Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

IMPLEMENTING THE PRODUCT AUTOMATON
FORMALISM

Frederick J. Portier

Department of Mathematics

The University of North Carolina

at Greensboro
Greensboro, NC 27412, U.S.A.

ABSTRACT

A formalism for discrete simulation is a
set of conventions for the construction of
discrete simulation models. In this paper we
define the product automaton formalism. The
formalism is defined as a mathematical object
and is independent of any programming language.
Implementing the formalism in a specific
programming language entails associating the
' of the

language constructs. We show how the formalism

various components formalism with

can be implemented in any procedural language.

Furthermore, +the implementation closely
parallels the formalism in both structure and
function. As an example, we present an

A novel feature of
this
The paper concludes with a

implemenation in Modula-2.
Modula-2
implementation.

is used in recursive
brief discussion of a tool being developed that
will provide support for modelling using this
formalism.

1. INTRODUCTION

A formalism for discrete simulation allows
one to specify a discrete simulation model in a

precise, unambiguous manner. A well-known
formalism, developed by Zeigler (1984), is the
discrete event system specification (DEVS)
formalism. One fofm of the DEVS has one
specify a system in a modular fashion; the
system is decomposed into a hierarchy of
component subsystems. This DEVSM (DEVS in

Modular form) formalism has been implemented

(Zeigler 1986).

Formalism, modularity, and hierarchy

combined provide a powerful expressive

capability. Formalism reduces the ambiguity of

544

model specification. Modularity allows one to
specify and understand a model as a collection
of

precisely defined and communicates with other

smaller entities where each entity is

entities through standard ports. Hierarchy
allows one to specify and understand a model as
a decomposition of subordinate models.

In this paper we present a formalism, the
Product Automaton (PA) formalism, that
related to the DEVSM formalism. Like the DEVSM
formalism, it makes extensive use of modularity

is

and hierarchy. However, there are major

differences between the two, especially with
respect to world view. Both formalisms view a
system as a finite decomposition of subsystems
and both maintain subsystem states in a modular
fashion, However, the definition of state and
the manner in which state transitions occur

differ in the two formalisms.

not
In

The PA formalism alone does

immediately provide a simulation program.

fact, the formalism is independent of any
programming language. To implement the
formalism, one needs to associate the

components of the formalism with constructs in

the language chosen. In particular, one would

like ar set of language constucts that closely

prarallels the components in the formalism. A
set of program constructs is provided in
Section 3. As an example, constructs in

Modula-2
constructs

are given. A set of programming
in FORTRAN corresponding to an
earlier version of the PA formlism can be found
in Haymond (1978).

brief discussion of a tool being developed that

The paper concludes with a

will provide support for modelling using this

formalism.



Implementing the Product Automation Formalism

2., THE PRODUCT AUTOMATON FORMALISM

Central to the PA formalism is the notion
of coupling of subsystems; a system is defined
as either either indecomposable or made up of
A decomposition tree
describes this hierarchy. The root of the tree
the children of a
node represent the component subsystems of that
the
The definition of the PA formalism

subordinate subsystems.

represents the entire system,

node, and leaves represent atomic
subsystems.
starts with a decomposition tree and defines
the manner in which subsystems associated with

the nodes of this tree interact.

Let T be a rooted tree. Then

T = <N,E, >
where N is a finite set called the node set and
E is a subset of N X N called the edge set. The
node r eN is called the root and <N,E> is a

tree.

We can write N as the disjoint union of
the sets {r}
(Intermediates)

» Intery, and Atomy where Intery
is the set of nodes that have
an ancestor and a descendent and Atomy (Atoms)
is the set of nodes that have an ancestor but
A rooted tree is shown in
{7,B,C,D,E} with
{B} and Atomy = {C,D,E}.

no descendents.

Figure 1. The node set is N =

r = A, InterN

Figure 1: A Rooted Tree

We can now define the Product Automaton
We the
automaton as a mathematical object

Formalism. first present product
(subject to
a number of constraints) and then later discuss

its use as a formalism for simulation.
A Product Automatom is a structure
PA = <NIEIrI{Mi}'{Zin}>

where <N,E,r> is a rooted tree and for all ieN

545

M; = <X;,S4,9,tay>.

