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ABSTRACT

Our purpose is to explain the categorization of diagnostic assis-
tance, using an example, in order to address the central question
for a simulation support environment: ’

In what forms can computer assistance be provided to
improve the simulation model development task?

This question must be answered in the context of the economic
and technical realities of today, for the near future, and the long
term. We present several examples of computer assistance which
indicate that a significant degree of assistance is possible.

1. INTRODUCTION

Several years ago the Computer Science and Engineering
Research Study, an NSF sponsored project to produce an accessi-
ble record of past research and future projections, published their
900+ page report under the intriguing title, “What Can be
Automated?” (Arden, 1980). The authors of this comparatively
modest piece (in size and scope) suggest that perhaps the time is
appropriate to raise a similar question with regard to simulation
model development. Prompted more by discrete event than con-
tinuous simulation, the authors have welcomed the interest in util-
izing artificial intelligence concepts within simulation modeling
and analysis, but admit to some discomfort with the expressions
of interest at times appearing to take an unbridled and uninformed
“rush to embrace.”

1.1. Objective

With that somewhat dampening first paragraph, we intend
that this brief treatment address a few preliminary and incomplete
answers to a question that has motivated our investigations over
the past eight years:

In what form can computer assistance be provided to
improve the simulation model development task?

Note that this question is far more restrictive (and far less ambi-
tious) than, “What can be automated?” An answer to this ques-
tion is not nearly so demanding as a response to “What can be
automated in the application of discrete event simulation?”

Restricted to model development, and ignoring the equally
important aspects of model execution, model recognition, and
model classification, the answers nevertheless are instructive but
certainly not conclusive. We hope others can find a motivational
spark in our rather pedestrian comments and through their reac-
tions provide more insightful understanding.

1.2. Approach to an Answer
The research leading to this paper began with an attempt to
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bring some order to the acquisition and use of “computerized”
models by the Federal government. Problems cited in an earlier
report (USGAO 1976) appear to reflect root causes in the acquisi-
tion and development functions and in the documentation require-
ments (Nance 1977, 1979), (Nance et al. 1981). Zeigler’s land-
mark book points toward the potential for analysis of formal
model specifications (Zeigler 1976). Computer assistance in
model specification and the derivation of documentation in the
development process are recognized as essential requirements
(Nance 1979, pp. 95-96), and a methodological foundation for
simulation support is given in the conical methodology (Nance
1981a, 1987) and the doctoral dissertation of Overstreet (1982).
One set of examples of tangible forms of computer assistance
emerge with the definition of a model development environment
(MDE) based on the conical methodology (Balci 1986).

Diagnostic assistance following model specification but prior
to model execution is embodied in the Model Analyzer, a
software tool that accepts a mode] representation produced using
the Model Generator as input and furnishes information about that
representation as output. This diagnostic assistance can be allo-
cated to one of three categories: (1) analytical, (2) comparative,
or (3) informative. These terms are discussed below.

The following section seeks to describe the basic require-
ments for a diagnosable representation and provides a review of
the Condition Specification using a simple example presented in
Section 3; see Overstreet and Nance (1985). Section 4 describes
the three categories of assistance, explaining the benefits realized
through classification of diagnostic approaches. A brief summary
and conclusions in Section 5 completes the treatment.

2. EXAMPLE OF A DIAGNOSABLE REPRESENTATION
Beginning with a model specification as a quintuple (Over-

.street and Nance 1985, p. 193):

< input specifications,
output specifications,
object definition set,
indexing attribute,
transition specification >,

in which the object oriented paradigm is clearly reflected in the
first three elements; see Cox (1983). The fourth and fifth ele-
ments impart the distinguishing characteristic of discrete event
simulation: the preeminence of time in model representation.

2.1. Producing a Diagnosable Representation

The indexing attribute, commonly designated as system
time, requires mo explanatdon. The transition specification
includes three components: (1) an initial state wherein the attri-
butes of all model objects are assigned values, (2) terminal condi-
tions for the conclusion of a model instantiation, and (3) the
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Table 1: Syntax and Function of Condition Specification Primitives
(from Oversteet and Nance (1985, p. 197)).

