Proceedings of the 1987 Winter Simulation Conference
A, Thesen, H. Grant, W. David Kelton (eds.)

A New Formalism for Discrete Event Simulation

Ashvin Radiya
Robert G. Sargent
Simulation Research group
441 Link Hall
Syracuse University
Syracuse, New York 13244

Abstract

A new formalism for discrete event simulation is proposed based
on the theoretical frameworks used for the formal analysis and
specification of the different aspects of computer languages. The major
elements of such a formalism are identified, defined, and discussed. This
formalism includes the specification and validation of the structural and
behavioral aspects of models specified in it. In this formalism, the
behavioral specifications can be used to synchronize different com-
ponents of a model. This enhances the modeling methodology.

1. Introduction

Roughly, a formalism formalizes “how and what" can be ex-
pressed about a problem entity. The problem entity is a system (real or
proposed), idea, situation, policy, or a phenomena to be modeled. In
this paper, we are concemed with a new formalism for discrete event
simulation (DES). This formalism includes the following six elements:
a model specification language; its semantics; model - its structure and
behavior; specification of validity (correctness) of a model; proof system
for model correctness; and the underlying modeling methodology. The
elements of this formalism and their relationship to each other are
shown in Figure 1. As shown in Figure 1, a model is specified using the
primitives and constructs of the model specification language of the for-
malism. A model has structure and its behavior is generated by execut-
ing it. Model validity is concerned with how well a model represents a
problem entity for its intended purpose. A suitable proof system must be
provided that has the capability of proving the validity of a specified
model behavior. The proof system must be sound with respect to the
semantics of the model specification language. The modeling methodol-
ogy underlying such a formalism depends on the language, usage and
specification of model behavior, and the proof system. Obviously, the
ambitious task of specifying a useful and complete formalism is enor-
mous.

In this paper, the general definitions of the elements essential for
specifying a formalism are considered first. Next, a particular formalism
is proposed for modeling based on the techniques of DES. Only some
of the clements like a model specification langunage, a framework of se-
mantic concepts, and model behavior are considered. The informal
definitions of the elements of the proposed formalism are considered.
The precise mathematical definitions are left for the future work.

2. Elements of a Formalism

The six elements necessary for defining a formalism for discrete
event simulation are defined and discussed next. |

2.1 A Model Specification Language
In computer based simulation, a modeler specifies a model of a real

system in a model specification language (in this paper it is referred to
simply as a ’language’) to achieve the desired goal. A language can be

specified by giving its syntax using BNF [Backus 1959] or syntax di-
agrams, Different, but less expressive, languages can be obtained by
suitably restricting the syntactic constructs of a given language. In this
sense, the syntax of a given language contains the syntax of several less
expressive languages. A language is characterized by a set of atomic ac-
tions (primitives) and constructs. These primitives and constructs are
used by a modeler to specify a model. The kind of knowledge that is
conveniently expressible and its form depend on the language that is
used to specify a model. The syntax of a given language determines the
structure or form of a model specified in that language. Different con-
structs have different meaning and usage for the purpose of modeling.
A language (specified using syntax only) may contain inconsistencies,
ommissions, and ambiguities. This deficiency in a language definition
can be removed by specifying the precise mathematical meaning (se-
maniics) of the primitives and constructs of a langunage.

2.2 Semantics

The semantics of a language is specified by defining mappings, in
an appropriate mathematical model, from the syntactic constructs of the
object language into the framework of semantic concepts. Despite the
complexity and variety exhibited by programming languages, it has been
shown that a framework of a remarkably small number of fundamental
semantic concepts provide an adequate conceptual basis for defining
concise formal models of their meaning [Tennent 1976]. The semantics
of a language provides a precise and abstract meaning of a language.
Some of the computational or mathematical properties of models can be
expressed using the semantic concepts of the language.

A framework of semantic concepts can be specified by prescribing
a collection of appropriate sets and functions that satisfy suitable proper-
ties (constraints). For example, the DEVS-formalism [Zeigler 1976)
based on systems and set-theoretic concepts can be used to give seman-
tics of DES programming languages. A formal model of a meaning of a
language can be useful to a modeler as it provides a small number of
concepts necessary to define the semantics. The concepts of semantics
are related to the concepts of a modeling methodology which is used to
construct models in the language under consideration. Direct studies of
these language-independent formalisms may allow them to be appropri-
ately extended and lead to the development of new methodologies for
constructing models.

