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ABSTRACT

We are interested in maximizing the
throughput of a closed loop flexible assembly
system by distributing the total cycle time
The

algorithm we present optimizes the system in

across workstations in an optimal way.

a single simulation run and is a multi-
dimensional extension of the single run
optimization algorithm proposed recently. A
complete implementation, of both the assembly
system simulation and the algorithm, is given
in the SIMAN language. Numerical examples
show that the algorithm converges very

quickly.

1. INTRODUCTION

(FAS’s)

possess important advantages such as reduced

Flexible assembly systems

lead time, lower assembly cost, consistent
and increased flexibility

the fixed cost

product quality,
1984).

of acquiring such an assembly system is often

{e.g. Owen, However,
high, and thus it is important to design and

operate it at or near its ’optimal’ point.
In early design stages, mathematical models
of FAS’s may be used to get 'rough’

1986).

for detailed design or operation

configurations (e.g. Kamath et al.,
However,
stages, detailed mathematical modeling and
hence optimization of FAS’s are difficult,
because of their complexity and stochastic
in

nature. Discrete event simulation is,

almost all cases, the only way to model FAS’s
in detail. Refining the detailed design of a
FAS thus reduces to optimizing a discrete

event simulation model.

Common methods for optimization of a
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discrete event simulation model invariably
require a large number of simulation runs to
be made. These include the popular direct
search methods and response surface
methodology. Less widely used in the
simulation community is a family of
algorithms named stochastic approximation
1951;

These methods are based on

methods (Robbins and Monro, Kiefer and
Wolfowitz, 1952).
noisy observations of the response function
rather than estimates of expected values,
thus requiring less computational effort.
Nevertheless, a large number of simulation
runs are still required in the optimum search

process.

In this study we apply a recently
proposed stochastic optimization algorithm

known as single run optimization to a

specific type of FAS's, namely closed loop
flexible
methods,

the optimum in a single simulation run.

assembly systems. Unlike most other

this algorithm gives an estimate of

Numerical results show that this algorithm is
very efficient. A second contribution of
this paper is to show the source code for the
implementation of perturbation analysis and
the single run optimization algorithm, all in
the SIMAN language, along with the SIMAN

implementation of the FAS simulation model.

Section 2 gives a brief review of closed
loop flexible assembly systems and states the
optimization problem under study. Section 3
describes the single run optimization
algorithm. Numerical examples are shown in
section 4. The source code of the complete
SIMAN implementation of the algorithm is

contained in Appendix A.
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2. CLOSED LOOP FLEXIBLE ASSEMBLY SYSTEMS
{CLFAS)

2.1 A Brief Overview

A closed loop flexible assembly system
is basically a number of assembly
workstations connected together in a loop by
an automated material handling system (see
Fig. 1). The number of pallets in the sgystem
is fixed. Workpieces enter or leave the
system through a load/unload station. A
limited amount of buffer space is provided
between adjacent stations. These systems
often work at very high speeds, typically
having a2 cycle time of less than 10 seconds.
They are used mainly for high demand products
but are flexible in the sense that it is easy
to retool the system to produce another
product (in the same product family).

We shall focus on automatic CLFAS's
where there is no manual station and no
rework loops. A characteristic of these
systems is that the total operation time in a
station consists of two parts: the
deterministic cycle time which is the actual
operation time and a jam clear time if the
station happens to jam during that particular
operation. Jams appear in a random manner
and are usually cleared manually. Jam clear
times are thus also random. A detailed
treatment of flexible assembly systems can be
found in Owen (1984) and automatic -assembly
systems in general are described at length in
Boothroyd et al. (1982).

2.2 A Cycle Time Optimization Problem

Let M = number of stations in the CLFAS

N = number of pallets in the CLFAS

A = throughput of the CLFAS

B; = buffer size before station i
(excluding the station capacity,
which is assumed to be 1)

t; = transport time from the previous
station to station i

T:; = random total operation time at

station i

6, = deterministic cycle time at station i
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Fig. 1 Schematic Diagram of a
Closed Loop Flexible Assembly System

6 = (91""’6M)
Ri = random jam clear time at station i
. = { 1 if a jam occurs at station i
1 0 otherwise
o4y = EXi = jam rate at station i
Then
Ty = 05 + X;Ry (isl,ee¢,M)

We shall number the workstations such

that station 1 is the load/unload station.

