_bar; I* Zero Flag (complemented) */
long V; /* Overflow Flag */
long C; /* Carry Flag */
long X; /* Extend Flag */
} m_state;

m_state reg; /* reg is structure variable of type m_state */

Figure 2: Machine State Type Definitions.

4.3. Addressing Modes

Addressing modes are easily modeled in C. Table 1 gives
examples of 68010 addressing modes and the corresponding C
code.
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Table 1: Decompiled Code
for Addressing Modes
Mode 68010 Assembler Decompiled C Code

Register Direct d3 reg.d3.w
Register Indirect | a3@ *reg.a3.w
Postincrement a3@+ *reg.ad.w++
Predecrement a3@- *.reg.a3.w
Displacement a3(12) *(w *)(reg.a3.b + 12)
Register Indexed | a3(12, d1:L) *(w *)(reg.a3.b + 12 +reg.d1.1)
Immediate #27 27
Normal (data) LLO *(w ¥)LLO
Normal (code) L24 L24

Table 2: Code Generation Examples
Instruction Example Assembler  Decompiled C Code

Move longword
1 <- Dé;) movl d0,d1 reg.dl.l = reg.d0.];
Add word
(D1 <- D1 + DO) addw d0,d1 reg.dl.w +=reg.d0.w;
Unconditional Jump  jmp LE24 goto LE24;
Branch if Greater .

than or Equal bge LE25 if (GE) goto LE25;
Jurop to jsr _simple -reg.sp.l;
Subroutine _simple();
Return from Its ++reg.sp.l;
Subroutine return;

4.4. Representative Instructions

We shall briefly describe the implementation of a few key
instructions, summarized in table 2. A more complete description
is described by Campbell (1985). As can be seen from table 2,
many frequently used 68010 instructions map to single C statement.
For example, the MOVE instruction is implemented as a simple
assignment statement, and the ADD as an addition.

The CMP (compare) instruction affects only the condition
codes. Condition code settings were omitted from the previous
examples to simplify the explanations. The assembler instruction
“cmpl d2, d0 which compares the DO and D2 registers
decompiles to the following C statements:

{
reg.tl.]l =reg.d0.l - reg.d2.l;

/% CCV */
reg.V = 0x80000000 & “reg.d2.l & reg.d0.l & “reg.tL.LIl
0x80000000 & reg.d2.1 & “reg.d0.1 & reg.tl.l;

/¥ CCC*/

reg.C = 0x80000000 & reg.d2.1 & Teg.dO.lll
0x80000000 & reg.tl.] & “reg.d0.1 li
0x80000000 & reg.d2.] & reg.tl.l;

1+ CCZ*/
reg.Z_bar =reg.tll;

/* CCN #/
reg.N = 0x80000000 & reg.tl.];
}
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The boolean expressions used to set the condition codes are, for the
most part, translated directly from MC68010 documentation
(Motorola 1984a).

The unconditional jump instruction is modeled by a goto
staterent, and conditional jumps by a conditional goto: The condi-
tional GE is macro expanded to the expression:

reg.N && reg.V Il lreg. N && lreg.V

corresponding to the definition given in the MC68010 reference
manual, Similar C expressions are defined for each of the 16
MC68010 conditional mnemonics. Here, we assume that branch
target operands generated by the HLL compiler are always labeled
instructions. Were this not the case, the target address could easily
be computed and a jump table used to reach the target instruction.

Modeling the JSR (jump to subroutine) instruction requires
some reflection. In the current implementation, the JSR instruction
is implemented as a parameterless function call. The stack pointer
is used for passing functions parameters and returning values.
Similarly, the RTS (return from subroutine) is modeled by the C
return statement, as shown below.

4.5. Subroutines and System Calls

The original HLL application program may contain several
HLL procedures. The decompiler must recognize the beginning
and end of each one so that the proper code segments may be
encapsulated as C functions. This is easily accomplished by
constructing a list of subroutine names and locating the correspond-
ing labels in the assembler program.

Procedure calls such as printf require special handling by the
decompiler. The strategy currently in place assumes the decom-
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piler does not distinguish between calls to system and user defined
procedures. Instead, an interface procedure is provided for each
system procedure which moves parameters from the simulated run-
time stack to local variables and then calls the system procedure
using these variables in the appropriate parameter positions, Simi-
larly, returned results must also be placed on the simulated runtime
stack.

Finally, since the code for the system procedure is not instru-
mented, the interface procedure must also increment the simulation
clock by a value indicative of the time required to execute the pro-
cedure. The amount of time used is in general not deterministic so
an appropriate model must be developed.