Each M; is called a component. Defining a

component are the following:

X3

83

3.

i

is a finite set, the set of inputs to i,

is a set, the state set of i,

the state transition
function of i,

ta; e R+°,w is the natural update time of i

(R¥o, is the extended non-negative real

is function,

numbers)

The objects defined above are subject to
the following constraints (Axioms):

for all i € N there exists sets
{C;srx}sk = 1, ..,ny, such that

(1)

Si = X Ci’k'

k
(2) for all i e N we have that
Ci,l = R+0,°°
and if s e S; is the current state
of i, then taj is sq.
(3) for all i ¢ N we define
d;: X3 X 84 — S; for i e Atomy
Bi: X. Sj - Si for i ¢ AtomN
J
(i,3) € E
(4) there exists inputs v,0,% such that
v e X; for all i € N,
T e X; for all i # r, and X, ={v,0}
(5) Zi,j: Xy X Si - Xj for all (i,j) e E
(6) tay = m}n taj
(i,3) ¢ E
(7) Zi,j(u,s) = v provided ta; = taj
1%} provided ta; # tay
(8) Zi,j(ﬁ,s) = (& for (i,3) € E
9;(@,s) = s for i e Atomy

(9) Zi,j(x,s) #vV for x # 7V

(10) The sequence of inputs that r

receives is {v,6,V,0, .. }.



F.J.Portier

Thus,
of interacting and interrelated components.
The
decomposition tree and

a product automaton is a collection

components are arranged as in a

interact only with

adjacent components as defined by the tree. To
make the relationships between the components
precise, we define the terms factor and
product. A factor is a component that is part
of some decomposition and a product is a

component that has factors. The interactions

between components are then only between
products and factors.
Every component 1 maintains a current

state (an element of Si)' accepts inputs (from
Also,
inputs to its

X;), and changes state (using ai). every

non-atom component supplies
factors (using the fuctions {Zi,j}). Thus, a
component can be thought of as an automaton and
a product can be thought of as a product of

automata.

State transitions occurs in two forms

(axiom 3). An atom has state transitions based

soley on the input received and on its internal
T

state whereas a product changes state based on

the state of its factors.

We have defined three special inputs v, C,
and @. The input v plays a central role in the
timing of the model and is discussed later.
The the null
component receives @ it does not change state
The input ¢ is the input that the

input & is input; when a
(axiom 8).
root receives that is not the special input V.

‘The root alternately receives the inputs vV and
o (axiom 10); as we will show later, this

defines two distinct phases in the simulation.

Note that the root receives external inputs and

all other components receive inputs from their

product.
A product automaton serves: as an
abstraction of a physical system. The root

represents the entire system and the factors of
a product represent subsystems of that product.
The PA formalism is a product automaton with an
the simulation

associated algorithm. Briefly,

algorithm is as follows:

546

Algorithm 1

1) the root receives an input

2) based on state and input received,
products send inputs to factors

3) when an atom receives an input, a state
transition occurs

4) after all factors of a product have
changed state, the product changes state

5) after the root has changed state, go to

step 1

Associated with each component is a number
called the for that
component; it is the first entry in the current
state of the component This number
is interpreted as the scheduled time of the

natural update time

(axiom 2).

next state transition for this component. By
axiom 6 we know that the natural update time
for a product is the minimum of the natural
update times of its factors. This is consistent
with the interpretation given above since the
time scheduled for a product to change state
must be the minimum of the times scheduled for
the components composing the product.

The time at which the

transition is scheduled to occur for the entire

next state
system is the natural update time of the root.

This corresponds, ultimately, to some set of
atoms with this same natural update time. When
simulated time is progressed to the natural

update time of the root, this set of atoms must

experience state transitions. This 1is
accomplished using the special input v as
follows:

1) The root receives vV as an input

2) v is passed from product to those
factors with equal natural update time
(axiom 7)
3) The correct set of atoms receive UV as an
input and experience state transitions
We now define a variable called TIME which
is external to the product automaton. Algorithm
2 incorporates TIME into the simulation
algorithm. Figure 2 describes the behavior of a

product automaton upon the receipt of v; the
natural update times are shown to the left of

each node.



