Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

ALTERNATIVES FOR MODELING OF PREEMPTIVE SCHEDULING

James O. Henriksen
Wolverine Software Gorporation
7630 Little River Turnpike
Suite 208
Annandale, VA 22003-2653

ABSTRACT

A system which includes overt instances
of preemptive scheduling, or which requires
the use of preemptive scheduling to model the
system, can pose difficulties to a modeler.
By preemptive scheduling we mean having to
reschedule or cancel a previously scheduled
event (or activity completion). The
difficulties in modeling preemptive
scheduling stem from the highly stylized
constructs which simulation languages provide
for such operations. This paper describes
these difficulties, reviews an approach which
can reduce the difficulties for some
applications, and presents an approach which
can be used to model preemptive scheduling,
using only simple simulation language
constructs.

1. ORGANIZATION OF THIS PAPER

Section 2 gives examples of systens
which require the use of preemptive
scheduling. Modeling difficulties common to
SLAM IT %Pritsker, 1986), SIMAN (Pegden,
1986), and GPSS/H (Henriksen & Crain, 1983)
are described for these systems. Section 3
reviews an approach which reduces the extent
to which preemptive scheduling is used for
modeling certain types of conveyor systems.
This approach was <first described in
(Henriksen & Schriber, 1986) and in
(Henriksen, 1986). Section 4 presents an
alternative approach which eliminates
preemptive scheduling altogether. While not
universally applicable, the approach is an
interesting tool for the modeler to add to
his or her toolkit.

2. DIFFICULTIES IMPOSED BY PREEMPTIVE
SCHEDULING
2.1 Systems Which Require Preemptive

Scheduling

Preemptive scheduling is frequently
required for modeling systems which contain
prioritized activities. For example, in a
hospital, providing medical attention to
patients is (or ought to be) a higher
priority activity than administrative
activities, such as filling out forms.
Furthermore, attending to a patient who has
had a heart attack is of higher priority than
attending to a patient who has broken a
finger. When modeling a hospital, the
modeler must deal with situwations in which a
previously scheduled event, e.g., completion

575

of the treatment of a broken finger, must be
rescheduled because one or more Servers

(doctors, nurses, etc.) are interrupted to
provide service to a patient of higher
priority.

The hospital exemplifies the most
commonplace form of preemptive scheduling, in
which a previously scheduled event (or
completion of an activity) must be delayed.
Typically, the rescheduling takes into
account the remaining time to complete +the
activity, plus some time for the overhead of
interrupting affected servers. In other
types of systems, the scheduled occurrence of
an event may have to be moved up in time or
eliminated altogether. For example, in a
model of a factory, a breakage event might
have been scheduled for a specific tool on a
machine. In the absence of any other events,
the breakage would occur as scheduled. If,
however, the tool were changed prior to the
breakage, the breakage event would have to be
canceled. To carry this example a little
further, assume +that the tool breakage
depended on the rate of operation of the
machine. If the machine were %to be speeded
up, the breakage would be likely %0 occur
earlier. Therefore, a scheduled +tool
breakage would have to be moved up in time.

In the examples presented thus far,
preemptive scheduling has been an overt
property of the system to be modeled. In
some modeling applications, preemptive
scheduling may be used as a modeling
convenience, rather than to represent an
overt characteristic of the systen. For
example, consider a factory which operates
for +two shifts per day. PFor the modeler, it
may be convenient to schedule certain events
without regard +o time-of-day, and to
schedule an 8-hour interruption of all
servers at the conclusion of the second
shift. (The ignoring of startup and shutdown
overheads implied by this simplified approach
would probably introduce unacceptable
modeling inaccuracies for all but the most
primitive models.)

2.2 Language Constructs for Preemptive
Scheduling

In SLAM II and SIMAN network (block
diagram) models, and in all GPSS/H models,
preemptive scheduling is accomplished by
means of PREEMPT blocks. (Unless otherwise
noted, when we refer to SLAM II or SIMAN, we
restrict ourselves %o their network (block
diagram) modeling capabilities.) The same
block name, or node type, is used in all

J.0.Henriksen

three languages. (In GPSS/H, preemptive
scheduling can also be accomplished by means
of the PFUNAVAIL block. For our present
purposes, the FUNAVAIL block can be ignored.)

