o

Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

OBJECT ORIENTED PFRFORMANCE MODELS WITH KNOWLEDGE-BASED DIAGNOSTICS

Mohsen Pazirandeh
Jeffrey Becker
Advanced System Technologies, Inc.
12200 E. Briarwood Ave. Suite 260
Englewood, Colorado 80112

ABSTRACT

The performance modeling of computer systems plays an
important role in the system engineering life cycle.
Historically, however, this important role has not
been recognized, and often it has been treated as an
obligation. The reason for this diminished stature
has many causes, but foremost is that performance
modeling has failed to position itself as an
indispensible tool to system designers. This single
cause itself has many contributors, two of which are
the most visible. First, modeling has come to be
viewed as an esoteric exercise because of its
inability to reflect the system architecture and
other system characteristics with ease. Second, the
output of most models is a set of statistical data,
hardly pointing to a specific design deficiency or
operational failure.

Two important events in software and language
development have come to offer potential solutions to
these problems. Object oriented languages allow
hierarchical and graphical definition of system
architecture, and languages such as PROLOG facilitate
the development of knowledge-based systems. We will
show how the combination of an object oriented
language (Smalltalk) and PROLOG can be used to
develop a tool containing hierarchical system
description, graphical system entry, performance
prediction algorithms, and knowledge-based diagnostic
capabilities at an order of magnitude reduction in
development costs over standard high order languages
such as PASCAL.

1. INTRODUCTION

There are two basic deficiencies in the development
of computer system models, resulting in their
diminished applicability and usefulness:

o The system description, including hardware,
software and the workload is done using a high
level programming language. This has the
disadvantage of having no visual benefit and
the user has to pore over many lines of
descriptive statements to 'see' the system
architecture. This deficiency has made the use
of model description quite cumbersome and
awkward.

o The models, generally, produce a set of
performance data which make very little sense
to the designer; its main user. It takes a
seasoned modeler to interpret the results,
derive inferences, identify the sources of the
problems, and recommend corrective actions.

The above two deficiencies have done much to put both
the modeling activity and the modeler in an unfavor-
able position with the rest of the design group.

518

Managers and system designers have tended to treat
modeling as an end and an obligation rather than a
tool for designing an efficient system. These
problems have plagued the modeling activity for a
long time resulting in the exclusion of the modelers
as a major component of the system design and
development process.

We will show how the aforementioned deficiencies can
be alleviated using recently-developed languages.
Specificaly, we will show how an object oriented
language such as Smalltalk [2] can be used in
conjunction with PROLOG to achieve the following
three objectives:

1. Define the system architecture graphically.
This will include hardware components, their
connectivities, workload and system fun-—
ctions, eliminating the need for defining the
system in a textual manner.

Allow the insertion of any method for the
calculation of the performance parameters,
including analytical techniques or discrete
event simulation satisfying predefined inter-
face requirements. The user can develop his
own module or tie it to another performance
package. This modularity offers the advan-—
tage of incremental development of an
eventual tool.

Develop a diagnostic rule base to quickly
detect and isolate the causes of system
bottlenecks and response time failures. We
will show how a set of rules can be designed
to achieve this and recommend remedial
actions which can solve the performance prob-
lems. The rules will take into consideration
the impact of workload arrival rate, service
rate, the operating system and all
application and system functions. They will
also include the impact of transactions on
each other and consider inter-device inter-
face problems.

Our approach is to use Smalltalk to define the system
architecture, including hardware connectivity,
software functions, and the workload. We will
decompose possible system problems into logical, yet
independent groups. The groups are defined hierar-
chically so that simple problems are uncovered before
attempting to diagnose those requiring more detailed
analysis. A set of rules is developed using PROLOG to
perform diagnostics, isolate problems and recommend
corrective actions.

The major consequences of this paper will be:

a. That graphical performance modeling tools can
be built using object oriented languages.



Object Oriented Models With Knowledge- Based Diagnostics

Furthermore, our test cases will show that
this has the added advantage of producing
highly accurate models in a fraction of the
time required using the traditional approach.
b. That models and modeling activity can be
moved from the exclusive domain of modelers
and made readily available to system
designers. This will make modeling an indis-
pensible tool of the system design process.

2. TECHNICAL APPROACH
Hierarchical System Description

Computer systems are comprised of several types of
hardware which have distinct properties but share
several others. For example, two CPUs might have
different operating systems (with different
characteristics) but they share the property of
speed. A natural way to represent this is by a
hierarchy of hardware types, which can not be
accommodated by most high order and simulation
languages. We chose to use the Smalltalk language
because its object oriented paradigm allows the
implementation of a hierarchy of classes. In this
paper, we use the hierarchy of hardware classes
represented by Figure 1.