Implementing the Product Automation Formalism

Algorithm 2

1) Set TIME to the natural update time of
the root

2) the root receives the input v

3) after the root changes state, the root
receives the input ©

4) After the root changes state, go to 1)

TIME = 805 3
900 (A)

i;;’%i::‘a

Tha next

This is the initial state of tha system.
scheduled state transition is at 805.

2 - TIME is progressed to 805 and A raceives tha dinput
v. Products supply ¥ to factors that have natural
update time egual to 805.

Once the atoms have changed stata, the states of
the products are defined in terms of the states of
their factors. D changes state followed by B and
then finally A.

Figure 2: Behavior of the Product Automaton

1

3

As described above, the input U is related

to scheduled state transitions. All other
non-null inputs are related to nonscheduled,
conditional state tansitions. When the root
receives the input G, a decision must be made
by the root as to the necessity of performing
conditional state transitions in the system.
If conditional state transitions are to occur,
the root sends an input (not vV, by axiom 9) to

Those intermediates

what

the affected components.
that
conditional state transitions must be performed
their

necessary.

receive non-null inputs decide

in subsystems and send inputs as
This continues until some set of
atoms receive inputs, at which time they change

state.

Let us define branching as the decision
process conducted by a product that results in
a set of inputs being supplied to its factors.
Branching is based on both the current state of
the component and the input it receives. The
set of functions {Zi,j) accomplishes branching

for i.

547

Branching comes in two varieties., Upon

the receipt of v, branching insures that the
correct set of scheduled state transitions
occurs. Upon the receipt of an input other that
v or 9, causes hierarchical

branching a

decision process to occur; the input received
is an encoding of the results of a decision
process conducted by its ancestors and the set
of inputs it sends out is a continuation of

this same decision process.

The state of a component must contain
sufficient information £for the branching to
take place. This information is communicated to
the component by way of the states of its
factors. Although it would suffice to define
the state of a product as the cartesian product
of the states of its factors, it is likely that
processed information is what is really needed.
Thus,

function of the states of its factors.

we define the state of a product as a

It
simulation algorithm as

to think of the
consisting of two
During the patural phase scheduled

transitions

is convenient
phases.

state occur and during the
unnatural phase conditional state transitions
occur. The natural phase is initiated when the
root receives the input D and continues until
the root changes state. The unnatural phase
begins once the root receives ¢ and continues
until the root changes state. Since the root

alternately receives v and o, the algorithm

alternates between these two phases.

We can now describe the entire simulation

algorithm. We incorporate dinitialization,

output, and a test for termination.

Algorithm 3
1)
2)
3)
4)
5)
6)
7)
8)

Initialize TIME
Initialize
Output the
Let TIME

Test for termination

the product automaton

event vector

the natural update time of r

Natural Phase
Unnatural Phase
go to step 3



F.J.Portier

The event vector is a vector of values
maintained internally within the components at
the simulated time TIME. They can be
part of the states of the components.

considered

Initialization of the product automaton
must drive each of the states of the components
to of that
consistent with the value of TIME and the

modelled initial system.

some set initial states are
Since the state of a
product is a function of the states of its
factors, initial states of all factors of a
product must be defined prior to initializing
the product. Initialization can then proceed as
in a postorder traversal of the decomposition

tree.

A Small Example

To illustrate how the formalism is applied
to a physical system, we consider a small
example. Figure 3 represents a collection of
conveyor belts. Conveyor belts A and B feed
into conveyor belt C. Objects originate on belt
A and B according to random processes. It takes
an object 12 seconds from the time it enters
belt A to the time it enters belt C;
it takes 15 seconds to travel from B to C. An
object on belt C travels to the end of C and
falls off

a first come,

likewise,

(8 seconds). Objects enter belt C on
first serve basis; if there is a
tie, the object on A enters with probability
.65. An object held up due to a tie will enter
belt C exactly 1 second later. We assume that
objects are generated no sooner than 2 seconds

apart so that the system does not backup.

