Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

MODELING OF A MANUFACTURING CELL USING A GRAPHICAL
SIMULATION SYSTEM BASED ON SMALLTALK-80

Timothy Thomasma
Onur M. Ulgen

Department of Industrial and Systems Engineering

University of Michigan - Dearborn

4901 Evergreen Rd., Dearborn Mi 48128

(313) 593-5361

ABSTRACT

A simulation model of a manufacturing cell is
constructed in order to test the accuracy of an
analysis of the cell done without simulation. The
analysis does a good job of ranking alternative
designs according to throughput, but overestimates
the throughput by about fifteen percent. The model
is built using a simulation system written in
Smalltalk-80 that features icon~based programming and
animation. The experience of using the simulation
system to build this particular model is described.

1. ANALYSIS AND SIMULATION IN DESIGN OF ROBOT CELLS

Simulation is widely considered to be the most
useful tool in analysis and design of complex
manufacturing systems. There are difficulties with
its use, however, which have led manufacturing
engineers to take a second look at analytic techniques
(Suri and Hildebrant 1984). Simulation models are
usually difficult to construct and modify, which
inhibits their use in evaluating a large number of
des'ign alternatives. Recently, several software
packages have been developed which make it easy to
build simulation models of a variety of manufacturing
systems. Once the models are built, however, using
them still requires a great deal of time for gathering
output and doing statistical analysis. A tool like
MANUPLAN (Suri and Diehl 1985) that is based on
queueing theory enables users to construct and run
models quickly and requires no statistical analysis of
the output. Some companies have used it instead of
simulation in the early stages of design efforts to
identify promising alternatives to be studied using
detailed simulations {(Haider, Noller and Robey 1986).

Flexible manufacturing systems usually have
features that cannot be modeled using MANUPLAN or the
newer icon-based factory simulation systems. Their
performance is highly dependent on their material
handling systems, which cannot be easily characterized
by a set of parameters. Therefore, in order to study
these systems, detailed simulation models are usually
built in traditional simulation languages, or using
physical models (Godziela 1986, Diesch and Malstrom
1985), primarily to study the material handling system
and its interaction with other system components.

This paper concerns the study of a relatively
simple manufacturing cell consisting of three grinding
machines and a gauge served by a dual~bridge overhead
gantry robot. Only one part type is served in the
system and the only sources of variability are the
random breakdowns of the grinding machine, a slight
error in the gauge's measurements, and, for each part,
a 0.2% probability that it will be out of
specification. All processing times, travel times,

Production Modeling Corporation
and 214 Devonshire Road
Ann Arbor, Michigan 48104
(313) 761-2750

loading time, etc. are deterministic., An attempt is
made to balance the system and predict its throughput
using an analytic model. Then the system is simulated
in detail. If the simulation corresponds to the
results of the analytic model, then there is reason to
hope that analytic models may be as useful in initial
design of flexible manufacturing systems as they are
for other systems. The simulation is built using
Smalltalk-80 to illustrate the advantages that
object—oriented simulation has for this sort of
modeling.

2. A ROBOT CELL

The manufacturing cell under study is sketched in
Figure 1. The diagrams in Figure 2 indicate routes
along which the robots move and the exact locations of
the points they visit. There is a diagram for each of
the two scenarios that are to be studied.

Figure 1:

Sketch of Robot Cell

T.Thomasma and O.M.Ulgren

Scenario 1

Scenario 2

Figure 2: Diagrams of Routes of Robots in Cell

684

Modeling of a Manufacturing Cell Using Graphical Simulation

The rough parts arrive in the cell at location
(5). It is assumed that there is always a rough part
available at location (5). Any of the grinding
machines can serve the rough parts. Bridge A takes
rough parts to machines (1) and (2), alternately.

a machine is down, Bridge A takes the part to the
avallable machine. If both machines (1) and (2) are
down, Bridge A waits at location (5a) for the first
availlable machine.

If

Bridge B takes rough parts to machine (3). Bridge
B also picks rejects from location (7) and delivers
them to location (8). If machine (3) is down and
there are no rejects at location (7), then Bridge B
waits at location (3').