We are interested in searching for the
value of 6, where throughput is maximized

subject to some constraints. Formally, we

have
max A
2]
M
s.t. & 6. = constant
j=1 Y
6, 20, 1i=l,eee,M
Here M, N, Bi’ ti, L distribution of
Ri’ i=1,+¢¢,M, are fixed. An interpretation

of the first constraint is that the total
time to assemble a part is given and our aim
is to distribute this total time to the
(given) M stations in an optimel way. Denote
the true optimum by ¥ = (91*,---,6M*).

We have made two important assumptions
in this problem:

(1) The assembly task can be split in any

way desired. This assumption makes the
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problem continuous in the decision variable

6. In general, the assumption is, of course,

not true. Permissible values of 6 may be

determined by technical considerations of the
available workstations, the nature of the
assembly task, etc.
{2) M, N, Bi’ oy

iz=l,ee¢,M, are fixed,

distribution of Ri,
independent of the
value of 8. In general, oy and Ri may depend
on 6, and M may depend on the way the
assembly task is split. The value of M in

turn affects the value of N.

Since we are dealing with a flexible
assembly system, we can hypothesize that its
configuration is given and we are trying to
re-design it for a new product. So we can
take M, N, By and ty (i=1,ess,M) as given.
Still, from a practical point of view, the
remaining assumptions are not realistic.
However, since the single run optimization
algorithm is new and not thoroughly
understood at present, only if we can show
that it works for simple problems can we hope
that it will work for more complex real life
problems. Obviously, more work has to be
done before it can be applied to real life
problems associated with CLFAS’s.

2.3 A CLFAS Simulation Model

A simulation model of a fairly general
CLFAS is written in SIMAN for the IBM PC and
The values of M, N, Bi’ ti’ o
i» and the distribution of R; (i=l,e+..,M)

can be easily changed.

compatibles. i
3
Such a model turns
out to be very short in length - about 35

lines in SIMAN,
of the parameters described above.
e.g.
queue lengths, buffer

independent of all the values
All
standard statistics, station
utilizations,
utilizations, etc., are collected.

The perturbation analysis algorithm for
estimating dx/dei (i=1,ese,M) is then added
to the simulation model (see section 3.2).
the total length

about 80 lines.

With perturbation analysis,
of the program is Finally,
the single run optimization algorithm is

added and the total length is about 125
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lines. (Such a model for 6 workstations is

given in Appendix A.)

The simulation model was verified in the
following ways. By setting Bi=N, ti=0, ai=0,
and 6; to be exponentially distributed
(i=1,es¢,M), the CLFAS simulation model is
reduced to a standard closed exponential
network which is analytically tractable (e.g.
1973).
simulation results with the analytic
Next,

distribution of Ri’ and allow ai>0

Buzen, Hence we can compare the

solution. if we allow general
(i=1l,ese,M), but still assume no blocking or
transportation delays, then we can compare
the simulation results with that of an
approximate analytical model. We chose to
use the model proposed in Kamath et al.
(1986) .

(partially) verify the simulation model.

Both these methods were used to

3. SINGLE RUN OPTIMIZATION OF CLFAS
3.1 Background

As discussed above, optimization of
discrete event simulation models is
computationally very intensive in virtually
all situations. Hoping to save some
computational effort, Meketon (1983) proposed
The

basic idea is that rather than running a

a ’'single run optimization' method.

whole new experiment each time after 6 is
updated in the search process, short
iterations are made within a single
simulation run. In this way, an estimate of
the optimum can be obtained at the end of a
single simulation run., Some preliminary work
of applying this method to a single parameter
M/M/1 queue optimization problem has been
Their

promising results led to an extensive

done in Suri and Zazanis (1985).

empirical study in Suri and Leung (1987).
Results obtained there are encouraging,
inspiring this study where a multiple
parameter optimization problem of a more

complex system, namely a CLFAS, is examined.



