Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H, Grant, W. David Kelton (eds.)

TWO IMPLEMENTATIONS OF A CONCURRENT
SIMULATION ENVIRONMENT

Carolyn Hughes
Dept. of Computer Science
Texas A & M University
College Station, TX 77843

ABSTRACT

This paper discusses the design of a
concurrent simulation environment hosted on
the Ada programming language at the
Laboratory for Software Research at Texas
A & M University. This environment was first
implemented on a VAX 11/750 single processor
system and then ported to a Sequent Balance
8000 parallel computer system with ten
processors. Two run-time Ada systems were
available on the Sequent: one for sequential
and one for parallel. This paper reports our
experiences in porting the original software
to these new environments.

1. INTRODUCTION

The advent of low cost microprocessors
has provided a means to overcome the
traditional shortcomings associated with
simulation such as high memory requirements
and execution time. Distributing simulation
over multiple processors has long been
analyzed as a possible solution to the above
problems. However, distribution of the model
introduces some unique potential problems
such as incorrect forward simulation and
deadlocks that do not occur in the real
systems.

Multiprocessor systems have been used in
simulation in two ways. The traditional
approach has concentrated on distributed
simulation where machines are networked to
achieve parallelism (Chandrasekaran and -
Sheppard 1987). Message flow between
processors is closely related to the topology
of the system being simulated. All
communication is handled via message passing
because there is no shared memory in these
systems. A newer approach has been coined
"concurrent" simulation (Jones 1986). These
systems allow use of shared memory and load-
balancing capabilities of multiprocessor
architectures. Most of these machines
consist of many processors in a tightly-
coupled environment and a single shared
memory bus, where cache memories are used to
reduce bus contention.

The Laboratory for Software Research has
implemented a concurrent simulation
environment on both single and multiprocessor
architectures. Ada was chosen as the
implementation language to explore the role
of high level language concurrency in
implementing distributed discrete simulation.
Since Ada provides concurrency at the source
level, the multitasking features of the Ada

Usha Chandra
Dept. of Computer Science
Florida State University
Tallahassee, FL 32303

618

Sallie V. Sheppard
Dept. of Computer Science
Texas A & M University
College Station, TX 77843

language were employed for distributing the
simulation support functions. In this
approach the support facilities and the user
model are written in Ada. Functions that
can be performed in parallel are coded as
separate tasks and the distribution of these
tasks onto the available processors is the
responsibility of the Ada run-time system.
Features of the language are available at
the source level to be used in handling
system synchronization, deadlock protection,
and communication between tasks. Since Ada
was designed to be portable across archi-
tectures, it should allow the software to
execute on not just different run-time
systems but on architectures having different
numbers of processors. The allocation of
processors so as to make maximum use of the
available hardware is transparent to the
user. We see this potential portability
across architectures as being one of Ada's
biggest advantages. Once this portability
ideal is achievable with suitable Ada run-
time systems, then Ada software, such as the
simulation environment described in this
paper, will be portable without modification
of system design.

Our simulation environment employs a
hierarchical functional decomposition
approach by providing the support functions
as concurrent program units (Chandrasekaran
1986, Chandrasekaran and Sheppard 1987). 1In
addition, the independent components of a
model are also executed in parallel using a
parallel algorithm that decentralizes the
simulation execution control and handles
deadlocks. This parallel algorithm is based
on the relaxation technique suggested by
Jones and Schwarz (1980) for constructing
parallel solutions to general problems.

The concurrent simulation environment
includes a set of simulation primitives that
are provided as extensions to the host
language, support facilities such as random
deviate generators, statistics collection
routines and gueue handlers, and a control
unit that incorporates the above mentioned
parallel algorithm. The following sections
provide an overview of the system, the
relaxation algorithm, and the implementation
of the support and decentralized control
environments. The final sections discuss and
compare the single and multiple processor
implementation and present the problems
encountered in porting the concurrent
simulation environment from the single
processor architecture to the parallel system.
The paper concludes with suggestions for
future work.

Two Implementations of a Concurrent Simulation Environment

2, SIMULATION ENVIRONMENT DESIGN

2.1. Overview

The simulation model is viewed as a set
of cooperating processes which communicate
with each other through time encoded
entities. A set of simulation primitives is
provided as an extension to the Ada program-
ming language for the simulationist to use in
constructing the model. The environment
includes a preprocessor which converts the
extensions into compilable code in the host
language, namely, the Ada programming
language. A software library is provided
which includes the control and support
modules. The relationship between the
various components of this environment is
depicted in Figure 1.

The software library shown across the
top of the figure consists of concurrent
programming units {(i.e. Ada tasks) for the
various support functions and the generic
control module. These are available for
inclusion in concurrent simulation systems
constructed in the environment.