The "interference area" is the area between
locations (5a) and (7a). Bridge A cannot move into it
unless Bridge B is outside it or moving out of it and
Bridge B cannot move into it unless Bridge A is
outside it or moving out of it. Location (6) in the
interference area is the location where finished parts
are dropped by the bridges. Whenever a bridge takes a
rough part to a machine, it picks up the finished part
and delivers it to location (6) to be gauged.

The gauging time is 12 seconds. If a part does
not appear to meet specification on the first
measurement, it is measured again. About 5% of the
parts that are measured twice (which requires a total
of 24 seconds) are found to be good on the second
measurement. The other 95% are rejected as
defective. The reject rate for the manufacturing cell
is 0.2%. Defective parts are produced completely at
random, except that 75% of them occur individually,
20% occur in doubles, and 5% occur in triples.

Each machine can process one part at a time and
has a constant cycle time. Each machine gets cleaned
for 111 seconds after it processes ten parts.

Cleaning takes place as soon as the tenth cycle is
completed, whether or not the finished part has been
unloaded. Unloading and loading of the machine can be
done while it is being cleaned. The machines break
down randomly. They are down about 10% of the time,
At the end of each eight-hour shift, any machines that
are down are repaired in time for the start of the
next shift.

3. ANALYSIS

From the results reported by Diesch and Malstrom
(1985) it appears that the effect of the efficiency of
the material handling system in a flexible
manufacturing system is nearly independent of the
effects of efficiencies of the machines in the
system. If that is true of our robot cell, then the
throughput of the cell can be found as the minimum
throughput allowed by either the material handling
system, the grinding operation or the gauging
operation.

Normally, the measurement operation requires 12
seconds. Defective parts are measured twice for a
total of 24 seconds. In addition, some good parts are
measured twice, since 5% of those parts measured twice
are found to be good on second measurement.

Therefore, out of every 9500 parts, an average of 19
(0.2%) will be defective and, on an average, one good
part will be measured twice, The average time
required to measure these 9500 parts is

12%9500+12%20 = 114240

685

seconds. In this time 9481 good parts will be
produced. The expected throughput of the gauging
operation is therefore

(9481/114240)*3600 = 298.77
good parts per hour.

The average throughput for the grinding operation
depends on the cycle time c. The time required to
process ten parts on one machine, assuming no
downtime, is

10c + (loading~unloading time) + (cleaning time)

10c + 9%6 + 111
10c + 165

seconds. Loading-unloading time is counted only nine
times because one unload-load is done during each
cleaning cycle. If downtime d is considered, then the
time t required to process 10 parts is

t 10c + 165 + d.

On average,
d = (1/10) t.
Therefore the expected time to process 10 parts is

(100c + 1650)/9

seconds. Expected throughput is

6480/ (2c + 33)

parts per hour, including 0.2% defective parts.
Expected throughput of good parts for three machines,
then, is

(.998)*3%6480/(2¢c + 33) = (19401.12)/(2¢c + 33)
parts per hour.

The throughput of the system cannot be more than
the maximum of 298.77 and (19401.12)/(2c + 33). The
maximum cycle time which should give the highest
throughput allowed by the gauging operation is
obtained by solving the equation

298,77 = (19401.12)/(2c + 33)

for ¢; that is ¢ 15.98 seconds

The time required by the robots for moving and
loading-unloading parts is dependent on the control
logic for the robot system. We investigate the two
scenarios in Pigures 3 and 4. Positions of the robots
are plotted against time in these figures for the case
when all three machines are operating and there are no
defective parts to move. The control logic for the
robots is the same in both scenarios. In Figure 3 the
robots are constrained to move either parallel or
perpendicular to the conveyor. In Figure 4 diagonal
motion is allowed.