Name Syntax Function

Value change | Not specified Assign attribute values

description

Set Alarm SET ALARM( < alarm name > Schedule an alarm
[( < argument list >)] ,
< time delay > )

When Alarm | WHEN ALARM( < alarm name exp > | Time sequencing condition
[ ( < parameter list>)])

After Alarm AFTER ALARM( < alarm name > Time sequencing condition
& < Boolean exp >
[ ( < parameter list >) 1)

Cancel Alarm | CANCEL ALARM( < alarm name > Cancel scheduled alarm
[ <alarmid > 1)

Create CREATE( < object type > Generate new model object
[, <objectid> 1)

Destroy DESTROY( < object type > Eliminate a model object
[, < objectid > 1)

Output Not specified Produce output

Stop Not specified Terminate simulation

experiment
Comment { < any text not including a “}” >} Comment

dynamic structure by which each object attribute is assigned a
value at some value of the indexing attribute (system time) and,
in turn, affects the value of other object attributes at a subsequent
value of system time; see Nance (1981b).

The condition specification (CS) of a model is a primitive
specification language that includes precise requirements for four
component specifications: object, transition, interface, and report
(Overstreet and Nance 1985, pp. 196-197). The syntax and func-
tion of the CS primitives are summarized in Table 1.

The object specification is an enumeration and typing of all
attributes for all model objects. The transition specification is
based on a condition action semantics similar to a rule-based con-
struct, i.e.

{boolean condition = true}—{actions performed},

which is described as a condition action pair (CAP).

Prototypes of the Model Generator use the CAP as the ulti-
mate target for capturing the dynamic structure of a model. The
grouping of CAPs with identical conditions produces an Action
Cluster, (AC), ie., a set of actions all of which are performed
when the same condition is encountered. The following example
helps to convey the simplicity and expressive power of the CS.

3. THE SINGLE SERVER QUEUE IN THE CONDITION
SPECIFICATION

A single server queue illustrates model specifications using a
CS. An object specification for the single server queue is given
in Table 2.
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The attribute types include those of standard programming
languages and the additional type, “time-based signal." Attributes
of this type are used for time sequencing. This is illustrated
below.

Action Clusters for the single server queue are given in
Table 3. In this example, mean interarrival time for parts arrivals
and the average service time required to service each part are
read at each instantiation of the model. In addition, termination
occurs when a specified number of parts have been serviced, this
number also read with each instantiation. The amount of time
required to service the specified number of parts is reported at
model termination.

The syntax used for Action Clusters is similar to that of Pas-
cal. Each action cluster in Table 3 is given a one or two word
name and a two letter identifier in a comment at the beginning of
each Action Cluster. The two letter identifiers are used as node
names in subsequent graphs.

Table 2: Single Server Queue Object Specification

Object Attribute Type
System | SystemTime Nonnegative real
StopNum Nonnegative integer
Server | ServerStatus { busy, idle }
MeanServiceTime Nonnegative real
EndService Time-based signal
NumServed Nonnegative integer
Parts NumWaiting Nonnegative integer
MeanInterarrivalTime | Nonnegative real
Arrival Time-based signal
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Table 3: Single Server Queue Action Clusters

Action
SystemTime = 0
ServerStatus = idle
NumWaiting = 0
NumServed = 0
read( MeanlnterarrivalTime,
MeanServiceTime
StopNum )
SetAlarm( Arrival, 0 )
{ Termination (TE) } Output( SystemTime )
NumServed >= StopNum Stop
{ Arrival (AR) } NumWaiting = NumWaiting + 1
WhenAlarm( Arrival ) SetAlarm( Arrival,

NegExp( MeanlnterarrivalTime ) )
NumWaiting = NumWaiting - 1
ServerStatus = busy
SetAlarm( EndService,

NegExp( MeanServiceTime ) )
NumServed = NumServed + 1
ServerStatus = idle

Condition
{ Initialization (IN) }
initialization

{ Begin Service (BS) }
NumWaiting > 0 &
ServerStatus = idle

{ End Service (ES) }
‘WhenAlarm( EndService )

To interpret part of the above table, a "Begin Service"
occurs whenever the value of NumWaiting is positive and the
value of ServerStatus is "busy." The actions which occur when
this is true are: NumWaiting is decremented by 1, the status of
the server is changed to "busy," and an alarm is set to signal an
end-of-service. After the specified amount of time has elapsed,
the condition "WhenAlarm( EndService )" will test true, so that
an "End Service" occurs. At that time NumServed is incremented
by 1 and the server status is changed to "idle."