Single Run Optimization for Closed Loop Assembly Systems

3.2 Perturbation Analysis of Queueing
Networks

We shall use the perturbation analysis
gradient estimator for estimating dx/dei s
izl,e++,M, whose values are required in the
proposed single run optimization algorithm.
This perturbation analysis algorithm can be
applied to general open and closed gueueing
networks with a single class of customers
(and hence to the CLFAS’s under study which
are essentially closed cyclic networks).
Here we will just state the algorithm;
details can be found in Ho and Cao (1983) or
Suri (1987).

Algorithm 1: Perturbation Analysis Algorithm
for estimating dk/dei:

Initialize:
+ 03

(0)
Aij
accumulator variables for the gradient

i,j=1,ee¢,M (These are the

calculations.)
(1)

with total operation time T A

At the end of an operation at station i
RS T
dTi/dei ; where we have used dTi/dei to
denote the sample gradient of the random
variable T; (see the Appendix of Suri
(1987)).
(2) If

station

a pallet leaving station i going to
k terminates an idle period of

station k, Akj + A
(3) 1If

station

150 1,000, M

a pallet leaving station i going to
k terminates a blocked period of
station
(4) At
P =
S =
Ae = estimate of )\ =
Then,

dkei =

i, Aij « Akj’ j=l,eee,M

the end of the simulation, let

total number of parts completed

total length of simulation in time units

P/S

estimate of dk/dei = - ()\e/S)-AMi ,
izl ,e0e,M

{ End of algorithm ]

Note that for our CLFAS system, since ei
is a location parameter of the distribution

of T;, dT;/de; = 1, i=l,eee,M  (Suri, 1987).
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3.3 A Single Run Optimization Algorithm

Referring to the formal statement of the
optimization problem given in section 2.2, we
propose the following single run optimization
algorithm. A discussion of the steps follows
the algorithm.
Algorithm 2: Single run optimization
algorithm for CLFAS’s

Choose initial values eil,

(0)
n « 1

(1)

parts are completed.

izl,eee ,M

Simulate at ein, i=l,eee,M, until L
Using Algorithm 1

stated in section 3.2, we have:

Let P = total number of parts completed up to
the current simulated time ( = ns+L )
S = current simulated time
Ag = estimate of X
dxei = estimate of dx/dei
ke +« P/8S
dxei - (xe/S)-AMi i=l,see,M
(2) Update:
6.%%1 « 6.0 4+ a o(dr.; - (1/M) % dar, ;)
i i n ei j=1 ej’?
izl,eee,M
where a, is one of a sequence of positive
w
numbers such that lim a, = 0, 2 a, = o, and
n4o n=1
D
2
Z a { o
n=1 B

(3) 1If ej“+1 £ 0 for some j, let v ¢ arg min

J
{ejn+1), and u be a uniform{0,1] random

variable,

Recompute ei’s by:
o.0tl ¢ 9.0 4 rog o (dX - (1/M) g ax_ )
i i n ei j=1 ej’?

i:l,ooo,M
(4)
stop.

If a stopping criterion is satisfied,
Values of ein are estimates of ei*,

i=1,e¢e,M,

{§) ne#n+ 1, Go to step (1)

[ End of algorithm ]
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Step (2) is based on the multi-
dimensional Robbins-Monro procedure for
optimizing a stochastic system (Robbins and

Monro, 1951; Blum, 1954), with the following

M
modification: the terms (d)\ei - (i/M) Z dke-)

j=1 ®J
{(i=l,eee,M) are the projected gradients on

M
the constraint hyperplane ‘219- = constant.
J:

J

Because of the simple nature of the
constraint this allows us to adapt the
unconstrained procedure in Blum (1954) for

our problem.

Step (3) is a precaution against cases
where some updated values ein+1 are negative.
This step is necessary since for small values
of L (which we intend to use), very noisy
dkei

values may result in step (2).

's may be obtained and negative ei“+1’s
In such cases
we randomly shorten the step length to ensure

non-negative Gi values.