2.3 Model - its Structure and Behavior

A model is a modeler’s representation of a problem entity ex-
pressed in a suitable model specification language to achieve a desired
goal. Two important aspects of a model are its structure and its
behavior. The model structure refers to the particular form taken by a
model specification. The model behavior is generated when a model is
executed. The model behavior must be distinguished from the model
structure which refers to the particular form that a model takes. Essen-
tially, a model is characterized by its structure or form and model
behavior is generated when the model is executed.

554



A New Formalism for Discrete Event Simulation

axioms and rules for

\
Model Specification Language Model
specified generated by
-Syntax using has executing
-primitives
-constructs Structure| Model
Behavior |
A |
gives depends Structural Behavioral
precise Validity Validity
meaning
to
Modeling uses Model
Methodology Validity
shares uses proves
some
concepts
Semantics sound with respect to Proof
System

Figure 1: The Elements of the Formalism and Their Relationships

The resemblance of a model structure to the organization and form
of modeler’s knowledge of a problem entity increases the expressibility
and readability of a model. A model should be constructed such that the
model’s behavior agrees with the behavior of the problem entity. Tradi-
tionally, model’s behavior is specified by the trajectories of some of the
variables of a model (see Zeigler (1976) for an example). This notion of
model behavior is based on the assumption that a model can be
specified using variables denoting values like numbers. However, in-
teresting model behaviors can be specified differently. For example, a
modeler may have made the observation: ‘if events A and B occur to-
gether with events C or D then event G occurs’. A useful behavior of a
model] need not be restricted to variables.

A general definition of model behavior would be useful. Such a
definition must include the traditional behavioral specification in terms
of the properties of certain variable trajectorics as well as other useful
behaviors specified in terms the properties of sequences of events, ac-
tivities, etc. may satisfy. In section 3.3, an atlempt is made to give a
definition for a general model behavior. This definition of model
behavior can be used in model specification and model validation.
Behavioral expressions can be defined to achieve model synchronization
and specify validity conditions.

2.4 Specification of Model Validity

Model validity is concemed with how well a model represents a
problem entity for its intended purpose. Two aspects of model give two
major types of validity: structural and behavioral validity. Structural
validity is concerned with the extent of agreement between the model’s
structure and the structure of a problem entity. Behavioral validity is
concerned with the extent to which the model’s behavior corresponds to
problem entity’s behavior.

555

As mentioned in the previous subsection, the modeling methodolo-
gy is enhanced when expressions denoting behaviors can be used in
model specification. Similarly, the validation techniques can also be
enhanced by considering complex behaviors in addition to validating the
properties of certain variable trajectories during a model execution. For
example, event validity compares the events of occurrences of the simu-
lation model with those of the real system. An example illustrating
more complex behavioral pattern is, *a model is valid only if activity A
(specified by an initial and final event) never overlaps activity B’. To
develop a complete theory of model’s validity, a specification language
needs to be developed to specify properties of model behavior. For ex-
ample, the language of assertions based on first order predicate calculus
is developed to specify the correctness of sequential programs [Hoare
1973).

2.5 Proof System

A proof system is a programming logic for reasoning about some
of the properties of a model. It is an extension of predicate logic, and
thus contains all the formulas, axioms, and inference rules of predicate
logic. In addition to the axioms and inference rules of predicate logic,
the programming logic has one axiom or inference rule for each type of
statement, as well as some statement-independent inference rules. Each
rule is sound with respect to the operational semantics of the language
under consideration.

2.6 Modeling Methodology
A modeling methodology guides a modeler in constructing and

validating models. A model is constructed using different primitives
and constructs of the model specification language. The useful forms of



A Radiya and R.G.Sargent

the constructs of a language for modeling can be obtained by either sim-
plifying (or restricting) some complex constructs or by making new
constructs using simpler ones. For example, in the ROBS (Rules and
Object based Simulation) model specification language [Radiya and Sar-
gent 1987], rules can be considered as special kind of objects (in its
syntax). However, rules and objects have quite different meaning for
modeling. A modeler analyses and specifies a representation of a prob-
lem entity by keeping the meanings of the constructs of the language.
Thus the meaning of constructs available for modeling determines the
modeling methodology. The new modeling methdology proposed for
DES should allow behavioral pattermns to be used in synchronizing the
components of a model. The behavioral expressions, considered in sec-
tion 2.3 and 3.3, may help to simplify the task of achieving synchroni-
zation and specifying validation conditions for complex models.