In all three languages, the operation of
the PREEMPT block is directly tied to a
single server; i.e., scheduled events can be
canceled only for units of traffic (called
entities in SLAM II and SIMAN and
transactions in GPSS/H) which currently
possess a single server (a resource of
capacity 1 in SLAM II and SIMAN, a facilit
ianPssﬁH). In a SLAM II or SIMAN model, a
PREEMPTed entity is rerouted to a specified
network node (block). In GPSS/H, the PREEMPT
block provides many options for handling
PREEMPTed transactions. FPor example a
PREEMPTed transaction can be rerouted to a
specified block, as in SLAM II and SIMAN.
Alternatively, a transaction's use of a
facility can be suspended wuntil +the
PREEMPTing transaction completes its use of
the facility (indicated by its execution of a
RETURN block). Other options exist for
totally removing the +transaction from
contention for the facility, storing the time
remaining for its scheduled use of +the
facility, etec.

In the world view of SLAM II and SIMAN,
entities are very dynamic objects (they crawl
around the newtork (block diagram)), and
resources are static objects. Similarly, in
GPSS/H, transactions are dynamic objects, and
facilities are static. This gives rise %o
the difficulty in inmplementing preemptive
scheduling in these languages: +to be
interrupted, an inherently dynamic object
must be directly associated with a static
object. An example of +this difficulty is
given in the next section.

REDUCING THE EXTENT 70 WHICH PREEMPTIVE
SCHEDULING IS USED

3.

Suppose that one wanted to model the
flow of objects on a nonaccumulating
conveyor. A nonaccumulating conveyor is a
conveyor for which the distance between
objects on the conveyor is fixed; i.e.,
objects cannot "pile up" behind an object
whose motion is blocked (the belt cannot
slide under blocked objects). When a
nonaccumulating conveyor stops, by
definition, all objects on the conveyor stop.
Further suppose, for the sake of argument,
that for SLAM II and SIMAN, the models are to
be developed using basic network language
constructs, i.e., not taking advantage of
language extensions which provide conveyor
entities.

In the most straightforward modeling
approach that could be +taken with SLAM II,
SIMAN and GPSS/H, objects to be moved on a
conveyor would be represented as entities (in
SLAM II and SIMAN) or +%ransactions (in
GPSS/H). When an object is placed on +the
conveyor, its scheduled time of arrival at
its destination (assuming no intervening
blockages) could be calculated and the object
could undergo an explicit time delay. The
mechanisms by which explicitly scheduled time

576

delays are modeled are language-specific: in
SLAM II, an activity-on-branch approach is
used; in SIMAN, the DELAY block is used; and
in GPSS/H, the ADVANCE block is used. (All
three languages also include capabilities for
modeling indefinite time delays, where
conpletion of the delay period is indicated
by occurrence of a particular event.
Conceivably, these capabilities could be used
for the modeling the system under discussion,
but for our purposes, we will consider onl

the use of explicitly scheduled time delays.

If any object on the conveyor is
blocked, all objects on the belt must be
stopped. Given our choice of modeling object
motion by means of explicit +time delay, the
only way an object can be stopped is to use a
PREEMPT block (node). This in turn implies
that each object to be stopped must possess a
capacity 1 resource (facility) and that data
gtructures must be maintained to represent
(1) the object~resource associastions and (2)
which objects (or associated resources) are
currently on the conveyor. Since objects
come and go in dynamic fashion, while
resources are fixed in number for a given
run, this implies the needs to (1)
dynamically associate and dissociate
resources to and from objects and (2) %o
predetermine the maximum number of objects
that will be ‘on the conveyor at any given
time, in order to fix the size of the pool of
resources. This, my friends, is a major
programming burden.

Henriksen and Schriber (Henriksen &
Schriber, 1986) described a technique they
called the "follow-the-leader" approach for
modeling nonaccumulating conveyors. Under
their approach, an explicit time delay is
calculated only for the "leader" object on a
conveyor. The "leader" object is the object
furthest downstream on the conveyor. Any
objects which are upstream from the leader
object are modeled by using an auxiliary data
structure (They used a GPSS/H user chain.)
which keeps track of (1) which objects are on
the conveyor and (2) the time (or spatial)
separation between objects. They considered
only single entry, single exit conveyor
systems, i.e., systems in which all objects
enter a conveyor at one end and exit at the

other end. Henriksen (Henriksen, 1986)
expanded this approach to cover the case
where objects could be placed on a

nonaccunulating conveyor at randomly selected
points.