4.6. Modeling Processor Performance

In order to model the performance of the MC68010, addi-
tional code must be inserted to advance the simulation clock. Each
basic block of the target assembler program is analyzed, and an
estimated execution time is derived. A statement to increment the
simulator clock is then inserted. The timings for the MC68010
opcodes and operands are available in published documentation
(Motorola 1984a). so a simple table lookup is all that is necessary
for most instructions.

A few instructions require a slight modification of this
approach. For example, the Bce (conditional branch instruction)
has a different execution time depending on whether or not the
branch is taken. This is easily handled in the proposed strategy
since there is a close correspondence between the decompiled code
and target assembler instructions. For other instructions, e.g., block
moves, execution time is data dependent. This is easily modeled by
inserting code which computes the runtime dynamically.

4.7. Implementation

The prototype decompiler was implemented in three parts:

(1) A program that strips comments and separates the assem-
bler data directives from the assembler program text.

(2) A program that generates C code to model MC68010 data
areas.

(3) A program that generates C code to model the assembler
instructions.

The first two parts were written using AWK (Aho et al. 1984).
AWK was chosen because it allows rapid prototyping of
moderately complex string and text handling algorithms. The third
part was implemented by a C program that invokes a lexical
analyzer generated by LEX to parse the assembler text (Lesk and
Schmidt 1984).

The prototype required approximately 1.5 man months to
develop. Approximately one month was required to develop the
behavioral model, and half a month to develop the performance
model. The prototype was developed to evaluate the approach for a
reasonably sophisticated microprocessor. It was not designed as a
general purpose tool in which arbitrary instruction sets could be
easily specified, and decompilers generated automatically.

5. MEASUREMENTS OF THE MC68010 MODEL

Three test programs were modeled and measured. The first

" program, called simple, is a tight loop that is executed 10,000
times. Since the loop is of minimal length, this program represents
a real challenge to the technique insofar as the simulation overhead
is inversely proportional to the basic block length. The program
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tour is a recursive solution of the Knight’s Tour problem (see Grap-
pel and Hemmenway 1981). Execution timings were measured for

solutions of a five by five and a six by six board. The H program is-
:a linked list insertion routine. This program was hand coded im

assembly language. The simple and tour programs were coded in C
and compiled into 68010 assembler langnage using the C compiler
on a Sun workstation. The modeling programs were compiled by
the portable C compilers on the Sun and Vax host systems,

Performance measurements were made using the Sun’s time

-command which samples program execution every one hundredth

of a second, as described in Unix™ documentation (1984). System
overhead such as paging is excluded from the reported statistics.
The programs were executed with no other user processes running
on the workstation to minimize interference.

5.1. Validation of the Performance Model

Since precise instruction execution times are available, an
exact performance model could be derived. To verify that the tim-
ing model yielded correct information, the original programs were
first executed and timed on a 10 Mhz, zero wait-state, MC68010
Sun workstation. The timings are given in table 3.

Table 3: Actual and Predicted Execution Times
for 10 Mhz MC68010 (Timings in Seconds)
. tour tour
simple | sysy | (exe) |
Actual 11.1 43 1225 | 5.1
Predicted 11.2 42 118.7 | 53
% Deviation 0.9 2.3 31 [ 39

Simulation models of each program were then generated, and
the resulting program executed on the host machine. The predicted
execution time, measured in machine cycles and scaled to the
10MHz clock rate is reported in table 3. The execution time

estimated by the simulator differs from the actual measured time by’

less than 4%, within the accuracy afforded by the measurement
program.,

5.2. Efficiency

Simulation overhead is defined as the host CPU time required

to execute the simulation model divided by the execution time of.

the original program on the target machine (taken from table 3). In
order to factor out the speed of the host processor, the same proces-
sor was selected as the host and target, a 10 MHz 68010. Overhead
ratios for the benchmark programs are given in table 4.