These two scenarios were chosen to test the
predictive accuracy of the analysis done in this
section. The only difference between the two is the
difference in motion of the robot bridges. There is
good reason to believe that the difference between
direct diagonal motions and motion that is constrained
parallel or perpendicular to the conveyor should make
a noticable difference in material handling efficiency

T.Thomasma and O.M.Ulgren

a9y - S e !
\Br(dgoA '
- [
(Sa) - Z - A
(5) -+ fasnd- T - et f-j
() —-/— \ : /-J I
7z
(7a) \ /~
L Bridge B ——
: cycle
: repeoats
1
o
. !
(33(3)
A
A Grinder
Grin. 2 starts
o 1 starts Grinder
3 starts
Time 14.9 321 40.5 5t2
Figure 3: Robot Time - Position Plot for Scenario 1
i = l
i
Bridge A
(Sa) e /
I - -Y\——
/ L
6) - -
/ \ ,
(7)¢2) f
(7a) \ f
L Bridge B
o ——
: cycle
: ropeats
°
a
O R
A
A Grinder
Grinder 2 starts
1 starts A
Grinder
3 starts
Time 12,9 29.5 35.4 443
Figure 4: Robot Time - Position Plot for Scenario 2

between the two scenarios: the material handling of
scenario 2 should be more efficient than that of
scenario 1. One would hope that the analysis would
predict the throughput well for each scenario. At
least one hopes that the analysis will pick the
scenario with the higher throuhput, since analysis
that provides accurate ranking of design alternatives,
even if it does not accurately predict throughput,
would still be useful in identifying the best
alternatives as candidates for detailed simulation
studies.

In the first scenario, three parts can be moved
every 51.1 seconds for a throughput of 211 parts per

‘hour, assuming none of the three machines are down.

686

Diagrams similar to Figure 3 can be drawn for each of
the cases when one or more machines are down. When
calculations are done for each case and weighted by
its case's probability of occurring, throughput is
found to be 196 parts per hour. A similar
calculation for the second scenario gives 224 parts
per hour.

On the basis of these calculations, we expect that
at a cycle time of 16, the cell's throughput will be
bound by the material handling, with throughputs of
196 and 224, respectively, for scenarios 1 and 2.
cycle time that will balance the system for either
scenario depends on how many machines are working.
Again, taking a weighted average, we find that the
balancing cycle times are 37 for scenario 1 and 31 for
scenario 2. If we run the machines at a cycle time of
41 in scenario 1, we expect throughput to be bound by
the machine operation, and we expect it to be

The

(19041.12)/(2%41 + 33) = 169

parts per hour., Similarly, if we run the machines in
scenario 2 at a cycle time greater than 31, say at 34,
we expect throughput to be

(19401,12)/2%34 + 383) = 192,

In the sections that follow, we use a simulation
model of the manufacturing cell to test the above

calculations. We will make four sets of runs:

1) Scenario 1 with cycle time 16. Expected
throughput: 196

2) Scenario 2 with cycle time 16. Expected
throughput: 224

3) Scenario 1 with cycle time 41. Expected
throughput: 169

4) Scenario 2 with cycle time 34. Expected

throughput: 192,

CONSTRUCTION OF SIMULATION MODEL

The graphical simulation system used in modeling
the manufacturing cell was written in the Smalltalk-80
object-oriented programming language (Goldberg and
Robson 1983). The system enables the user to develop
much of the model in a programming-free environment.
The input to the simulation is based on the graphic
layout of the model and the user's settings of a
number of parameters. The icons used in the graphic
layout represent the dctual system components (robot,
machine, gauge, storage space). Each icon has an
interactive multi-level menu system to describe the
characteristics of the actual system component being
represented by that icon. The animation of the
simulated system is also an integral part of this
graphical package. More details concerning the system
can be found in Ulgen and Thomasma (1987).

Since the system is modular, it is easy to quickly
construct models with a variety of alternative
configurations of icons. The library icons can be
augmented as necessary to support additional
operations or machines. These advantages of modular
systems were noted by Medeiros and Sadowski (1983).
Because of our system's graphical interface and
animation capability, and because it was written in an
object-oriented language, the simulation models of our
robot cell could be developed and verified especially
quickly and easily.