The beauty of +the follow-the-leader
approach is that only one resource (facility)
is required per nonaccumulating conveyor.
Since conveyors do not come and go, modeling
them as resources (facilities$ is very
straightforward. Each time an object enters
the nonaccumulating conveyor, a check must be
made to determine whether it is +the new
leader or whether there is another object
downstream from it on +the conveyor.
Similarly, when an object is removed from the
conveyor, a check must be made to see whether
another object is behind it on the conveyor.
If so, a time delay must be scheduled +to
model +he follower object's transit to the
exit point. On those occasions when the

Alternatives for Modeling of Preemptive Scheduling

conveyor must be stopped, the simultaneous
delay of all objects on the conveyor can be
accomplished by PREEMPTing the leader object,
since the travel times of all other objects
are expressed relative to the leader.

To summarize, what this approach does is
to reduce the problem of simultaneously
gsuspending the time delays for N objects to
the problem of suspending the time delay for
a single object, at the cost of some extra
(possibly non-trivial) bookkeeping. (Pretty
neat, eh?)

4.
4.1

ELIMINATING PREEMPTIVE SCHEDULING
The Optimistic Scheduling Approach
In this section we present an

alternative modeling approach which
eliminates the need for preemptive
scheduling, per se. The technique is called
the "optimistic scheduling" approach. In the
discussion which follows, a moving-object,
passive-resource world view is assumed,
although the approach described could readily
be adapted to other world views. The
technique works as follows:

1. Pertinent data which represents or
affects timing data is stored in two
forms: each object has its own local
copy, and all objects share a single
global copy. The form this data takes
depends on the particular application.
An example will be given below.

2. At each point in a model where an
explicit time delay which is subject to
potential rescheduling (preemption) is
scheduled, the pertinent global +timing
data is updated (if necessary) and
copied into the data structure
representing the object. TFor example,
in GPSS/H, data values would be copied
from savevalues (shared, global) into
transaction parameters (local to a
transaction).

3. The object for which the delay is
scheduled optimistically assumes that
its delay will occur as scheduled, i.e.,
that no interruptions will occur. In
the case of a GPSS/H transaction, an
ADVANCE block would be executed, naively
assuming that the corresponding time
delay would take place as scheduled.

4. If subsequent conditions require
rescheduling of the delay, the pertinent
global data is wupdated to reflect
changed conditions.

5. When the object for which the delay
was optimistically scheduled completes
the delay, it compares its copy of the
pertinent +timing data to the current
global timing data. If the local and
global copies differ, +this indicates
that the completion time for the delay
estimated in step 3 is no longer valid.
If +they are identical, the object for
which +the delay was optimistically
scheduled can proceed on its merry way.

577

6. In the event the local and global
copies differ, corrective action must be
taken. The corrective action may take
several forms. In the simplest case,
the object for which the delay was
optimistically scheduled may be able to
react to the changed data on its own
behalf. For example, if the scheduled
delay has been lengthened since it was
originally scheduled, scheduling an
additional delay to make wup the
difference between the optimistic delay
and the actual delay may work nicely.
Appendix B contains a GPSS/H program
which utilizes this approach. This
example is discussed in Section 4.2,
below.

In some circumstances, the object for
which the delay was optimistically
scheduled may be incapable of reacting
to changed conditions. For example, if
the length of an optimistically
scheduled delay has been shortened, by
the time the delay has completed, it is
too late for +the object to react. In
such cases, the model mnmust take
appropriate action at the point at which
conditions change. In GPSS/H, the
transaction which causes the optimistic
delay to be changed might be able to
SPLIT off a copy of itself and the
offspring transaction could assume +the
role that was formerly played by the
transaction for which +the optimistic
delay was scheduled. If this approach
is used, upon discovering that
conditions have changed, the transaction
for which the optimistic delay was
scheduled can simply disappear from the
model (via a TERMINATE block), "knowing"
that it has been superseded by another
transaction.
4.2 A Sample Model
Appendix A contains a simple example of
preemptive scheduling implemented in GPSS/H.
The system modeled has a single server which
processes two streams of jobs, a low priority
job stream and a high priority job streanm.
If the server is processing a low priority
job when a high priority job arrives,
processing of the low priority job is
suspended; i.e., high priority jobs preempt
the processing of low priority jobs. Within
a given job stream, jobs are processed in
FIFO order. Interarrival times for low
priority jobs are uniformly distributed over
the interval (50,150), i.e., 100 + 50.
Interarrival times for high priority jobs are
uniformly distributed over the interval
(0,1200), i.e., 600 + 600. Service times for
both types of jobs are uniformly distributed
over the interval (40,120), i.e., 80 + 40.
No overhead +time is associated with
preemption; i.e., the server is assumed %o be
capable of instantaneously changing jobs.