Table 4: Simulator Overhead Ratios
host . tour tour
siple | 515y | (6x6)
MC68010 7.9 6.1 6.2 7.9
VAX 8600 1.0 0.82 082 | 1.1

Simulation of the MC68010 on a 68010 host was from six to
eight times slower than real time, comparing favorably to tech-
niques using software interpreters. The experiments were also
repeated on a VAX 8600. It was found that the 68010 could be
simulated in approximately real time on the VAX. Of course, one
can always buy a bigger machine to improve the performance of
any simulation program, regardless of the technique which is used.
The experiments were repeated on the 8600 to demonstrate the por-
tability of the method, as well as to provide an additional point of
comparison.
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The manner in which condition codes are managed has a
dramatic impact on the efficiency of the model. An initial imple-
mentation of the program used a brute force strategy in which all
condition codes are set on every instruction. However, many
machine instructions affect the condition codes, but only a few
instructions examine them. Simple data flow analysis techniques
were applied to optimize the program by eliminating
“‘superfluots” condition code settings. This improved perfor-
mance by a factor of two to three over the original naive approach.
The overhead ratios in table 4 reflect performance after this optimi-
zation is applied. This removal of unneeded condition code set-
tings is counter to the philosophy of most register transfer level
simulators where all of the machine state is modeled in great detail.
Because such simulators are often used to verify a machine archi-
tecture, it is paramount that the machine state is modeled as pre-
cisely as possible,

6. EXTENSIONS TO THE MODEL

The direct execution technique can be extended to model
more sophisticated processors such as the MC68020. The
MC68020 is an architecturally compatible successor to the

MC68010. It provides an expanded instruction set, extended.

addressing modes, instruction execution pipeline, and an on-chip
instruction cache (Motorola 1984b).

Extending the behavioral model is relatively straightforward.
The performance model is more problematic however since exact
instruction timings for the MC68020 cannot be derived statically.
Only best case and worst case figures can be derived without actu-
ally modeling the dynamic behavior of the cache and pipeline.

A wide range of possibilities exist to extend the model to
include pipeline effects. A simple approach which minimizes per-
formance degradation of the simulator at the expense of accuracy is
to statically analyze each basic block of instructions to evaluate
pipeline turbulence. Fixed penalties may be associated with branch
taken and/or not taken decisions to model incorrect decisions made
by the instruction prefetch policy.

An alternative approach is to perform a more detailed simula-
tion of the internal operation of the processor. One way to accom-
plish this is to provide a cleaner separation of the behavioral and
performance models than that used in the 68010 prototype where
the two were intimately intertwined. The performance model now
becomes an autonomous functional simulation of the internal
operation of the CPU which is driven by the behavioral model. The
simulation then operates in much the same fashion as a trace driven
simulation such as those reported by Peuto and Shustek (1977) and
Kumar and Davidson (1978). Rather than using a tape containing
the sequence of instructions executed by the benchmark program to
drive the simulation, the behavior model generates the instruction
stream, Obviously this approach may incur a significant perfor-
mance degradation depending on the complexity and level of detail
which is required, however the performance will still be better than
a full register transfer level simulation because most or all of the
processor will not have to be simulated at such a fine level of detail.
Detailed timing information concerning the internal operation of
the MC68020 was not readily available however, so a pipeline
model was not implemented in the prototype.

Similarly, the MCG68020 instruction cache requires some
dynamic modeling of program behavior. Here again, one may
trade off efficiency with accuracy. Simple timing models based on
apriori assumptions regarding hit ratio may be used if simulator
performance is of critical importance, or a more detailed model for
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the cache may be used to achieve high accuracy at the expense of
efficiency. Since the proposed strategy models the application pro-
gram at a relatively low level, incorporation of such models is
straightforward.

7. CONCLUSIONS AND FUTURE WORK

The direct execution technique for modeling processors at the
instruction level has been presented. Overhead ratios measured
from a prototype implementation demonstrate the feasibility of
using this technique for simulating moderately complex micropro-
cessors at a speed within an order of magnitude of real-time assum-
ing the host and target processors provide equivalent performance,
This compares favorably with traditional techniques which usually
require two or three orders of magnitude degradation. Optimiza-
tion of condition code settings proved worthwhile, yielding perfor-
mance improvements ranging from a factor of two to three. Our
measurements indicate that a VAX 8600 could simulate the
MC68010 in approximately real time. The cost of using the pro-
posed technique lies in the additional time required to compile the
program.

Highly accurate performance models can be obtained when
instruction execution times are not dependent on complex interac-
tions among instructions. Accurate performance models of proces-
sors with sophisticated pipelines and/or caches require simulation
of the dynamic behavior of the CPU, or the use of approximation
techniques. The strategy can be easily extended to model such
behavior. Some performance penalty will result, but the resulting
simulator will still be more efficient than register transfer level
simulation.

Several areas of research remain to be pursued. This study
was intended to demonstrate the feasibility and evaluate the
expected performance of the techmique rather than to develop a
general purpose tool. Convenient means of specifying the target
machine architecture must be developed, as well as programs to
automatically generate decompilers. Development of methods to
easily specify and efficiently model dynamic phenomena such as
pipelines and caches are also needed.
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