4. FORMS OF DIAGNOSTIC ASSISTANCE

The rapid prototyping strategy, employed in the model
development environment (MDE) project, forces an assessment of
functional priorities and design costs. That is, the initial proto-
type must reflect basic needs and the scope of the effort defined
sufficiently for estimating development costs; see Jenkins (1983,
pp. 8-9). Consequently, the capability for applying gral?hical
operations, and for deriving graphical characterizations, is an
obvious requirement for the initial Model Analyzer prototype.

Model diagnosis should not require a significant investment
of time and effort beyond that demanded of the modeler for
specification and documentation of the model. Consequently, tf)
the extent possible, elements of model diagnosis should automati-
cally derivable. The condition specification offers this possibility.
The following terms are defined to support derivation:

An attribute x is a control attribute of an action clus-
ter if x appears in a condition expression of the action
cluster,

An attribute x is an output attribute of an action clus-
ter if the actions of the action cluster can change the
value of attribute x.

An attribute x is an input attribute of an action clus-
ter if the value of x affects the value of the output
attributes of the action cluster.

The control, input, and output attributes for the single server
queueing model are shown in Table 4. This table is the basis for
the two graphs which follow. The first column uses the action
cluster identifiers of Table 3.

Table 4: Single Server Queue
Action Cluster - Attribute Relationship Table

AC Control Input Output
Id Attributes Attributes Attributes
IN | initialization | MeanInterarrivalTime | SystemTime
MeanServiceTime ServerStatus
StopNum NumWaiting
NumServed
MeanInterarrival Time
MeanServiceTime
StopNum
Arrival
TE | NumServed | SystemTime
StopNum
AR | Amival NumWaiting NumWaiting
MeanlnterarrivalTime | Arrival
BS | NumWaiting { NumWaiting NumWaiting
ServerStatus | MeanServiceTime ServerStatus
] EndService
ES | EndService NumServed NumServed
ServerStatus

For a condition specification, the following definitions are
required to develop the graphs of subsequent sections:

T ={z1, 19, ..., #;} be the set of all time-based signals in

the CS;

A ={ay, ay,..,a,} be the set of all other attributes in
the CS; and

AC ={ac,, acy, ..., ac,} be the set of all action clusters

in the CS.

4.1. Graphical Characterization — A Fundamental Need

The conical methodology defines a model of a system as
“objects and the relationships among objects”; see Nance (1981b,
p. 175). Such a definition imparts as much importance to the
description of relationships as to the related objects. Graph
theory is the most obvious modeling mechanism for the portrayal
of relationships; therefore, the prominence of directed graphs as a
derived model representation is not surprising. The two graphs
playing major roles in the initial prototype of the Model Analyzer
are the action cluster attribute graph (ACAG) and the action clus-
ter incidence graph (ACIG).

4.1.1. The Action Cluster Attribute Graph

The Action Cluster Anribute Graph (ACAG) for a CS is
defined as follows. Assume a condition specification with & time-
based signal attributes, m other attributes, and » action clusters.
Then G, a directed graph with £ 4+ m + n nodes, is constructed
as follows:

G has a directed, labeled edge from node i to node j if

(1) node i is a control or input attribute for node j, an
AC, or

(2) node j is an output attribute for node i, an AC.

Thus G is bipartite with one set of nodes representing ACs and
the other, attributes. Each edge of G in the first set above is
labeled as “control” or “input” to reflect the attribute relation-
ship; thus, G is a M-level digraph following the definition of
Burns and Winstead (1985, p. 344).