Figure 3: The Conveyor Belt System

548

One possible decomposition tree for the
system is shown in Figure 4. The node set is S

(SYSTEM), E (Entering), A (Belt A), B (Belt
B), and C (Belt C). Beside each node are
variables which define the state of the
component. "AtIntersection" (8) has the wvalue

TRUE if there is any object ready to enter belt
c. (B) has one of the values AOnly,
BOnly, Both, or Neither indicating the possible

"Present"

arrangement of objects ready to enter belt C.
Note that
from the value of
Present <> Neither). for A is
TRUE if there is an object on belt A ready to

"AtIntersection® can be determined

"Present" (AtIntersection

"AtIntersection®

enter belt C. "AtIntersection" for B is
similarly defined. Note that "Present" can be
determined from the values of "AtIntersection"
for A and B.
ta, ,AtIntersection vV - Dxop
5/ (s) 1 - Enter
ta, ,Present 9 e tag
ta, ,AtIntersection () tap AtIntezsection
- Arrival v - Arrival
2 — Eii:: 1 - Enter
2 - DelayByl 2 - DelayByl

Figure 4: Decomposition Tree for
Conveyor Belt System

Near each atom in Figure 4 is a list of
the possible inputs and the kind of state
transition such an input will cause. These

operations are informally descibed as follows:

Arrive: An object either arrives onto the
conveyor belt or arrives at the intersection
with belt C

Drop: An object falls off conveyor belt C.

Enter: BAn object at the intersection with
belt C enters belt C.

DelayByl: An object that has arrived at
the intersection with C is delayed entering C
for 1 second.



Implementing the Product Automation Formalism

Note that Arrive and Drop are scheduled
Thus,
it is necessary to schedule another or

state transitions. when an “Arrive"
occurs,
set the natural update time for the component

equal to ©°,

The branching during the unnatural phase
is described by the following pseudo-code.

S receives G
IF AtIntersection THEN
Send 1 to B
Send 1 to C
END

E receives 1:
CASE Present OF

AOnly: Send 1 to A
BOnly: Send 1 to B
Both: Determine who enters
IF A enters THEN
Send 1 to A
Send 2 to B
ELSE
Send 2 to A
Send 1 to B
END
Neither: < this is not possible>
END

Missing from this brief discussion are the

internal workings of each of the atoms, the
initialization for each of the components, and
a designation of an event vector.
3. THE PROGRAM TEMPLATE

Implementing the PA formalism involves
associating the various components of the
formalism with language constructs. In this

section we will describe a general scheme for
implementing the formalism in any procedural
programming language. In the next section we
will Dbe

implementation in Modula-2.

more specific and present an

A module 1is collection of program

These objects

a
objects. are either private
(accessible only within the module) or public
(accessible to objects outside of the module).
Thus,

allows

a module is a structuring tool that
to group
(procedures, variables, constants, etc.) into a

one program objects
single entity that communicates with othexr such
entities only through those objects that are

public.

549

of the PA formalism
begins by defining one module for each of the
Each
module is structurally similar and communicates
in a formal manner. In
particular, we define module templates for the
atoms,

Our implemention

components of the product automaton.

with other modules

intermediates, and the root. A module
template is a specification of the module's
objects and the visibilty of these objects.

Figure 5 gives the module templates.

STATE

INPUT SET
LOCAL VARIABLES
BRANCH ROUTINE
STATE ROUTINE
INIT ROUTINE
PRINT ROUTINE

Root

STATE (visible to parent)
INPUT SET (visible to parent)
LOCAL VARIABLES

BRANCH ROUTINE

STATE ROUTINE

INIT ROUTINE

PRINT ROUTINE

Intermediate

STATE
INPUT

(visible
SET (visible
LOCAL VARIABLES
STATE ROUTINE
INIT ROUTINE
PRINT ROUTINE

to parent)
to parent)
Atom

Figure 5: Module Templates

STATE is a set of variables defining the
The INPUT SET is a
LOCAL VARIABLES are
used internally within the

state of the component.
collection of constants.
variables modules
The BRANCH

ROUTINE is a procedure that does the branching

and are not part of the state.

(supplying of inputs to factors) for all inputs
other than V. Branching upon the receipt of v
and handled
The STATE ROUTINE accomplishes
state transition for the component and the INIT
ROUTINE the state of the
The PRINT ROUTINE the
component's portion of the event vector.