The bottom portion of Figure 1 shows
the steps in model construction and
execution using the environment. The
simulationist provides the model in Ada
extended with the simulation primitives
supported by the environment. A model
syntactically consists of a main program to
hold the common declarations such as the
attributes of the entities and simulation
termination time, and the code for n user-
defined processes. Each of the processes in
the user-defined model corresponds to a
functionally independent component of the
system being modeled and is transformed into
an Ada task by the preprocessor. The model
with the extensions is processed by the
preprocessor to transform it into compilable
code in the host language. In addition,
appropriate support routines are brought in
from the software library and the generic
control task is instantiated for each user-
defined process. The model is then compiled
by an Ada compiler and linked with the
appropriate software libraries of the Ada
language to produce an executable module.
Executing the model after the linking process
produces statistical data on the behavior
of the real system and other user-defined
outputs from the simulation.

2.2. Relaxation Algorithm

An algorithm for concurrent execution of
a simulation model is included in the environ-
ment which is based on a technique for
constructing parallel solutions to general
problems. Jones and Schwarz (1980) define
three possible techniques for constructing
parallel solutions. The hierarchical
functional approach identifies the indepen-
dent parts of the problem and executes them
in parallel. The divide and conquer approach
partitions the data, replicates the processes
and pexrforms the same operations simultane-
ously on the subsets of the data. The
relaxation approach uses asynchronous

619

processing as the basic principle. Of the
above three techniques, only the relaxation
technique processes the data produced by
other processes asynchronously. Though the
processes depend on data produced by other
processes, iterations within a process need
not be synchronized with the operations of
the other processes. The relaxation
technique is comparable to the process
interaction strategy. While the data flow of
the relaxation approach is similar to the
entity or object flow of the process
interaction strategy, the major difference

is that time stamps are associated with the
entities or objects to model the time-

phased interaction of the real world
processes. Further the notion of complete
asynchronous processing suggested by

Jones and Schwarz (1980) must be relaxed to
allow proper and correct forward simulation.
In a concurrent simulation system a process
can proceed asynchronously only as long as
the correctness of simulation is assured.
However, deadlocks can be caused by

processes waiting on each other to send
entities or messages. The parallel

algorithm for simulation allows processes

to proceed in parallel as long as no
incorrectness is introduced; then it blocks
the corresponding process from proceeding
further, lets the blocked process communicate
with its predecessor processes to resolve
such blockings and detects and avoids
deadlocks. The complete details of the
relaxation algorithm adapted for use in
simulation are given in Chandrasekaran (1986).
2.3. Support and Control Environments

All the functionally independent units
of the simulation environment such as the
random variate generators and statistics
collection and queue handling routines have
been implemented as concurrent programming
units to comply with the goal of developing
a truly distributed simulation environment.

The simulation system has to provide a
means of generating random variates to model
stochastic real systems. The simulation
environment provides eight streams of
uniform (0,1) generators and random variate
generators for exponential, normal, Poisson
and uniform distributions (Chandrasekaran and
Sheppard 1986).

The concurrent simulation system provides
automatic statistics collection and reporting
facilities. Statistics is collected on two
primary objects of a model: the processes
and the entities. The parameters of interest
for data collection for a process are process
utilization and process idle time in
percentage, message buffer length and number
of occurrences of deadlock. Parameters of
interest for an entity are the wait time,
service time at each process and the total
time spent by an entity at each process
and in the system. The average, variance,
standard deviation, minimum, maximum and the
number of observations are reported for each
data item.

C.Hughes, U.Chandra and S.V.Sheppard

Software Library

! [}
pedeq {
Lo !
' '
L el
Random Number Statistics ’ Generic el Generic
Generator Tasks Collection Task - Queueing Task - Control Task
-
A}
Simulation Process -
-~ -
T 57 —
&7 —
User Model with =/ Instantiated
n Processes Y User Defined Queueing Task g‘“;‘m;‘t;,edks
@) 'n Tasks a Control Tas
" Compilable " y bi Run .
Simulation Model Prep fp Simulation - Ada Cpmpllcr » Executable Statistical
with Extensions Modsl & Linker Madel Data
FIGURE 1
A, B.
cpy cru cru cPu cry cpu cpu
1 2 3 4 LY &
a 1 e 4 2 5
PRoctse Processes U U U U U U
HOW SERVING PLEASE waAIT HERE
N e i
Y L Y
. :
[TG ronCPy
a
L]
°
FIGURE 2

620

Two Implementations of a Concurrent Simulation Environment

Essentially a process receives entities
from other processes in the form of
messages and enqueues them on a FIFO basis
to ensure correct forward simulation.
Further, it also removes the enqueued
entities one-by-one, does the user-specified
operations on the entities and either
terminates the entities or sends them to
another process. The queueing facility has
been provided as a generic package that
supplies a template for defining the
structure of the queue and the operations to
be performed on the queue.