Jobs flowing into the model are
represented by transactions in two disjoint
model segments. Low priority jobs are
modeled in the first segment, which is a
simple one-line, single-server queueing
model, where the server is a facility named

J.0.Henriksen

SERVER. Tow priority transactions SEIZE the
SERVER, hold it (subject to PREEMPTion) for a
period of time, and RELEASE it.

High priority Jjobs are modeled in the
second model segment. When a transaction
representing a high priority job arrives, it
executes a PREEMPT block. If the SERVER
facility is neither busy nor already
PREEMPTed, the transaction immediately
PREEMPTs the facility. If the facility is
already PREEMPTed, the transaction must wait
until preceding transactions have RETURNed
the facility. If the facility is currently
SBEIZEd (by a 1low priority job), the low
priority transaction is suspended until +the
high priority job RETURNs the facility.
Specifically, at the point of PREEMPTicn,
GPSS/H records the amount of remaining
ADVANCE time for the PREEMPTed job, and when
the RETURN block is executed by a high

priority job, the time delay for +the
PREEMPTed job is resumed at its ADVANCE
block.

Appendix B contains a GPSS/H model of
the same system implemented without the use
of preemptive scheduling. One of the unusual
features of this model is that it uses a pair
of facilities to model one server. SERVER is
used to model the processing of low priority
jobs, and SERVER2 is used to model the
processing of high priority jobs. The use of
facility entities guarantees FIFO processing
within each job stream. Intervals of +timeé
during which both SERVER and SERVER2 are busy
(SEIZEd) correspond to periods of PREEMPTion
in the Appendix A model.

In order to support +the optimistic
scheduling approach, the Appendix B model
keeps track of the %total amount of time spent
handling high priority jobs, i.e., the total
amount of time that SERVER2 is busy. This
total time is accunulated in a savevalue
named BUMPTIME. When a transaction has just
SEIZEd SERVER, it waits at a GATE block until
SERVER2 is not busy. When SERVERZ is no
longer busy, the Llow priority +transaction
makes a co (in a fransaction parameter
named MYCOPY) of the total time that SERVER2
has been busy up to this point in time. The
low priority transaction then executes an
ADVANCE block, assuming that its randomly
sampled service time will hold, i.e., that no
high priority jobs will enter <the systen
prior to completion of the service interval
of the low priority transaction.

Yy

When the low priority +transaction
emerges from its ADVANCE block, it compares
the value stored in its MYCOPY parameter o
the current value of BUMPTIME. If +the
BUMPTIME value exceeds, the MYCOPY value, the
single gerver has been preempted in the
system, but not PREEMPTed in the model.
Accordingly, additional time delay must take
place to model the interruption. The amount
of additional delay required is precisely the
difference between the BUMPTIME and MYCOPY
values. Prior to executing an ADVANCE block
with the appropriate delay, the low priorit
transaction updates its local copy (MYCOPY
of BUMPTIME.

578

Since additional delay could occur while
the transaction is making up the difference
between the BUMPTIME and MYCOPY values,
testing for preemption and incurring
additional delay when appropriate is
implemented in the form of a loop. A low
priority transaction completes its service
when its last optimistically scheduled delay
interval expires without intervening
interruption.

4.3 When to Use Optimistic Scheduling

The optimistic scheduling approach has
limitations. It works inefficiently if
interruptions of service occur +too
frequently. Purthermore, for simple forms of
preemptive scheduling, using bdbuilt-in
simulation language capabilities may be
easier than implementing the optimistic
scheduling approach. For example, the
Appendix A model is actually easier to write
and read than the Appendix B model, for the
GPSS/H user who understands how PREEMPT and
RETURN work. However, in more complex
models, the use of built-in language
capabilities may be unacceptably complex.
Just understanding how the software works may
require a great deal of reading. On the
other hand, the optimistic scheduling
approach is built upon lower level language
capabilities, readily understood by
non-expert users.

5. CONCLUSIONS

Section 2 gave examples of systems which
require the use of preemptive scheduling and
presented some of the modeling difficulties
imposed by such systems. Section 3 showed
that with a 1little bit of thought, systenms
which would appear to require wholesale use
of preemptive scheduling can sometimes be
viewed from a perspective which reduces the
amount of preemptive scheduling. Finally,
Section 4 presented the optimistic scheduling
approach, which allows modeling preemptive
scheduling without the use of complex
built-in language constructs for preemption.