The ACAG depicts the interaction between the ACs and
attributes in a model specification, showing both the potential for
actions of an AC to change the value of an attribute, and the
reverse (an attribute’s influence on the actions of an AC). In



Model Diagnosis in a Simulation Support Environment

order to distinguish interactions that occur instantly from those
involving a time delay, edges from an AC to a time-based signal
(attribute) are depicted with a dashed line; other edges with a
solid line. The ACAG for the single server queueing model is
shown in Figure 1.
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Figure 1: Single Server Queue Action Cluster Attribute Graph

4.1.2. Action Cluster Incidence Graphs

The Action Cluster Incidence Graph (ACIG), depicts a par-
ticular type of interaction among ACs. The idea is simple: if an
action of AC; has the potential to cause AC,- to occur (by
changing the value of a control attribute), then a directed edge
leads from AC; to ACj. As before, dashed and solid edges
differentiate between time delay and immediate occurrences.

The automatic construction of an ACIG from a CS is easily
accomplished following the procedure given below. However, this
procedure produces a graph which may include many potential
edges. That is, an edge from AC; to AC; might be constructed
although the application of additional knowledge (from the
modeler or through diagnosis) would reveal that AC; could
never cause AC; to occur, Potential edges removed by the
application of additional knowledge are termed infeasible. Over-
street (1982, p. 271) shows that no algorithm can exist to produce
from a model specification an ACIG which never includes
infeasible edges. Even so, in many cases the number of infeasible
edges is not excessive.

An ACIG for a CS consisting of a set of ACs
{acyacy * - ,ac,}, can be constructed as follows:

(1)  For each 1<i < n, let node i represent ac;

(2) For each ac;, partition the attributes into three sets:
T; = {control attributes which are
time-based signals}
C; = {all other control attributes}
0; = {output attributes}

(3) Foreachl1<i <n,
Foreach1 <£j <n,
Construct a solid edge from node i to
node j if O;mcj # O
Construct a dashed edge from node i to
node j if O;T; = ¢.
END foreach 1S j <n
END foreach 1 €i <n.

For the single server queueing model, the ACIG produced
by the above algorithm is shown in Figure 2. Note the pre-
valence of immediate change edges in the graph, Nance and
Overstreet (1986) describe a procedure of deletion of infeasible
edges by employing knowledge-based analysis.

TE

Figure 2: Singer Server Queue Action Cluster Incidence Graph

4.2. Analytical Diagnosis

The ACAG supplies a simple and convenient mechanism for
diagnosis of artribute urilization, the identification of an attribute
node with out-degree of zero. Such an attribute could not
influence model behavior. The existence of such an attribute
might emanate from an early perception of its need by the
modeler during the model definition process followed by a later
unrecognized decision that the attribute is unnecessary. Note,
however, that an attribute serving strictly a reporting (“statisti-
cal”) function would also have out-degree of zero; so that one
cannot immediately class this characteristic as an error.

Another diagnostic readily performed on the ACAG is
action cluster completeness, the determination that at least one
control attribute of the AC must also be an output attribute of that
AC if the condition expression contains attributes that are not
time-based signals. This diagnostic assists in the identification of
a potential “infinite loop” situation.

Both attribute utilization and action cluster completeness are
examples of analytical diagnosis: determination that a model
representation possesses a defined property. Analytical diagnosis
constitutes the simplest form of examination, that form which is
most easily understood and most readily automated. The infor-
mation conveyed to the modeler is direct: the model representa-
tion has the property or does not.
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4.3. Comparative Diagnosis

In contrast with analytical diagnosis, comparative diagnosis
furnishes a relative measure of a representation characteristic.
The intended connotation of this term is of measures that in isola-
tion may be difficult to interpret, but have potential utility when
different values (perhaps from different systems) can be com-
pared. Measures of model complexity are an obvious example of
relative measures. The definition of the control and transforma-
tion metric, developed specifically for discrete event simulation
models, can be found elsewhere in this volume (Wallace 1987).