System

Memory

CPuU Disk LAN

CPUl CPU2 WorkStation

Figure 1. Hierarchy of Hardware Architecture

The principal feature of the class hierarchy is that
any class inherits all the properties of its super-—
classes. For example, all CPUs have the properties of
speed and memory. Thus, whenever a subclass of CPU is
defined, the system assumes that it has these two
properties. Each subclass may have properties which
are unique and further define it. For example,
operating system characteristics are properties that
all CPUs have, yet their impact on response time is
machine-dependent. Smalltalk has a powerful way of
defining class properties called 'Methods'. A Method
is a Smalltalk procedure which performs a predefined
operation or defines a property on an instance of a
class (object). For example, the statement,

icon computeUtilization

sends the object ‘icon' the message 'computeUtiliza—
tion' which invokes the Method for computing the
utilization of that device. The Method computeUtili-
zation must be defined in the class from which icon
is defined, or one of its superclasses since each
class also inherits the Methods of its superclasses.
Thus, all CPU subclasses will inherit the Methods for
accessing the properties speed and memory from class

519

CPU. Similarly, by specifying 'compute operating
system', the impact of the operating system overhead
on a transaction response time is computed. The
advantage of Smalltalk is that the application of
this Method to a specific CPU invokes the unique
procedure used to determine how the device's overhead
is computed and affects response time. This facility
can be used to implement operations specific to any
class; e.g. utilization and response time
calculations and setting of parameters. The beauty of
this method is that a given procedure is executed by
the receiving object according to its own internal
definition. The hierarchy is useful because each
hardware item in the system can be specified as an
instance of the appropriate class. This makes the
system specification extremely simple as each object
in the actual system corresponds to an object (class
instance) in the model. The use of class-gpecific
Methods also makes the code defining it modular since
each class can have several Methods, each comprised
of a small number of lines of code. Hence, it is very
easy to change and/or add a Method without affecting
other Methods.

Graphical System Entry

Smalltalk's bit-mapped and high resolution graphics
capability makes it ideal for defining a system using
icons. It also offers the user various options using
pop-up menus. This capability is further enhanced by
the use of a mouse to select items (objects) and pop
up menus. We use these capabilities to present the
user with a three pane screen comprised of a system
drawing pane, a hardware icon pallette and a function
(software) list pane. To enter a system description,
hardware items are selected from the hardware icon
pallette by clicking on the desired icon, and
depositing it on the system drawing pane. After an
icon is deposited, the program prompts for its
properties, e.g., operating system characteristics
for CPUs and 1/0 characteristics for disk devices.
The user is then prompted for the definition of the
software architecture. The software architecture is
specified by defining its functions. A function can
be any piece of software. Each time a function is
defined the user is prompted for its charateristics,
including its host device. A function can be moved to
another device just by redefining its host device.
This provides the mapping of the software onto the
hardware for use in the workload analysis and
response time calculations. The software functions
are then deposited on the function list pane.

Hardware comnectivity is specified by selecting the
'connectNodes' choice from the main system menu and
clicking on pairs of icons to be connected. Each pair
specified is connected together on the screen and the
connection is stored in an internal connection
'dictionary' for future reference during analysis. A
fully populated screen is shown in Figure 2.

Other useful operations are also available through
menu choices. In a distributed or parallel processing
environment, a set of identical devices are used to
attain higher efficiency and other performance
improvements. This will require the replication of
devices. Icon replication can be done by selecting
the appropriate menu choice, clicking on the icon to
be replicated and specifying the replicate's position
and name. All other properties (including
connectivity and operating characteristics) are then
transferred automatically and the new icon is drawn.
Other menu choices allow the capability of clicking
on an icon and redrawing it at a hew location, and to



M.Pazirandeh and J.Becker

By

. - . Performance Apalyst.

4

}

e
e

=

101
102
103
104
105
{06
107
108
09

Figure 2. Hierarchy of Hardware Classes

inspect (and alter) the properties of any hardware
item on the screen through the use of inspector
windows. This feature enables the user to change the
mapping of software to hardware from one analysis run
to another. Inspectors allow direct access to a CPU's
function dictionary so that any function can be
deleted from a given device and added to another.
Other properties can also be changed in this manner.
Figure 3 shows an inspector window opened on the
system's Central Processor.

Performance Analyst

R
v

- inspecting: Cpulcon

Aow

@

self Inspecting: Dictionary
me 102 6000
101 frame { (o3
102 syster} qou
103 name J 4os
o4 bloCkSTTHET
[*T06
foS unc rre
106 | 10
107
t08
{09
Figure 3. Inspector Window
Workload Description

Once the hardware and software architectures are
defined, the user can define the workload. The
software architecture is defined as a set of
functions, each with a specified host device. The
functions are displayed in the function list pane and
are used to enter the workload component. As soon as

the name of a workload component is specified, the
user is prompted for general properties such as
arrival rate, number of I0's, and number of database
calls. The user can specify the service time by
specifying which functions are called, how the
functions are called (sequencing), and what
percentage of each function is executed in support of
the workload component (transaction). This feature
enables the user to calculate both transaction
response time and functional response time. Thus, a
transaction response time failure can be isolated to
a specific function in its processing sequence. All
transactions and their properties are stored in a
system transaction dictionary for use during
analysis. A system menu choice allows the user to
inspect the properties of any transaction in the
dictionary.