1s completely specifiéd is

seperately.
sets initial

component. outputs

The defined

contains procedures that are encodings of the

module for a component

operations defined by that component. External



E.J.Portier

to all of these modules, we supply the code
necessary to execute the procedures in the
order defined by the simulation algorithm.
Figure 6 describes algorithms that accomplish

this.

PROCEDURE SIMULATE
INITIALIZE
LOOP
PRINT EVENT VECTOR
TIME := natural update time of root
IF <termination condition> THEN EXIT END
NATURAL_PHASE (root)
UNNATURAL PHASE (root)
END
END SIMULATE

PROCEDURE INITIALIZE
FOR all nodes in a postorder traversal DO
INIT for node
END
END INITIALIZE

PROCEDURE PRINT_ EVENT VECTOR
FOR all nodes DO
PRINT for node
END
END PRINT EVENT VECTOR

PROCEDURE NATURAL_PHASE(node)
IF node is an atom THEN
REPEAT
STATE for node with input v
UNTIL natural update time of node # TIME
ELSE
FOR all children of node DO
NATURAL_EHASE(child)
END
STATE for node
UPDATE (node)
END
END NATURAL_PHASE

PROCEDURE UNNATURAL PHASE (node)
IF Input = ¢ THEN RETURN END
IF node is an atom THEN
STATE for node
ELSE
BRANCH for node
WHILE node sent some input # & DO
FOR all children of node DO
UNNATURAL_PHASE(child)
END
STATE for node
UPDATE (node)
BRANCH for node
END
END
END UNNATURAL_PHASE

PROCEDURE UPDATE (node)
Make the natural update time of node equal to
the minimum of the natural update times of
the children of node

END UPDATE

Figure 6: Pseudocode for Simulation Algorithm

550

The pseudocode found in Figure 6 uses
several conventions. Procedures are all in
capital letters and procedure references are
indicated by naming the procedure. The use of
"for node" signals that the given procedure is

the one associated with the node

"node" and

found in the module defined for "node".

The six procedures defined are based on
the tree structure of the product automaton
only. They are easily implemented once the
issue of tree representation has been decided.
These six procedures along with the module
templates define the program template. To write
the simulation program one need only supply the

procedures given by the program template.

To illustrate the

we consider a small example.

program template
Here A

and B is a product of

concept,
is a product of B and C,
D and E. Graphically, the program template is

given in Figure 7. Since there are five

components, we define five module templates.
The order of execution is from top down, the
same direction in which inputs are passed. The

flow of state information is from bottom up.

Module A
State
SIMULATE
INITIALIZE Input Set
PRINT_EVENT_VECTOR Local Var.
NATURAL_PHASE Branch R.
UNNATURAL_PHASE
UPDATE State R.
Init R.
Modula B Print R. Module C
///// state State
Input Set Input Set
Module D Local Var.l Modulae E Local Var.
state Branch R. State
State R. State R.
Input Set Input Set Tt R
Tocal var.| it R Local Var. n .
Print R. Print R.
State R. State R.
Init R. Init R.
Print R. Print R.

Figure 7: The Program Template

There are several reasons for adopting
such a formal manner of programming. These are

as follows:



Implementing the Product Automation Formalism

1) The implementation is very closely
related to the formalism. A large
proportion of time can be spent on model
specification rather than on programming.
and

2) The properties of modularity

hierarchy are maintained.
3) The design of the program is explicitly
given. This aids in documenation,
debugging, and maintainance.

A modification to the model results in a
similar modification to the program. Even
major modifications, such as replacing an
atom by a product or adding an additional
factor to a product can be implemented in
an unambiguous manner.

4)

5) Computer assistance in the form of

partial code generation is possible.

There two recognized problems with this
manner of implementation. The first is common
to all simulation programs written in general
statistics gathering

purpose languages; namely,

must be done mannually. This implementation
prints the raw data (event vector) from which

statistics can be gathered.

one involving the
The only flow of

inputs from

A second problem is
communication of information.
information thus far has been 1)

product to factor and 2) state information from

factor to product. It is possible that some
piece of information maintained within a
component, A, is needed by another component,
B, and A and B are not related by the

factor/product relationship. This problem is
overcome by defining additional procedures in

the existing modules whose sole purpose is the

communication of information. Thus, B
references a routine in the module for A that
transfers the desired information. Although

this does solve the problem, it also lessens
the degree of modularity and complicates the

design of the program.