Modeling of a Manufacturing Cell Using Graphical Simulation

Table: 1: Class SourceAlwaysHasParts

File=

Sowvwr cenlwaysHasParts.pp

From Smalltalk-80 version T2.1.3, of Marczh 13, 1986 on 13 August IP87 at 8:4%:18 am

Source subclass: #SourceAlwaysHasParts
instanceVariableNames: ‘¢
tlassVariableNames: ‘°
paolDictionaries: *°
category: ‘Simulation Objects’

SouyrceAlwaysHasParts comment: '¢

SourzeAlwaysHasParts methodsFor:

runBy: aSimulator

‘model definition

"An arrival event must be scheduled at time © 1n order to get the simulation started.

TY 8/3/87"
super runBy: aSimulator.

1tsSimulator scheduleEvent:

SourcecAlwaysHasParts methodsFor: ‘tasks’

moveit

self at:

0.0 task: 1

"A SourceflwaysHasFarts always has a part to move to the next object,

TT 8/3/897"

self arrives

Several icons could be used without modification:
the Sinks, Storage Facilities for queues of parts to
be gauged and for rejects, and a Router to decide
whether a part should go out of the system or to the
reject queue., The Source provided in the system would
not model the condition that rough parts are always
available at location (5). A new class of objects,
called "SourceAlwaysHasParts", was created as a
subclass of Source to model this feature. All the
code for class SourceAlwaysHasParts is listed in Table
1. The methods “runBy:" and "moveit" are present in
Source, but behave differently than desired. The
methods in Table 1 override Source's "runby:" and
"moveit" methods. All the other metheds in Source for
graphics, animation, modeling of transfer of parts to
other objects, etc. are inherited by
SourceAlwaysHasParts and did not need to be
rewritten.

In the same way, a subclass of Workstation had to
be made to model the gauge's behavior that the time
required to do an operation is conditional on whether
the part is good or defective, and to model the
gauge's error rate on first measurement. Again, only
two methods from Workstation needed rewriting. The
"accept:" method only required the modification
indicated in the box in Table 2. Thus the "accept:"
method could be copied from Workstation to Gauge and
Gauge's copy modified. Once class Gauge was created,
it was very easy to test it using the simulation laid
out in Figure 5. A general impression of the
correctness of the Gauge could be obtained by watching
the animation of this small simulation. Its trace and
output statistics were also checked for correctness
and consistency.

In order to model the grinding machines, another
subclass of Workstation, called "Grinder", was
written. Grinder is more complicated than Gauge.
was also written as a subclass of Workstation, but
instead of requiring rewriting of two methods,
thirteen methods had to be rewritten and eight had to
be added. This was much simpler than rewriting an

It

687

Time: ¢

" Jpefactives

Simulation to Test Gauge

Figure 5:

entire new version of Workstation, which has over 40
methods. The method classification structure in
Smalltalk-80 made even this larger job fairly simple
to do. Pieces of code to be modified could be found
very quickly and easily. Existing code could often be
easily found to use as templates for the new methods.
Two experimental simulations were run to verify and
validate the Grinder: one (Figure 6) to test the
downtime distribution, including the behavior that
Grinders are completely repaired at the end of each
shift, and the second (Figure 7) to test the
distribution of defective part production. Writing,
testing and debugging the Grinder took about ten
hours, including the time taken to run the test
simulations.

T.Thomasma and O.M.Ulgren
Table: 2: Class Gauge

Files= GCauge. pp
Fros Smajltalk-80 version T2,1.3, of March 13, 1736 en 20 August 1787 at 7:55:21 am

Workstation subclasss #Gauge
instanceVariableNames: ‘rejectProbability *
classVariableNames:
oovolDicticharies:
category: Simulation Objects’

Gauge comment:

Gaugs methodsfor: 'initialization®

inttialize
“TT &/30/87"

super initialjze.
rejectProbability ¢ Bernoulll parameter: ©.0001054731

Gauge methodsFar: “tasks’

accept: aRart
“TT a,/7/87"
i time N wname !
(cantHandles includes: ({(aPart partTyps) name)) §{fTrue: [tfalsel.
{state = ‘idle’) ifTrums: ["Fart can be acceoted.”
time & ituSimulator simTime.
workpiece & aFart.