As noted in Suri and Leung (1987}, by
changing the values of ei’s during a single
simulation run, transient phenomena are
introduced into the system. Two kinds of
bias are in fact present in the perturbation
analysis gradient estimator: bias due to
initial transients, and bias due to the
effects carried over from the old values of
ei’s;
contain these biases.

the values of X, and di,; in step (1)
Hence the theoretical
results of both perturbation analysis of
queueing networks and the Robbins-Monro

Thus the algorithm

proposed here remains a heuristic at this

procedure do not hold.

stage of development.

3.4 Some Algorithm Implementation Issues

The sequence of real numbers a, is
chosen to be in the form of a harmonic
a, = A/n,

Choice of A is somewhat arbitrary;

sequence, i.e. where A is a
constant.
we have chosen it in such a way that the
first few steps taken at the beginning of the
simulation-optimization process are of the
same order of magnitude of the actual values

of ei’s. A simple way to determine the value
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of A is to make a preliminary run of the
simulation model with perturbation analysis
so that the orders of magnitude of the
projected gradients on the constraint
hyperplane are known and hence the orders of
magnitude of the step sizes taken in the
first few iterations can be estimated. For
the numerical examples in this study, we
chose the value of A to be 800.
Following Suri and Leung (1987), the
stopping criterion is chosen to be:

The algorithm -stops when

a, e

where

sgy =

max

=1l,0.,

M{sgi)] <e,

M
(drg; - (1/M)j§1dkej) ,y no= 1

M
0.8esg; + 0.24(dxg; - (1/M)j§1dkej) »n > 1

(i=1,ee¢,M) denotes its value in the nth

dxei
iteration,

€ is a constant.

This form of stopping criterion was
explored and justified in Suri and Leung
(1987). An intuitive interpretation of Sg5 is
that it is the exponentially smoothed
projected gradient on the constraint
hyperplane. The value of ¢ represents a
tradeoff between run length and the accuracy
of the estimated optimum. It is best chosen
by trying out different values through a few
preliminary runs with a system whose optimum
is known. We used €=0.005 in the subsequent

numerical examples.

The value of L, the number of parts to
be simulated in one iteration, represents a
tradeoff between error in the estimated

gradients dx (i=1,+++,M) and the frequency

el
of iterations.
length,

larger errors in 4\

Essentially, for a given run
a small value of L will result in

(izl,ee0,M),
For the M/M/1

queue, Suri and Leung (1987) explored a range

ei but more

iterations can be carried out.

of values of L.
results for L=20;

more extensive study.

Here we will just present

other cases are left for a
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3.5 Implementation in the SIMAN language

The single run optimization algorithm is
implemented in SIMAN,

simulation model described in section 2.3.

on top of the
A
listing of the program for 6 workstations is

given in Appendix A.

The CLFAS is modeled using a general
station in SIMAN.

load/unload station and station 6 is the last

Station 1 represents the

station visited by a part before it leaves
the system.
fixed,
beginning of the simulation and then sent to
the buffer of station 1.

as resources in SIMAN.

Since the number of pallets is

they are all created at the very

Buffers are modeled
The effect of
blocking due to finite buffers is implemented
by seizing the following buffer before

releasing a machine,.

Computations for perturbation analysis
and the single run optimization algorithm are
also accomplished using SIMAN. Loops for
calculating values of an array are done by
sending an entity (i.e. a pallet) through a
set of computational blocks repeatedly
The

two dimensional array Aij in Algorithm 1 is

without advancing the simulation clock.

mapped into the one dimensional array D(-)
available in SIMAN.
these computations would be to link the basic
SIMAN simulation model to a FORTRAN sub-

program.,

Another way to achieve

A SIMAN counter is used to stop the

simulation. When the stopping criterion is
satisfied, this specific counter is

incremented from zero to one.

4. NUMERICAL EXAMPLES

We now present experimental results for
two CLFAS optimization problems of the type
stated in section 2.2.