4. MODULA-2 IMPLEMENTATION
Modula-2 is a language created by Niklaus
Wirth (1982). It was developed in responce to

several inadequacies of Pascal. Although a new
language, it is sufficiently similar to Pascal

to allow an easy transition from Pascal. For

551

our purposes, only two of the new features of

Modula-2 are necessary: modules and procedure
of
Modula-2 and a comparison with Pascal see

Gleaves (1984).

variables. For a complete discussion

Modules appear as
Modula~2. Objects,

procedures, constants,

language elements in

such as variables,

or type definitions, are
defined within a module and may be EXPORTed to
other modules. Likewise, a module may use an
object exported by another module by IMPORTing

that object.

There are four types of modules: program
modules, local modules, definition modules, and

implementation modules. Definition and

the
A program

implementation modules are used for
seperate compilation of modules.
module is a Modula-2 program which may import
A
local module is a module contained within
another module or within a procedure. We will

use only program modules and local modules

objects from seperately compiled modules.

since seperate compilation is more involved

The modules defined

in our program
template are implemented as local modules. In
particular, they are local modules of the

program module; i.e., the nesting of 1local
Objects defined

within one of these modules and exported are

modules is only to one level.

then available within the main module and
available for import by other local modules.
Also, (local) to
the local module retain their values throughout

variables defined as private

program execution.

As described by the module templates,
BRANCH, STATE, INIT,
included din the

procedures are exported since they will be

the
and PRINT routines are
various

modules. These

referenced by the program module. A naming
convention allows one to name every Branch
Routine "PROCEDURE BRANCH", every State Routine
"PROCEDURE STATE", If we name the module
associated with component A by "MODULE A",
can refer

"A.BRANCH".

etc.

we
to the Branch Routine for A by



F.J.Portier

The STATE is conveniently implemented as a
RECORD data structure and the INPUT SET as a
collection of INTEGER constants. Both of these
are defined within a module and exported where

they are then imported by the product's module.

The implementation of the remaining
program template relies on a somewhat novel
feature of Modula~2. A procedure variable is a
variable whose values are the names of
procedures. Once assigned, the wvariable may
then be used to reference the procedure. As
wiéh all wvariables in Modula-2, it is of a
specified type; in this case, type PROCEDURE,

We will use procedure variables to invoke
the routines BRANCH, STATE, INIT, and PRINT for
each of the modules. Conceptually, we "embed"
the decomposition tree in the program module
and "attach" to each node of this tree the
routines BRANCH, STATE, INIT, and PRINT.
Implementation of the recursive routines such
as INITIALIZE is then little more than a
textbook example of a tree traversal.

In particular, we represent the tree as a
dynamic data structure where each node of the
tree has the following record structure:

NodePtr = POINTER TO Node;

Node = RECORD
FChild :NodePtr;
NxChild :NodePtr;
Branch :PROCEDURE (VAR BOOLEAN);
State :PROCEDURE;
Init :PROCEDURE;
Print :PROCEDURE;
Update :INTEGER;
Input : INTEGER;

END;

This method of tree representation is
sometimes called the binary correlative
representation of a general tree. The leftmost
child of a node, A, is pointed to by the FChild
field found in the record associated with node
A; subsequent children are referenced by
traversing the NxChild fields as in a singly
linked list. The fields Branch, State, Init,
and Print are procedure valued and are assigned
the names of the corresponding procedure.
Update is the natural update time of the node;
technically, this is part of the state, but it

is convenient to locate it here. Input is the
input supplied to the node.

To illustrate some of these ideas, the
procedures Simulate and Natural Phase are given
in Figure 8. The numbers to the right are for
reference purposes.