“Update statistics.”

(traceOn) ifTrue: [{tsSimulator writeEvent: label, ' receives °, (workpiece fullLabel) 3.
. wai tingToShowAccept (trus.

numberRecei vad ¢ numberReceivad + 1.

1dleTime o idlaTime + (time - timeLastStateChange).
timelastStateChange (time.

"Schedule the time when the processing will be done.”
(processingProbability = nil) {fTrue: [whenDone & N1 1 ifFalse: €
n proc ingFrobability next.
TR ¢ TRGFRpTeCE partTVpaT aRaT
(wname = 'Defective’) ifTrue: (n & ns2),
{wname = "Finished') itTrue: C
((rejectFrobability next) = 1) ifTruer [0 & ne2)
3.

I, .
{n € 0) ifTrum [whenDone € time] §fFainet [whenDone € (time + Al 1.
1tsSimulator scheduieEvents self at: whanDone task: 2,
state & 'no-kinq'.

:::::Fr‘llki = m1) {tFalses ¢ (time > whenbreaks) {1True:s (self breskgown 31.

]

ifFaise: [tfalse 3

Figure 6: Simulation to Test Downtime in Grinder *Figure 7: Simulation to Test Defective Part
Production

688

Modeling of a Manufacturing Cell Using Graphical Simulation

Table 3: Class RealSimpleRobot

File:=z RealSimpleRobot.pp

From Smalltalk-80 version T2.1.3, of March 13,
MaterialHandler wubclass: #RealSimpleRobot
instanceYariableNames: °°
classVariableNames: **
poolDictionarfes: °°
catagorv: ‘Simulation Objects’

RealSimpleRobot comment: °°

RealZimoleRobot methodsFor: 1initialfzation®

initializer aSimulator

1386 onp 20 August (P87 at Tirid:10 am

"The order 1n which these things are dene 15 1moortant!

TT &/22/87"
! spl sp2 cart

super 1nitialice: aSimulator.
“Step 1: Define the Stopfoints.”

501 €& StopFoint new: sSimulator.
spl label: ‘(1)°,
502 € StopPFoint new:
s02 label: “(2)°.

aSimulator.

“Step 2: Defins the routes out of sach Stopfoint.*”
spl addRouts: sp2 acceleration: (.45

sp2 addRou spl acceleration:

"Step 3: Fut the StopFoints into the dictionary
stopFoints st: (1) put: spl.
stopFoints at: “42)° put: sp2.

actionsAtStopFoints at:
ActionsAtStopfoints at:

1y

)

put:
put:
"Stew 4: Define the Carriers and put them
cari 4= (Carrier new: aSimulator?.

cari label: ‘Feal Simple Robot'; i1sAt: (stnppoints at: ‘(1))

velocity: 1.1: hancledBy: selt.
carriers at: ‘Feal Simple Robot * put: carig,
"Sten S: have each of tne carriers arrive at
selt arrivalOf: carl

RealSimpleRobot methodsFor: "action: at StopPoints”
actionsAt)
"TT &/23/87"

! car sp i
Sp < (stopFoints at:
Car «— carriers at:
({({car wherelsit) =
((car numberln) = Q) {fTrue: €
sp itsHere: car
]
ifFalse: €
sD release.
car startMoving:
k)

.,
‘Real Simple Robot-.

actionsAt2
"TT 8/4/87"
vocar sp o
Sp < (stopFoints at:
car ¢— carriers at:
{{{car wherelsit) =
(car numberlIn = o)
&3 releasa,
Tar startMovinag:

2y 'y,
‘Real Simple Robot'.