6. ACKNOWLEDGEMENTS

Thanks go to Bob Crain and Jim Harbour
for +their thoughtful suggestions and
assistance in the preparation of this paper.

Alternatives for Modeling of Preemptive Scheduling

APPENDIX A: A GPSS/H MODEL WHICH USES PREEMPTIVE SCHEDULING

GPSS/H VAX/VMS RELEASE 0.98 (UG217) 25 AUG 1987 16:39:34 FILE: USEPREE.GPS
LINE# BLOCK# *LOC OPERATION A,B,C,D,E,P,G COMMENTS

1 SIMULATE

2 *

3 * MODEL TO ILLUSTRATE PREEMPTIVE SCHEDULING

4 *

5 PTIMORD TABLE M1,40,10,20 MEASURE TIME THRU THE SYSTEM
6 PTIMEHI TABLE M1,40,10,20 DITTO FOR HIGH PRIORITY
7

8 ORDSERV FUNGTION RN2,C2 ORDINARY SERVICE

9 0,40/1,120

10 HISERV FUNCTION RN3,C2 HIGH PRIORITY SERVICE

11 0,40/1,120

12 *

13 * "ORDINARY" JOB SEGMENT

14 *

15 1 GENERATE 100,50 ORDINARY JOBS ARRIVE

16 2 QUEUE ORDQ "ORDINARY" QUEUE

17 3 SEIZE SERVER GRAB THE SERVER

18 4 DEPART ORDQ BXIT "ORDINARY" QUEUE

19 5 ADVANCE FN$ORDSERV "ORDINARY" PROCESSING TIME
20 6 RELEASE SERVER JOB COMPLETED

21 7 TABULATE PTIMORD RECORD PROCESSING TIME
22 8 TERMINATE 0 EXIT THE SYSTEM

23 *

24 * HIGH PRIORITY JOB SEGMENT

25 *
26 9 GENERATE 600, 600

27 10 QUEUE HIGHQ HIGH PRIORITY QUEUE

28 11 PREEMPT SERVER BUMP LOWER PRIORITY JOB (IF ANY)
29 12 DEPART HIGHQ EXIT HIGH PRIORITY QUEUE
30 13 ADVANCE FN$HISERV HIGH PRIORITY PROCESSING TIME
31 14 RETURN SERVER JOB COMPLETED

32 15 TABULATE PTIMEHI RECORD PROCESSING TIME
33 16 TERMINATE 0 EXIT THE SYSTEM
34 *

35 * TIMER SEGMENT
36 *

37 17 GENERATE , , 10000 TIMER TRANSACTION

38 18 TERMINATE 1 SHUT DOWN THE MODEL

39 START 1

40 END

579

J.O.Henriksen

APPENDIX B: A GPSS/H PROGRAM WHICH ILLUSTRATES OPTIMISTIC SCHEDULING

LINE# BLOCK#

PO = = wdadh o 3 wbwh ca v
S OWVWO~_NOVIAUWN —=OWR~TIAUTIR NN =

PPN ppND O
~ AT W

28

vt~V =

— e
UVIHN D=2 00 o

—

GPSS/H VAX/VMS RELEASE 0.98 (UG217) 25 AUG 1987 16:39:18 FILE: OPTIMIST.GPS

*L0C OPERATION A,B,C,D,E,F,G COMMENTS

. SIMUTATE

* MODEL TO ILLUSTRATE "OPTIMISTIC" SCHEDULING

*

PTIMORD TABLE M1,40,10,20 MEASURE TIME THRU THE SYSTEM

PTIMEHI TABLE M1,40,10,20 DITTO FOR HIGH PRIORITY

ORDSERV FUNCTION RN2,C2 ORDINARY SERVICE

0,40/1,120

HISERV FUNCTION RN3,(2 HIGH PRIORITY SERVICE

0,40/1,120

*

* "ORDINARY" JOB SEGMENT

*
GENERATE 100,50, ,,,3PL ORDINARY JOBS ARRIVE
QUEUE ORDQ "ORDINARY" QUEUE
GATE NU SERVER2 WAIT UNTIL NOT "PREEMPTED"
SEIZE SERVER GRAB THE SERVER
DEPART ORDQ EXIT "ORDINARY" QUEUE
ASSIGN MYCOPY,XL$BUMPTIME,PL ~ TOTAL PREEMPTED TIME
ADVANCE FN$ORDSERV "ORDINARY" PROCESSING TIME

*

* TEST WHETHER ADDITIONAL "PREEMPTED" TIME HAS BEEN ACCUMULATED.