4.1 Test Runs on a Balanced System

We investigate the balanced case where
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the characteristics (e.g. B; 851 Q41

distribution of Ri’ etc.) of all stations are

identical. the maximum
X
J
Assuming that the optimum is

By symmetry,
throughput occurs when all Si*=e
(i,j=1,0e0,M).,
not known, Algorithm 2 is used to estimate
the optimum. System configuration data are:
M=6, B;=B (see Table 1), t,=0,
Ri~uniform[6,66] (in seconds), ai=0.005,
i=1l,ee¢s,M. These values have been determined

to be typical of CLFAS’s (Kamath et al,

1986).

6
We set the constraint I 6 36

i=1
(seconds), and hence we know a priori that
ei*=6 (seconds), iz=l,ee¢e,6, We start our

e

simulation with the initial values:
(3,6,4,8,10,5).

single run optimization algorithm (Algorithm

Results of running our
2) are shown in Tables 1 and 2.

For the two cases in the table, we
display the results of five independent runs
made using Algorithm 2. Run lengths are
given in terms of number of completed parts
for the CLFAS. of course,
slightly different estimates of 6*.

Each run yields,

Throughput at each estimated optimum is
obtained by additional conventional
simulations (i.e. without the optimization
algorithm) run at the estimated o¥ value.
The tables show the 95% confidence intervals
of the mean throughputs, each obtained by
making five additional independent
replications at the estimated e* value. Each
replication has a run length of 5000
completed parts after a ’warm-up’ period of
5000 simulated seconds (consisting of about
Since the width of the
confidence intervals is less than 4% of the
the

throughput means are expected to be

400 completed parts).

corresponding mean in all cases,

reasonably good estimates. We shall use

these means to discuss the results.

For N=6,
throughput at the estimated optima from the

the largest deviation of the

true optimum occurs at replication 1 and is
less than 6%.
the system throughput from 0.084 to 0.134
(parts per second)

This replicate has increased

- an increase of 42%. The
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Table 1: Results for single run optimization of balanced system
Case: N =6, B =1
* Thruput
Replicate Estimated 6 Run Thruput at % % deviation
number length | estimated @ from optimum
(Starting 3.00,6.00,4.00, —— 0.0944 33.7
value) 8.00,10.00,5.00 + 0.0007
1 4.91,6.09,6.34, 2380 0.1342 5.8
5.94,6.46,6.26 £ 0.0012
2 6.07,5.58,6.01, 4900 0.1353 5.0
6.41,6.18,5.75 £ 0.0011
3 - 5.96,5.90,6.02, 7600 0.1402 1.5
6.13,6.05,5.94 + 0.0012
4 5.95,5,93,5.97, 8180 0.1410 1.0
6.07,6.07,6.00 + 0.0011
5 6.22,5.97,5.67, 5340 0.1354 4.9
6.39,6.15,5.60 + 0.0013
{True 6.00,6.00,6.00, —-—— 0.1424 0.0
optimum) 6.00,6.00,6.00 + 0.0010
Table 2: Results for single run optimization of balanced system
Case: N = 12, B = 2
x Thruput
Replicate Estimated o Run Thruput at % % deviation
number length| estimated 6 from optimum
(Starting 3.00,6.00,4.00, — 0.0968 34.2
value) 8.00,10.00,5.00 + 0.0005
1 6.35,6.23,5.06, 3380 0.1377 6.5
6.29,6.68,5.40 + 0.0007
2 6.24,6.09,5.74, 5160 0.1438 2.3
5.97,6.25,5.71 * 0.0016
3 6.11,6.19,5.83, 5060 0.1395 5.2
6.53,4.94,6.40 + 0.0009
4 5.66,6.22,5.67, 8160 0.1425 3.2
5.89,6.30,6.26 . + 0.0007
5 6.06,5.96,6.25, 6860 0.1441 2.1
6.05,5.58,6.10 £ 0.0008
(True 6.00,6.00,6.00, —-— 0.1472 0.0
optimum) 6.00,6.00,6.00 + 00,0013

In the

the worst case has a deviation

other four replicates do even better.
case of N=12,
of about 6% from the true optimum and gives
an improvement of 42% over the starting

On the other hand, the lengths of all

optimization runs made in this example are

point.

less than 8500 completed parts. Considering

that the run lengths of the usual simulations

to get reasonable throughput estimates are
over 25000 completed parts (5 replicates of
about 5400 parts each), the single run

optimization algorithm is seen to converge

very quickly here.