1fTrue: [

ifFalse: {
sp 1tsHere: car
3

The most difficult part of the model to build was
the Gantry Robot. The system provides a class called
"MaterialHandler", which is not an executable icon in
itself. Subclasses of MaterialHandler must be made
which define the material handling machines

decelaration:
t.85 decelarstion:

f self actionsAtl
{ self actionsat2 3.

into the cactionary

the Stoofoints that they ars

(sp label)) & ((car status) =

(stopPoints at:

(sp label)) & ({car status) =

(stooFo1nts at:

689

1.1,
1.1,

1.45 velocity:
t.45 velocity:

'stopFeints’, "

3.

‘carriers .

acceleraticn: 1.45: deceleration: {,45;

to be 1mitislly located at,”

‘1dle’)) 1fTrue: €

2y

‘idle’)) 1fTrue: €

‘{1t

(carriers), set up the nodes and routes along which
the carriers move and specify the behavior of each
carrier at each node {stopPoint). As an example of a
subclass of MaterialHandler, Table 3 lists the source
code for RealSimpleRobot, which picks parts from

T.Thomasma and O.M.Ulgren

location (1), moves them to location (2), where it
places them, and returns empty to location (1).

The source code listing for GantryRobot required
fifteen pages. Of that, twelve pages defined the
robot control logic, which required four pages to
specify in English. Again, using Smalltalk-80 helped
in that interactive debugging of the model could be
done and time could be spent concentrating on the
important parts of the model building effort, namely,
the control logic for the robots. The animation
provided by the simulation system was especially
valuable in validating and verifying the control logic
of the Gantry Robot system. Once Scenario 1 was
complete, four hours were required to write, test, and
debug the simulation model for Scenario 2.

5. OUTPUT ANALYSIS

The steady-state condition of this manufacturing
cell is reached very quickly, almost at the beginning
of its operation, just after the machines are first
loaded by the robots. Since this is true, there is no
advantage in using the batch method for output
analysis. Each run was made using a different random
number stream. The first ten minutes of simulated
time were discarded for each run. For each
alternative model four replications, each of 10 hours
duration, were used to obtain a confidence interval
for the system mean with an alpha level of 0.05.

Table 4 gives the estimate of means and the
corresponding confidence intervals for the replication
method.

Table 4: Throughput

Besides the throughput of the system, which is
the main concern, other statistics were also gathered
to observe the behavior of the system., These
included the percentages of times spent by the
bridges in moving, waiting, or loading; times spent
by each grinder in processing, being repaired, being
cleaned, or waiting for delivery of parts; percent
times idle and in use for the gauge; queue sizes at
locations (6) and (7), number of defective parts
produced and number of parts lost due to machine
breakdown.

The observed throughtputs for each scenario and
cycle time fell significantly below predicted times,
although the designa giving highest and lowest
throughputs were correctly chosen by the initial
analysis. In every simulation run, well over 99X of
the rough parts were successfully processed by the
system; therefore we were justified in ignoring
handling of defective parts in our analytic model.
Our model correctly predicted all other statistics
except the idle times for the grinders and the amount
of time bridge A spends waiting either for Bridge B
to leave the interference area or for one of the
grinding machines to become ready to accept parts.
In Scenario 1, ¢ = 41 and in Scenario 2, ¢ = 34, the
analysis predicted that the system would be bound by
the grinder's processing times, and therefore idle
time for grinders was expected to be zero. In fact
the percentages of ‘time idle were those presented in
Table 5. In the ¢ = 16 cases, the analytic model
predicted that Bridge A would spend less than 10% of
its time waiting. In fact Bridge A waited 17X of the

Model Throughput
Experimental Condition Expected Observed
Confidence interval
Mean {Std. Dev. L.L.
Scenario 1
Cycle Time:16 196 173 3.2 168 178
Cycle Time:41 169 137 2.1 134 140
Scenario 2
Cycle Time:16 224 182 4.2 175 189
Cycle Time:34 192 166 7.2 155 177
Table 5: Percent Time Idle for Grinder
Model Grinder 1 Grinder 2 Grinder 3 Average
Experimental Condition
Scenario 1
Cycle Time:41 21 21 19 20
Scenario 2
Cycle Time:34 12 12 11 12

690

Modeling of a Manufacturing Cell Using Graphical Simulation

time in Scenario 1 and 25X of the time in Scenario
2. The analytic model did not accurately model the
cleaning cycles of the grinding machines. We
consider this the most likely explanation for the

discrepancy between the analysis and the simulation
model.