The control environment consists of a
generic program unit that utilizes the
distributed simulation algorithm developed
and is responsible for the progress of the
simulation. The extended relaxation
algorithm has been abstracted as a task type
of the Ada programming language and a control
task of this type is instantiated for each
user-defined process in the simulation model.

3. SINGLE AND MULTIPROCESSOR IMPLEMENTATIONS

3.1. Overview

The original implementation of the
extended relaxation algorithm for
distributed simulation emulates parallelism
via multitasking on a VAX 11/750 single
processor system using the Digital Equipment
Corporation (DEC) Ada compiler. 3In an
effort to achieve true parallelism in the
concurrent simulation environment, the
environment has been ported to a Sequent
Balance 8000 employing ten processors and
using the Verdix Ada compiler. Two run-
time systems are available on the Sequent:
sequential and parallel. Figure 2
summarizes the uni- and multi- processor
systems. In this example, there are nine
executable processes, but the uniprocessor
system in Figure 2-A can execute only one at
a time. The six-CPU Balance system illustra-
ted in Figure 2-B can execute six processes
simultaneously, so each process spends less
time waiting for a CPU.

The Sequent Balance 8000 parallel
computer system consists of ten general-
purpose 32-bit processors in a tightly-
coupled environment and a single shared
memory bus, where cache memories are used to
reduce bus contention. The system is
expandable up to twelve processors. This
system allows use of shared memory to enhance
resource sharing and communication among
different processes and provides load-
balancing capabilities. The CPU's auto-
matically schedule themselves to ensure that
all CPU's are kept busy as long as there are
executable processes available. Each
process/task is assigned to a processor but
at any time may be suspended, swapped or
switched to another processor for any of
several reasons including waiting for a
rendezvous or input/output. All task
assignment and scheduling is under the
control of the operating system which is also
distributed. At any one time there are n-1
processors available for use since the

621

operating system must reside on at least one
processor though it can be distributed over
more than one if processors are available.
(Balance Technical Summary 1986)

The goal of porting the concurrent
simulation environment was two-fold. The
first goal was to duplicate previous results
in sequential mode on the parallel machine.
The second was to duplicate these same
results in parallel mode. The first goal
was achieved with only minor roadblocks,
while the second goal has been difficult to
attain as discussed below.

3.2. Portability

Minor changes were needed to success-
fully port between DEC Ada and Verdix Ada.
The Verdix Ada compiler was much more careful
in its passes citing several potential
problems not detected by the DEC compiler.
One unreachable exit was found and several
warnings were produced for possible non-
valued variables. The Verdix compiler had
difficulty with arrays of character and
these were changed to string types. It is
not clear whether this was caused by an
idiosyncracy of the program or a fault in
the compiler. Other changes were basically
file input/output oriented and were due to
the Sequent operating system, Dynix, which
is Unix-~based, whereas the VAX runs the

VMS operating system. File names and their
extensions had to be edited. And, while
the VAX did not distinguish between upper
and lower case letters, the Sequent was
case sensitive,

Perhaps the biggest problem was user
portability between two diverse operating
systems. Converting from one system to
another was not easy because of radical
differences in command structure for
compiling, linking and executing Ada. The
VAX expected a full sequence of commands
each time a compile was warranted. The
Sequent required one simple command for a
recompile and linking was done automatically.
3.3. Status of Implementations
The above changes were sufficient to
ensure successful compilation. The
sequential run-time system on the Sequent
duplicated the results from the VAX 11/750.
So, without too many problems, Ada was easily
ported to the Sequent.

The parallel implementation has proven
to be much more challenging. Several
different problems were identified and some
of these were resolved. The original
simulation environment included output
statements in each of the tasks. As the
tasks were instantiated and executed, the
output from the various processors became
intermingled. Processes were writing at
the same time and interfering with each
other. This problem was first solved by
locking the output statements thereby
assuring sequential execution. Later, a
single task was instantiated to handle all
output.

C.Hughes, U.Chandra and S.V.Sheppard

Although the Ada code compiles success-—
fully, the simulation deadlocks and has to be
aborted. It is not clear whether this is
caused by the simulation environment or by
the run-time environment. The Sequent Ada
run—~time environment essentially only allows
one task to be run at a time. All variables
are placed in shared memory and are locked
from other tasks when a task is in the run-
time environment. Therefore, the parallel
run-time environment is essentially
sequential. For some reason, as a task
enters the run-time environment and locks
the shared memory, it is not unlocking
shared memory when it exits. Therefore, no
other tasks can enter and continue processing
and the program deadlocks. As of this
writing, no solution has been found to this
problem.