744
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Table 3: Results for single run optimization of unbalanced system
Cagse: N =6, B =1
Thruput %
% improvement
Replicate Estimated 6 Run Thruput at over start-
number length | estimated 6 ing point
{Starting 3.00,6.00,4.00, -— 0.0944 0.0
value) 8.00,10.00,5.00 £ 0.0007
1 5.98,6.17,6.18, 5120 0.1132 19.9
5.61,6.06,5.99 £+ 0.0011
2 6.24,5.78,5.59, 4500 0.1135 20.2
6.15,6.32,5,93 + 0,0013
3 6.45,5.77,6.03, 4520 0.1115 18.1
6.16,5.55,6.04 £ 0.0006
4 5.13,6.18,6.17, 5120 0.1127 19.4
6.09,6.28,6.15 * 0.0015
5 6.01,5.97,5.94, 4760 0.1137 20.4
5.96,6.13,5.99 £ 0.0015 !

Table 4: Results for single

run optimization of unbalanced system

Case: N = 12, B = 2
Thruput %
% improvement
Replicate Estimated o Run Thruput at x| over start-
number length| estimated © ing point
(Starting 3.00,6.00,4.00, —— 0.0925 0.0
value) 8.00,10.00,5.00 £ 0.0005
1 5.51,6.72,6.26, 2220 0.1194 28.1
5.88,6.68,4.95 + 0.0016
2 6.29,5.92,6.10, 4360 0.1205 30.3
6.52,6.36,5.80 £ 0.0017
3 2.63,6.79,6.95, 5440 0.1126 21.7
5.96,6.84,6.82 + 0.0019
4 5.90,5,18,5.95, 6020 0.1203 30.1
6.59,6.52,5.85 % 0.0019
5 6.04,6.53,3.14, 4800 0.1174 26.9
6.72,7.05,6.53 £ 0.0011

4.2 Optimization of an Unbalanced System

In this example we explore the
unbalanced case where not all stations have
identical characteristics. Here the true
All
configuration data are identical to those in
section 4.1 except that ag=ee=0.03. The
starting point of the algorithm is also the

same and results are given in Tables 3 and 4.

optimum is not known analytically.

Similar to the previous example, 95%
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confidence intervals of the'mean throughputs
of all estimated optima are constructed.
Since each replication of the optimization
algorithm gives slightly different estimates
of 6*, by running simulations at each
estimate we actually explore the neighborhood
For N=6, the
difference between the largest (i.e. the
best) and the smallest improvements in
throughput obtained with the five

optimization replications is about 3% of the

region of the estimates.

starting value. Thus we see that there is no
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large difference in throughput in the

neighborhood region of the estimated optima.
The smallest throughput of the 5 replicates
is greater than the starting one by 18% (of
the starting value). Similar remarks apply
to the case N=12 (Table 4).

all under

Run lengths are
Again, the
Although

know precise errors of the

5500 completed parts.

algorithm converges very quickly.
we do not
estimated optima (without running a large
numbexr of
o),

converges to a fairly 'flat' region of

simulations over a wide region of

at least it is certain that the algorithm

throughput and the throughputs do improve
significantly over the starting point.

An interesting observation from Tables 3
and 4 is that,

the jam rates are unbalanced,

for this system, even though
the optimal
cycle times do not seem to differ much from

the balanced case.