The runs were done on a Tektronix 4405 workstation
with 1 MB of memory running the standard Xerox
Smalltalk-80 system. Each run took about one hour.
Tektronix makes available an enhanced Smalltalk system
for machines with more memory, which provides faster
execution, among other advantages. Smalltalk is an
interpreted language. Execution would be faster if
the simulation program could be fully compiled once it
were written, verified and validated using the
interpretive environment.

6, GCONCLUSIONS

It is possible, at least in simple cases, to
evaluate alternative designs of flexible
manufacturing cells and choose the most promising
candidates without simulation. The candidates must
then be studied using simulation in order to predict
system throughput accurately. Computer programs to
assist in preparing diagrams like those in Figures 3
and 4 would be very helpful in doing these initial
analyses.

It is very easy to construct many simulation
models or parts of models in an icon-based simulation
system with a graphical user interface. Having an
icon-based simulation system written in Smalltalk is
particularly advantageous, since, if there aren't
enough icons in the simulation system's icon library,
they often can be easily written, added to the
library, and placed in the simulation. The
modularization encouraged by the icon library and the
availability of interactive animation makes
verification and debugging relatively easy. How
difficult it will be to build a simulation model for
any particular problem using a graphical simulation
system based on Smalltalk depends on whether the
system already has in it objects that are similar to
the objJects in the system that is to be modeled. For
our particular study there was no existing object
similar to the gantry robot system, which was a major
component of our manufacturing cell, Therefore, the
effort required to build the simulation in Smalltalk
was similar to the effort required to write code for
the simulation in a traditional simulation language.
Now that the gantry robot system has been done in
Smalltalk, however, it will be much easier to build
simulation models of other robot cells.

REFERENCES
Diesch, K. H. and Malstrom, E. M. (1985). Physical

simulator analyzes performance of flexible
manufacturing systems. Industrial Engineering

17 (6), 66-175.
Godziela, R. (1986) Simulation of a flexible

manufacturing cell. In: Proceedings of the 1986
Winter Simulation Conference (J.R. Wilson, J. O.
Henriksen, S. D. Roberts, eds.). Institute of
Electrical and Electronics Engineers, Washington
D.C., 621-827.

691

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The
langauge and its Implementation, Addison Wesley,
Reading, Mass.

Haider, S. W. , Noller, D. G., Robey, T. B. (1988)
Experiences with analytic and simulation modeling
for a factory of the future project at IBM. In:
Proceedings of the 1986 Winter Simulation
Conference, (J.R. Wilson, J. 0. Henriksen, S. D.
Roberts, eds.). Institute of Electrical and
Electronics Engineers, Washington, D.C., 641-648.

Medeiros, D. J. and Sadowski, R. P. (1983).
Simulation of robotic manufacturing cells: a

modular approach Simulation 40, (1), 8-12.

Suri, R. and Diehl, B. W. (1985). MANUPLAN - a
recursor to simulation for complex manufacturing
systems. In: Proceedings of the 1985 Winter
Simulation Conference, (D. T. Gantz, G. C. Blais,
S. L. Solomon, eds.). Institute of Electrical and

Electronics Engineers, San Francisco, California,
411-420.
Suri, R. and Hildebrant, R. R. (1984). Modeling

flexible manufacturing systems using mean value

analysis. Journal of Manufacturing Systems 3 (1},
27-38.

Ulgen, 0. and Thomasma, T. (1987). Graphical
Simulation using Smalltalk-80. In:_Proceedings of
the SAE/ESD International Computer Graphics
Conference, (N. Spewock, E. D. Goodman, K. A.
Kline, Eds.). Society of Automotive Engineers,
Detroit, Michigan, 317-326.