VAR (1)
root :NodePtrx; (2)
TIME : INTEGER; (3)

(4)

PROCEDURE Simulate; (5)

BEGIN (6)
TIME := <initial time>; {7)
Initialize; (8)
LOOP (9)

Print_Event_Vector; (10)
TIME := root~”.Update; (11)

IF <termination condition> THEN (12)
EXIT (13)

END; (14)
Natural Phase (root); (15)
root”.Input := Unnatural; (16)
Unnatural Phase (root); (17)
END; (18)
END Simulate; (19)
(20)

PROCEDURE Natural_ Phase (node:NodePtr) ; (21)

VAR (22)

nx:NodePtr; (23)
BEGIN (24)
I¥F node”.FChild = NIL THEN (25)
node”.Input := Natural (26)
REPEAT (27)
node”.State; (28)

UNTIL node”.Update <> TIME (29)

ELSE (30)
nx := node”.FChild; (31)
REPEAT (32)

IF node”.Update = nx".Update THEN (33)

Natural Phase (nx); (34)

END; (35)

nx := nx”*.NxChild; (36)

UNTIL nx = NIL; (37)
node”.State; . (38)
Update (node) ; (39)

END; (40)
END Natural Phase; (41)

Figure 8: Procedures Simulate and Natural Phase

Prior to referencing the procedure Simulate,
the tree must be created and the correct
assignments made to the fields Branch, State,
etc. For example, if A is a product, and we
name the module for A by MODULE A and the state
routine is called State, then we can éxpect the
following assignments:

NEW-(node) ; (* create the node for A *)
node”.State := A.State

552



Implementing the Product Automation Formalism

The state routine for A is then executed
when node”.State is encountered as in lines 28
and 38. Note that an atom is detected by the
FChild field of a node having the wvalue NIL
(line 25).

5. COMPUTER ASSISTANCE

The PA formalism provides a well defined
By
the
If one

representation for a simulation model.
adhering to the program template approach,
implementation is partially specified.
now chooses a specific programming language and
a method for representing the tree in that
language, one has a very precisely defined

methodology for the simulation modelling

process.

Currently under development is a tool that
will aid

programs

simulation
using this The tool
to specify the
decomposition tree. Code for the objects in the

in the production of

methodology.
allows one graphically
module template for each of the components is
then supplied in a multiple window environment.
The tool then generates the remaining code,
yielding simulation
Ultimately,
high level

a complete progran.
the tool will allow one to perform
operations, such

as combining

existing models, in a graphical manner.

6. CONCLUDING REMARKS

In this paper we have presented the PA
formalism and discussed its implementation. The
formalism assumes a very specific world view;
namely, a system is decomposed into a hierarchy
of subsystems each of which can experience
scheduled and conditional state transitions.
Since the appropriatness of a world view
depends on the system to be modelled, one would
not expect the PA formalism to be the formalism
of all
extension this

for
to

subsystem to be a defined as a network of

choice systems. One possible

formalism is allow a

components. This is currently being studied.

553

BIBLIOGRAPHY

Gleaves, R., (1984). Modula-2 for Pascal
Programmers, Springer Verlag, NY

Haymond, R., (1978). "A Programming Theory for
Discrete Simulation"”, Proceedings of the
1978 Winter Simulation Conference

Wirth, N., (1982). Programming in Modula-~2,
Springexr-Verlag, NY.

Zeigler, B., (1984). Multifacetted Modelling
and Discrete Event Simulation, Academic
Press.

Zeigler, B. (1986). "Hierarchical Modular
Modeling/Knowledge Representailon”.
Proceedings of the 1986 Winter Simulation
Conference

AUTHOR'S BIOGRAPHY

FREDERICK J. PORTIER is an Assistant
Professor in the Department of Mathematics at

The University of North Carolina at Greensboro.

He received his B.S. in Mathematics from
Nicholls State University, La., in 1980 and his
M.S. and Ph.D. degrees in Mathematical Sciences

from Clemson Univeristy in 1982 and 1985
respectively. His interests include discrete
simulation, computational mathematics, and

modelling. He is a member of SCS, ACM, and AMS.

Frederick J. Portier

Department of Mathematics

The University of North Carolina at Greensboro
Greensboro, NC 27412

(919) 334 - 5836

Bitnet Address: PORTIERGUNCG