A model must be validated for its intended purpose. A validation
methodology for 2 new formalism should have provosions for validating
both model structure and its behavior.The behavioral validity should
consist of operational validity as well as proving the other properties of
model behavior using a proof system.

3. The Proposed Formalism

A particular formalism is now proposed for discrete event simula-
tion. The elements of the proposed formalism are defined and discussed
next.

3.1 The Model Specification Language

The language of the proposed formalism is based on the ROBS
model specification language. As mentioned in section 2.1, a language
may contain several less expressive languages. It has been shown in
Radiya and Sargent (1988) that the ROBS model specification language
can be used to specify models in event scheduling, activity scanning,
and process interaction world views of DES besides the ROBS world
view. Thus, the ROBS model specification language can be used to
specify an interesting class of DES programming languages. However,
synchronization expressions in ROBS are dependent only on the vari-
ables of a model and on message passing. The modeling methodology
of ROBS can be enhanced by allowing complex behavioral patterns in
synchronization expressions. The language of the formalism will in-
clude appropriate extensions of ROBS such that some of the behavioral
expressions can be used as synchronization expressions. Some of the
semantic concepts required to give precise meaning to the primitives
and constructs of the model specification language are discussed in the
next subsection.

3.2 Semantics

To specify the semantics of a language one considers only an
“abstract” form of the syntax of a language. The abstracted syntax
avoids some semantically irrelevant complications such as operator pre-
cedence. The semantics for a formal language is specified by defining
the mappings from the primitives and constructs of the abstract syntax
to the elements of the framework of the semantic concepts. In this pa-
per, only the framework of the ne&ssary semantic concepts is con-
sidered. It is Shown how the meaning of\a model can be given in such a
framework. First, an informal description of the semantic concepts of
the framework is presented. Such a framework consists of a model
state set, the indexing element T, a model, and 2 select function. The
concept of a model state is defined using the concept of a variable state,
synchronization expressions, and agents. Then, it is shown how a select
function is used to generate model behavior of a given model.

First, the concept of variable state set (Zv) is central to model
specification languages (as well as to general purpose sequential pro-
gramming languages) and the process of modeling, A varable state
(cv) defines the current values of the variable identifiers in a model.
The variable state set is a set of all functions (states) from variable
identifiers to values. The concept of variable state is at the heart of the
computer simulation languages based on traditional world views.

Second, the concept of agent is required. An agent is a function
from model state set (T) to model state set (defined later). The set of all
agents is denoted by Agent. Usually, an agent is a complex function
which is a composition of several other functions (simpler agents) from
model state set to model state set. In programming languages, agents are
represented by atomic actions (commands, statements or instructions),
constructs, programs, and subroutines. In DES programming languages
based on the three basic world views, an agent is denoted by an event
routine in event scheduling; an activity routine in activity scanning; and
a process routine in process interaction world views.

Third, the concept of synchronization expressions is required. A
synchronization expression is an expression containing predicates
defined on Z (ie., }:v and ES) and the indexing element T. Usually the
domain of the indexing element T is Real’, where Real® denotes the
positive real numbers. A synchronization expression is a function from
(T x Z) to {true, false}. Synchronization expressions are used to deter-
mine the order in which different agents are executed to produce the
desired behavior of a model. The synchronization expressions needed to
give semantics for most of the DES programming languages are the
same as the boolean expressions in the respective languages. However,
synchronization expressions are used very differently than boolean ex-
pressions, i.e., they have different semantics. Also, synchronization ex-
pressions as defined here contain predicates on Z, and Zs’ so they in-
clude an expression like *schedule an agent when event A and event B
occur together with event C or D*. The set of all synchronization ex~
pressions is denoted by Sexp.

Now, a model state () can be defined. A model state & consists of
a variable state S, and a set (called cs) of pairs of the form, (®, o) -
where © € Sexp and o ¢ Agent. The model state-set () is a set of all
model states.

A model consists of an initialization agent to give initial value to
model state, one or more agents, and a terminal agent to specify the ter-
mination condition for model execution. A model behavior is generated
by executing the following computation cycle: select an agent from a
given mode} state (begin with the initial model state as defined by the
initialization agent) using a select function (g); apply the selected agent
(a function from X to Z) to the given model state to obtain a new model
state; and repeat the cycle.