The biggest disadvantage in working in
parallel environments is the lack of
effective debugging tools. While there is a
parallel debugger available on' the Sequent
for the parallel C language, this debugger
has not been made available for Ada. 014
methods were employed such as extra print
statements, commenting out sections of code,
etc. It was possible to abort the various
tasks and get a core dump of each one which
could be analyzed to see what the process was
doing at the time of the abort.
Unfortunately, the only thing discovered was
that all tasks were deadlocked.

We currently have the Beta release of
the Ada run-time system and are working with
Sequent to resolve our run-~time problems.
Status of correcting these problems will be
reported on at the conference.

In our experience, the state of the art
of parallel run-time system environments
has not matured to offer a truly parallel
system. Yes, small programs can and will
run in parallel, but a substantial size
program can halt all processors leaving
the user without a clue as to the problem.
Parallel debugging tools are also not yet
sufficiently advanced to help the programmer.
Additional research in these areas is
required.

4. FUTURE WORK

In general, the concurrent simulation
environment appears to be feasible. There
are certainly other enhancements that need
to be done. One improvement would be to
take advantage of running on a shared memory
system such as the Sequent instead of a
distributed system with no shared memory.
Fine-tuning the simulation environment in
this way would optimize execution time on the
Sequent. Our future plans include
prototyping an interface to the concurrent
simulation environment which will auto-
matically partition the simulation model into
processes which can be run in parallel
(Hughes 1987). Of further interest are
studies comparing the sequential execution
with the parallel execution of simulations.

622

REFERENCES

Balance Technical Summary. Sequent Computer
Systems, Inc., Man~0110-00. Portland,
Oregon, 1986.

Chandrasekaran, U. (1986). The design and
implementation of a distributed concurrent
simulation environment.
Texas A & M University, College Station,
Texas.

Chandrasekaran, U. and Sheppard, S. (1986).
Implementation and analysis of random
variate generators in Ada. Journal of
Pascal, Ada and Mcdula-~2, 4, 5, 27-39.

Chandrasekaran, U. and Sheppard, S. (1987).
Discrete event distributed simulation.
In: Proceedings of the Conference on
Methodology and Validation. Orlando,
Florida, 32-37.

Chandrasekaran, U. and Sheppard, S. (1987).
Discrete event distributed simulation--
a state of the art survey. Technical
Report 87-005, Department of Computer
Science, Texas A & M University,
College Station, Texas.

Hughes, C. (1987). 2Automatic partitioning
for parallel simulations via an
intelligent concurrency configurator.
Ph.D. Research Proposal, Texas A & M
University, College Station, Texas.

Jones, A. and Schwarz, P. (1980).
Experience using multiprocessor systems--
a status report. Computing Surveys, 12, 2,
121-165.

Jones, D. (1986). Concurrent simulation:
an alternative to distributed simulation.
In: Proceedings of the Winter Simulation
Conference. Washington, D. C., 417-423.

AUTHORS' BIOGRAPHIES

CAROLYN HUGHES is a Ph.D. student in the
Department of Computer Science at Texas A & M
University. She was formerly the Director
for Computer Activities in the College of
Technology at the University of Houston. Her
research interests include parallel
processing, simulation and real-time systems.

Carolyn Hughes

Dept. of Computer Science
Texas A & M University
College Station, Texas
(409) 845-0299

77843

Ph.D. Dissertation,

C.Hughes, U.Chandra and S.V.Sheppard

USHA CHANDRA is a visiting assistant
professor of Computer Science and Electrical
Engineering at Florida State University. She
received her Ph.D. in Computer Science from
Texas A & M University in August 1986. Her
current research interests include
parallel/distributed processing, simulation
and artificial intelligence. She is a
member of ACM and IEEE societies.

Usha Chandra

201 Love Building

Dept. of Computer Science
Florida State University
Tallahassee, Florida 32306
(904) 644-4062

SALLIE V. SHEPPARD is presently
professor of Computer Science and Director
of the Laboratory for Software Research at
Texas A & M University. She received her
Ph.D. in Computer Science in 1977. Her
research interests include simulation and
AT support for software engineering. She
was a Halliburton Professor in 1983 and
received the Texas A & M Former Students
Outstanding Teaching Award in 1985.

Sallie V. Sheppard

Dept. of Computer Science
Texas A & M University
College Station, Texas 77843
(409) 845~5466

623