5. CONCLUSIONS

We have extended the one parameter
single run optimization algorithm in Suri and
Leung (1987) to a multiple parameter
optimization algorithm. It is applied to a
cycle time optimization problem of a closed
The

including gradient

loop flexible assembly system.
optimization algorithm,
estimation via perturbation analysis, is
implemented in the SIMAN language. Numerical
results show that the algorithm is promising,
in the sense that run lengths are very short
and deviations of the estimated optima from
the true optimum seem to be small.
Obviously, more work has to be done before
the algorithm can be applied to real life

Some research issues include the

the iteration length L,

problenmns.
stopping criterion,
convergence proof of the algorithm, and
applications to more realistic CLFAS

optimization problems. Nevertheless, this

study represents one step forward in the area
of single run optimization of discrete event

stochastic systems.
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APPENDIX A: SIMAN SOURCE CODE FOR SINGLE RUN
OPTIMIZATION OF A 6-STATION CLFAS

Model File:

BEGIN;
CREATE,1:0,X(2);
QUEUE, 19;
SEIZE:BUFFER(1);
ROUTE:0,1;

STATION,1-6;

QUEUE,M+6;

SEIZE:MACHINE(M) ;

RELEASE :BUFFER (M) ;

ASSIGN:A(2)=M;

DELAY:P(1,A(2));

ASSIGN:A(4)=(M-1)}*X(1)+M;

ASSIGN:D(A(4))=D(A(4))+1;

BRANCH, 1:
WITH,P(2,A(2)),JAM:
ELSE, NOJAM;

3
JAM QUEUE,M+12;
SEIZE:JAMCLEAR (M) ;
DELAY:ED(1);
RELEASE : JAMCLEAR(M) ;
COUNT:2,1:
ASSIGN:M=M+1;
BRANCH, 1
IF,M.GT.X(1),RESET:
ELSE,NORESET;
ASSIGN:M=1;
BRANCH, 1
IF,NR(M).EQ.0,IDLEL:

NOJAM

RESET
NORESET

IF,NR(M+6) .EQ.MR(M+6),BLOCKED1:

ELSE, NOMINAL;

3
IDLE1 ASSIGN:A(3)=0:NEXT(CARRYON1);
BLOCKED1 ASSIGN:A(3)=1:NEXT{CARRYON1);
NOMINAL ASSIGN:A(3)=2;
CARRYON1 QUEUE,M;
SETZE:BUFFER (M) ;
RELEASE:MACHINE(A(2) )
DELAY:P(3,1);
BRANCH, 1:
IF,A(3).EQ.2,CARRYONZ2:
IF,A(3).EQ.0,IDLE2:

ELSE,BLOCKED2;
H
IDLE2 ASSIGN:A(5)=1;
LOOPID ASSIGN:A(4)=(A(2)-1)*X(1)+A(5);

ASSIGN:A(6)=D(A(4));

ASSIGN:A(4)=(M-1)*X({1)+A(5);

ASSIGN:D(A(4))=A(6);

ASSIGN:A(5)=A{5)+1;

BRANCH, 1:
IF,A(5).LE.X(1),LOOPID:
ELSE, CARRYON2;

BLOCKED2
LOOPBL

1
CARRYON2

COLLECT

UPDATE

LOOPUP

LOOPRM

NEGATIVE
ﬁMCONTl

INIT
SMOOTH

RMCONT2
RMCONT3
RESCALE

LOOPRE

CHECK

ASSIGN:A(5)=1;
ASSIGN:A(4)=(M-1)%X(1)+A(5);
ASSIGN:A(6)=D(A(4));
ASSIGN:A(4)=(A(2)-1)xX(1)+A(5);
ASSIGN:D(A(4))=A(6);
ASSIGN:A(5)=A(5)+1;

BRANCH, 1:
IF,A(5) .LE.X(1),LOOPBL:
ELSE,CARRYONZ;
BRANCH, 1:
IF,M.EQ.1,COLLECT:
ELSE,NCOLLECT;
COUNT:1,1;
ASSIGN:X(8)=X(8)+1;
BRANCH, 1:

IF,X(8).LT.P(5,1),NCOLLECT:
ELSE, UPDATE;