- 3.2.1 Definitions

556

The precise definitions of the above informal description are stated
next.

Variable State Set
Let var and val be the disjoint sets of symbols representing the

sets of variables and values which variables may take. Then, variable
state is G, i var — val and Ev = {ov} = variable state set.



A New Formalism for Discrete Event Simulation

Synchronization Expressions

Let Sexp = {®} be the set of all synchronization expressions
defined using boolean connectives (such as and, or, etc) and predicates
on Z and the indexing element T. A synchronization expression ® &
Sexp denotes a function, ® : (T x Z) — {true, faise}. A partial func-
tion 1: Sexp — Real® is defined for o e Sexp if o contains a predicate
defined on the T, i.e., T retums the scheduled time associated with ®, if
any.

Agents

Let Agent be the set of all agents. Then, Agent = {aia : X — I}
= The set of all functions from £ to . The agents are classified either
as atomic actions or constructs. The atomic actions transforms the
model state indivisibly, whereas constructs are defined in terms of one
or more simpler agents, synchronization expressions, and other expres-
sions like boolean expressions.

Model State Set

Now, the model state set can be defined using the definitions of

Z , Sexp, and Agent. Model state set == = {6} = (X, X L) = {(c.,

\A v s v
cs)], where ZS = {cs} and S, < (Sexp x Agent),

A model consists of an initialization agent (o,), one or more
agents, and a terminal agent. The initial model state is obtained by ap-
plying ¢ to ¢ (null model state), i.e., a0(¢) = ¢". Then, the next agent
is selected by applying the select function to the current model state.
The model execution is terminated when the terminal agent is executed.
Here, the most general definition of the select function is considered.
The only assumption made is that the select function never returns an
agent whose scheduled time, if defined, is greater than scheduled time
of any other scheduled agent and an agent with scheduled time greater
than the current time is not selected until all the agents whose ®'s are
satisfied have been scheduled. This introduces nondeterminism into the
formalism. In different programming languages further restrictions are
made to reduce (often completely) nondeterminism. The selection func-
tion, ¢ : (T X Z) — (T x Agent) is a partial function that retumns the
next selected agent and the scheduled time associated with it.

Then, the computation cycle which generates the model behavior is
as follows.
te 1,
SRR
‘Tepeat until zermination
t ¢ pry(g(o))
S « pry(g(@)) (0)
where pr; is a projection function, which gives ith element of a tuple.

3.3 Model behavior and validation

Traditionally, the behavior of a model (and a problem entity) is
specified using the trajectories of some of the variables of a model.
Here, the behavior of a model is defined by considering the trajectory
(defined by relation —) of model state. Execution of a mode] results in
the sequence of model states and atomic actions

0%, 1 % .. %

[+ A
o - G - P i+l

s 0_1 - —

where the o*s denote model states, the c..’s denote atomic actions, and
the sequence 0y Ol is the sequence of atomic actions resulting from
the execution of agents specified in a model. The set of possible
behaviors, {B}, is defined using the model state trajectories as follows.

DP= I'I(b1 - b2 b Y bm),

where the behavior § is said to have occurred during the model ex-
ecution if the relation IT is satisfied by bi’s, where bi = f(o) and f
is an arbitrary function on ¢. The relation — holds on bi’s if the
relation — holds on the corresponding model states.

2) B =110, ... By,
where the behavior f§ is said to have occurred if the behaviors By
- Bn satisfies the relation IT.

The above definitions are illustrated with the following examples.
The variable trajectory of a variable, say x, that satisfies a required pro-
perty can be considered as a specification of a model behavior. Namely,
the model behaves in such a way that the variable trajectory of x
satisfies the required property. This is expressed as B = I'I(b1 -~ b2 -
s bm). where b = f(c), f is a function that returns the value of the
variable x, and IT stands for the required property. The observation of
the model’s behavior of the form 'if events A and B occur together with
events C or D then event G occurs’ can also be specified using the
above definitions as b is defined using a function on model state 6. The
other useful behaviors can be defined using definition 2 as shown in the
following example. Let [31 and BZ be the particular behaviors of the
type activity, which are specified by (b1 el bz), where the states
corresponding to b1 and b, mark the beginning and the end of the ac-
tivity. Let Il be a relation on two activities. The If is true if only if its
operand activities overlap. If (B; Il [32), then the activities Bl and ]32
overlapped during the model execution.