The validity and utility of software complexity metrics has
been rightfully questioned (Kearney et al. 1986), and the scarcity
of published studies of simulation model complexity might sug-
gest that this research community has been reluctant to pursue
this approach. Among the few examples are:

(1) an information theoretical approach (Davies 1976),
(Mathewson 1977)

(2) digraph representation and digraph morphisms (Zeigler
1976, pp. 378-389)

(3) finite state machine and tree formalisms (Zeigler 1984,
Chapter 2),

(4) resource-entity interaction categorized by levels (Evans
1984, 1986), and

(5) control and transformation analysis (Wallace and Nance
1985), (Wallace 1987).

The utility of the model complexity metric depends on the
availability of historical data that convey aspects of the difficulty
of a modeling task (number of staff-days to create, total develop-
ment cost, cost per error corrected) and the success of the metric
in reflecting on a linear scale the synthesis of several measures.
For prediction of future effort and costs in model development, a
model complexity metric sustained by an ongoing database offers
invaluable management assistance.

Cohesion and coupling are software engineering attributes of
programs; the latter relates the degree of modular independence,
the former, the singularity of function. Transforming the ACIG
into an interaction matrix enables coupling and cohesion measures
to be determined through powers of the interaction matrix (see
Nance and Overstreet (1986)).

Comparative diagnosis lacks the clear, undeniable foundation
demonstrated by the analytical techniques. Fundamental work in
this area is needed for many questions remdin to be answered, but
the interactive appeals is persuasive. Implementation in an
automated form, while clearly accomplishable, is more involved
with less obvious immediate benefits than for the analytical
forms.

4.4. Informative Diagnosis

The third category of diagnostic assistance is the least
defined and the most difficult to automate. This category, infor-
mative diagnosis, includes model derivations or extracts that con-
ceivable could assist in the verification of correctness. For exam-
ple, a list of attributes by type could help the modeler to recog-
nize redundancy, i.e. the definition of two attributes when only
one is necessary.

Utilizing the fact that the dynamic behavior of a simulation
model is bounded by the initiation and termination status, the
ACIG presented in section 4 identifies the sequence of actions
which are possible during model execution. The ACIG for the
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single server queueing model of Figure 2 readily conveys the pre-
cedence structure among ACs and reveals the subsets with cyclic
relationships. This is an excellent example of informative diag-
nosis, for the graph- may reveal the existence of specification
errors to a knowledgeable modeler: the graph may omit
sequences which the model knows should be possible or may
include sequences which the modeler knows to be improper. No
analytic tool could, in general, identify these omissions or inclu-
sions as errors.

Simple measures such as the number of time-delayed and

. immediate edges or a display showing the submodel decomposi-

tion are further examples of informative diagnosis. This category
includes those techniques which rely most heavily on the
modeler’s ability to recognize something informative. Relegated
to this category are the forms of porential and partiai assistance
that offer the least prospect for automation. However, these
forms might prove to be the most significant source of guidance
in model verification.

5. SUMMARY AND CONCLUSION

A simulation support environment must provide assistance to
those charged with the development of large, complicated models.
Diagnostic assistance in several forms can be employed:

(1) to determine conclusively that a model representation
demonstrates a desirable property,

(2) to admit comparisons among different model represen-
tations or between different models sharing a common
representation, and

(3) to extract or derive model characteristics perceived to
offer the modeler information useful in the verification
of correctness.

A summary of the three categories described above is given
in Table 5. Some examples are not discussed in the prior sec-
tions, but the brief explanation presented in the table should be
sufficient.

The two principal conclusions of the research underlying this
paper are conveyed forcefully in Table 5. The first is that the
recognition -of the three categories, and the subsequent allocation
of each proposed diagnostic to a category, is invaluable in the
assignment of priorities so important in a prototyping effort. All
too easily is the intelligence of the modeler ignored in the “rush
to automate,” and less dramatic techniques that augment human
capabilities are sacrificed.

The second principal conclusion is that graph-based
representations are exceedingly important. Certainly, this finding
should not be surprising, for the Conical Methodology in its
architectural guidance gives fundamental importance to both
objects and the relationships among objects in the composition of
a model.
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