ASSIGN:X(8)=0;
ASSIGN:X(6)=0;
ASSIGN:X(5)=NC(1)/TNOW;
ASSIGN:A(5)=1;
ASSIGN:J=X(1)%X(1)-X(1)+1;
ASSIGN:P(8,A(5))=-1%X(5)%D(J)/TNOW;
ASSIGN:X(6)=X(6)+P(8,A(5));
ASSIGN:A(5)=A(5)+1;
ASSIGN:J=J+1;
BRANCH, 1:
IF,A(5).LE.X(1),LOOPUP:
ELSE,RM;

ASSIGN:X(7)=X(7)+1;

ASSIGN:X(6)=X(6)/X(1);

ASSIGN:X(9)=0;

ASSIGN:X(10)=0;

ASSIGN:A(5)=1;

ASSIGN:P(9,A(5))=P(8,A(5))~X(6);

ASSIGN:P(IO,A(S))=P(9,A(5))*P(7,1)/X(ﬂ;

ASSIGN:P(1,A(5))=P(1,A(5))+P(10,A(5));

BRANCH, 1:
IF,P(1,A(5)).GT.X(10),RMCONT1:
ELSE,NEGATIVE;

ASSIGN:X(10)=P(1,A(5));

ASSIGN:A(7)=A(5);

BRANCH, 1:
IF,NC(1).GT.P{(5,1),SMOOTH:
ELSE, INIT;

ASSIGN:P(11,A(5))=ABS(P(9,A(5))):
NEXT(RMCONT2) ;

ASSIGN:P(11,A(5))=0.8%P(11,A(5) )+
0.2%¥ABS(P(9,A(5)));

ASSIGN:X(9)=MX(X(9),P(11,A(5)));

ASSIGN:A(5)=A(5)+1;

BRANCH, 1:

IF,A(5).LE.X(1),LOOPRM:
ELSE,RMCONT3;

BRANCH, 1:
IF,X(10).EQ.0,CHECK:
ELSE,RESCALE;
ASSIGN:X(11)=RA(2)*ABS((P(1,A(7))~
P(10,A(7)))/P(10,A(7)));
ASSIGN:A(5)=1;
ASSIGN:P(1,A(5))=P(1,A(5))~
P(10,A(5))+X(11)%P(10,A(5));
ASSIGN:A(5)=A(5)+1;
BRANCH, 1:
IF,A(5).LE.X(1),LOOPRE:
ELSE,CHECK;
BRANCH, 1:
IF,(X{9)¥%P(7,1)/X(7)).GT.P(6,1),
NCOLLECT:
ELSE,FINAL;

NCOLLECT ROUTE:0,M;
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FINAL ASSIGN:A(5)=1;
LOOPFI  ASSIGN:S(A(5))=P(1,A(5))-
P(7,1)¥%P(9,A(5))/X(7);
ASSIGN:A(5)=A(5)+1;
BRANCH, 1:
IF,A{5).LE.X(1),LOOPFI:
ELSE, VERYEND;
VERYEND DELAY:1;
COUNT:3,1;
END;

Experiment File:

BEGIN;
PROJECT,CLFAS,SURT & LEUNG,5/26/87;
DISCRETE,50,7,19,6;
RESOURCES : 1-6 ,MACHINE:

7-12,BUFFER, 1:

13-18, JAMCLEAR;
DISTRIBUTIONS:1,UN(4,1);
PARAMETERS:1,3,6,4,8,10,5:

2,0.005,0.005,0.03,0.005,0.005,

0.03:
3,0.0:
4,6,66:
5,20:
6,0.005:
7,800:
8,0,0,0,0,0,0:
9,0,0,0,0,0,0:
t0,0,0,0,0,0,0:
11,0,0,0,0,0,0;
INITIALIZE,X(1)=6,
’ X(2)=6;
CSTAT:1,8(1),MC 1 OPT SERV:
2,8(2),MC 2 OPT SERV:
3,8(3),MC 3 OPT SERV:
4,S(4),MC 4 OPT SERV:
5,8(5),MC 5 OPT SERV:
6,5(6),MC 6 OPT SERV;
COUNTERS:1,TOTAL # OF PARTS:
2,TOTAL # OF JAMS:

3,CONTROL COUNTER,1;
SEEDS:1,17367,N0:2,5881,N0;
REPLICATE, 1;
END;
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