The above generalized definition of model behavior can be used to
specify generalized behavioral validity. One can express validity condi-
tions like ’a model is valid only if ([31 Il [32) is false for all model exe-
cutions’, ie., Bl never overlaps [52 ('mutual exclusion’ in concurrent
programming terminology). Other validity conditions like ’a model is
valid only if a variable trajectory of x satisfies certain statistical proper-
ties” can also be expressed in the proposed formalism.

4. Summary

The elements of and issues relating to defining a new formalism
for DES have been identified and discussed in the paper. Some of the
elements are defined and discussed in greater detail than others. To
specify a complete formalism one needs to develop a theoretical frame-
work appropriate for the analysis and specification of the different ele-
ments of a formalism. A language that allows behavioral expressions of
the kind discussed in the paper for synchronizing different components
(agents) of a model should be defined. The framework of semantic con-
cepts presented in section 3.2 (with some possible extensions) can be
used to give the precise mathematical meaning to the abstract syntax of
the proposed language. A specification language, similar to Hoare's
language of assertions, can be developed to specify the higher level
behaviors and validity conditions for a model. A suitable proof system
must be designed to prove the required behavioral properties of a model
from its validity specification.

References

Backus, J.W. (1959). The Syntax and Semantics of the Proposed Inter-
national Algebraic Language of Zurich ACM-GAMM Conference,
Proceedings of the International Conference on Information Processing,
June 1959, 125-132, UNESCO, Paris.

Hoare, C.A.R. (1969). An Axiomatic Basis for Computer Programming,
Communications of the ACM, 12, 10 (October), 576-583.

557



A Radiya and R.G.Sargent

Radiya, A. and R.G. Sargent. (1988). ROBS - Rules and Objects based
Simulation, forthcoming in Modelling and Simulation Methodology:
Knowledge System Paradigms, Oren, T, Zeigler, B.P., Elzas, M.S.
(eds), North-Holland.

Sargent, R.G. (1987). An Overview of Verification and Validation of
Simulation Models, Proceedings of the 1987 Winter Simulation Confer-
ence.

Tennent, R.D. (1976). The denotational Semantics of Programming
Languages, Communications of ACM 19, 8 (August), 437-453.

Zeigler, B.P. (1976). Theory of Modelling and Simulation, John Wiley
& Sons.

AUTHORS’ BIOGRAPHIES

ASHVIN RADIYA is a Ph.D. student in the School of Computer
and Information Science at Syracuse University. He holds a Bachelor’s
degree in Mechanical Engineering from Indian Institute of Technology -
Bombay, India. His current research interests includes simulation
modeling concepts, concurrent programming, and logic programming.

Ashvin Radiya

441 Link Hall

Syracuse University
Syracuse, NY 13244-1240
(315) 423-2820

ROBERT G. SARGENT is a professor of Industrial Engineering
and Operations Research and a member of the Computer an Information
Science faculty at Syracuse University. Dr. Sargent has served the
Winter Simulation Conferences in several capacities, including being a
member of the Board of Directors for ten years, Board Chairman for
two years, General Chairman of the 1977 Conference, and Co-editor of
the 1976 and 1977 Conferences Proceedings. Professor Sargent was
Department Editor of Simulation Modeling and Statistical Computing
for the Communications of the ACM for five years, has served as Chair-
man of the TIMS College on Simulation and Gaming, has been a
member of the Executive Committee of the YEEE Computer Society
Technical Committee on Simulation, and has receive service awards
from ACM, IIE, and the Winter Simulation Conference Board of Direc-
tors. He Currently is an ACM National Lecturer and a Director-at-large
of the Society for Computer Simulation. Dr. Sargent received his educa-
tion at the University of Michigan. His current research interests include
model validation, simulation methodology, simulation applications, per-
formance evaluation, and applied operations research. Professor Sargent
is a member of AYIM, New York Academy of Sciences, Sigma Xi,
ACM, IIE ORSA, SCS, and TIMS and is listed in Who’s Who in
America.

Professor Robert G. Sargent
431 Link Hall

Syracuse University
Syracuse, NY 13244-1240
(315) 423-4348

558