* IF S0, MAKE UP THE DIFFERENCE.

* .

MAKEUP TEST G XL$BUMPTIME, PLEMYCOPY , EXIT NO ADD'L TIME => EXIT
SAVEVALUE DIFF, XL$BUMPTIME-PL$MYCOPY,XL DIFFERENCE TO MAKE UP
ASSTIEN MYCOPY , XL$BUMPT IME, PL UPDATE LOCAL INFO
ADVANCE XL$DIFF MAKE UP THE DIFFERENCE
TRANSFER , MAKEUP TRY AGAIN

EXIT RELEASE SERVER JOB COMPLETED
TABULATE PTIMORD RECORD PROCESSING TIME
TERMINATE 0 EXIT THE SYSTEM

*

* HIGH PRIORITY JOB SEGMENT

*
GENERATE 600, 600, , , ,3PL HIGH PRIORITY JOBS ARRIVE
QUEUE HIGHQ HIGH PRIORITY QUEUE
SEIZE SERVER2 FICTITIOUS SECOND SERVER
DEPART HIGHQ EXIT HIGH PRIORITY QUEUE
ASSIGN HITIME, FN$HISERV, PL SERVICE TIME
SAVEVALUE BUMPTIME+, PLSHITIME, XL ACCUM TOTAL TIME "PREEMPTED"
ADVANCE PL$HITIME HIGH PRIORITY PROCESSING TIME
RELFASE SERVER2 JOB COMPLETED
TABULATE PTIMEHI RECORD PROCESSING TIME
TERMINATE 0 EXIT THE SYSTEM

*

* TIMER SEGMENT

*

GENERATE ’
TERMINATE 1
START 1
END

, 10000

580

TIMER TRANSACTION
SHUT DOWN THE MODEL

Alternatives for Modeling of Preemptive Scheduling

REFERENCES

Pegden, C. D. (1986). Introduction to SIMAN
with Version 3.0 Enhancements, Systems
Modeling Corporation, State College,
Pennsylvania.

Pritsker, A. A. B. (1986). Inroduction to
Simulation and SLAM II, Third Edition.
Halstead Press, John Wiley & Sons, New
York.

Henriksen, J. 0. (1986). You Can't Beat the
Clock: Studies in Problem Solving In:
Proceedings of the 1986 Winter Simulation
Conference (J. Wilson, S. Roberts,
J. Henriksen, eds.). Society for Computer
Simulation, San Diego, California, T713-726.

Henriksen, J. O. and Crain, R. C. (1983).
GPSS/H User's Manual, Second Bdition.
Wolverine Software Corporation, Annandale,
Virginia.

Henriksen, J. 0. and Schriber, T. J. (1986).
Simplified Approaches to Modeling
Accumulating and Nonaccumulating Conveyor
Systens. In: Proceedings of the 1986
Winter Simulation Conference (J. Wilson,
5. Roberts, J. Henriksen, eds.). Society
for Computer Simulation, San Diego,
California, 575-593.

AUTHOR'S BIOGRAPHY

JAMES O. HENRIKSEN is +the president of
Mr. Henriksen is the president of Wolverine
Software Corporation, located in Annandale,
Virginia (a suburb of Washington, D.C.)
Wolverine Software was founded in 1976 +to
develop and market GPSS/H, a state-of-the-art
version of the GPSS language. Since its
introduction in 1977, GPSS/H has gained wide
acceptance in both industry and academia.
From 1980-1985, Mr. Henriksen served as an
Adjunct Professor in +the Compubter Science
Department of +the Virginia Polytechnic
Institute and State University, where he
taught courses in simulation and compiler
construction at the wuniversity's Northern
Virginia Graduate Center. Mr. Henriksen is a
member of ACM, SIGSIM, SCS, the IEEE Computer
Society, ORSA, and SME.

Mr. Henriksen is a frequent contributor to
the literature on simulation. He has given
invited presentations at the Winter
Simulation Conference, the Summer Simulation
Conference, and at%t +the Annual Simulation
Symposium. He served as the Business
Chairman of the 1981 Winter Simulation
Conference and as the General Chairman of the
1986 Winter Simulation Conference.

James 0. Henriksen

Wolverine Software Corporation

7630 Little River Turnpike - Suite 208
Annandale, VA 22003-2653

(703) 750-3910 :

581