Derivation of Performance Parameters

The system is designed to accept any method for the
derivation of performance parameters, including
analytical modeling or discrete event simulation. It
can also accept precomputed performance parameters as
output of other methods or packages. The diagnostic
rules are designed to be independent of the analysis
approach. Thus, the user can insert his own analysis
method, or modify existing algorithms, and still take
full advantage of the diagnostic capabilities. This
modularity feature will make an eventual tool easy to
use. For the purpose of expediency we have opted for
analytical methods using M/M/m queues with First—
Come-First-Served (FCFS) queue discipline.

Rules

We provide a set of PROLOG rules to diagnose system
problems based on the predicted performance para-
meters. These rules were derived from experience
gained in many previous modeling efforts including
{5r « + «,12]. PROLOG uses a backward chaining para=-
digm which facilitates the implementation of a
diagnostic rule base. A generic PROLOG rule (clause)
is given below.

A :~ Bl'lel-l'Bn

It says that the fact A at the head of the rule is
true if the facts in the tail of the rule,
ByrBysesesBy, can be solved (are true). Each of the
tail facts might also have their own associated
rules. Hence, when the PROLOG program. containing the
above rule is queried to see if the fact A is true,
it backward chains to each of the tail facts and
tries to solve them. The fact A succeeds if all the
tail facts also succeed. It is natural to express the
diagnostic procedure for a computer system in this
framework since any given diagnosis has associated
causes. For example, a transaction will fail its
performance requirement if its service time is
greater than its response time requirement. There-
fore, to verify the truth of a given diagnosis, the
existence of the causes must first be established.
This is easily expressed in PROLOG.

3. DESIGN OF THE EXPERIMENT

To test the feasibility of our ideas, we consider the
following set up, taken from an actual operational
system:

Bardware Architecture

The hardware architecture as depicted in Figure 2 is
composed of the following components:

520



Object Oriented Models With Knowledge- Based Diagnostics

a. Front End Processor

The front end processor is assumed to be an IBM
Series/1 computer with the EDX operating system. Its
main function is to receive message packets from
external sources, buffer them, and send the whole
message to the Central Processor. It also receives
messages addressed to external sources from the
Central Processor, breaks them into packets and sends
them outside the system.

b. Central Processor

The Central Processor is assumed to be an IBM main-
frame with MVS operating system., The operating
system also includes the following components:

o Performance Measure to handle SMF file data
gathering function

o VTAM for block transaction handling

o CICS for display handling

The Central Processor performs three major functions:

o Receives message blocks from the front end
processor and performs a series of
operations.

o Receives display requests from the
workstations, performs the various operations
depending on the type of requests, and sends
back appropriate responses.

o Prepares and sends messages to the front end
processor for external destinations.

c. Internal Processors

The Internal Processors are also Series/l computers
and work in parallel. Their main function is to act
as a message and data buffering medium between the
Central Processor and the Workstations.

d. Local Area Network (LAN)

The LAN is the communication 1link between the
workstations and the Internal Processors.

e. Workstations

The workstations are used for communication between
the user and Central Processor. Messages addressed to
the user are received at the workstation. The user
composes messages, and sends queries to the Central
Processor from the Workstations.

£. Disk

A disk system with four independent arms is connected
to the Central Processor for data and other
input/output purposes.

Software Architecture

The software architecture is defined by a set of
functions with a default host processor. As we
discussed earlier, the functions {(or portion of them)
can be rehosted to another processor. The major
software functions are given in Table 1.

Workload Definition

The arrival and service rates on various devices are
model parameters with default values specified

521

Name Function Host Timing (Sec)
Fl Block Handler Front End 130
F2 Message Processing Central +345
F3 Display Handler Central 300
F4 Security Interface Central .086
F5 Security Manager Centxal .213
F6 Data Base Manager Central .100
F7 Statistics Gather Central 015
F8 Interface Central .100
F9 Channel Interface Internal 070
F10 Physical Unit Internal 2030
F1L X-25 Buffers Internal .050
F12 Display Handler Workstation 500

Table 1. Software Architecture

herein. The service time of a transaction for multi-
function devices such as the Central Processor is
specified by the functions it invokes. Hence, the
transaction service time is the sum of the service
times of its functions.

The traffic through the system has three sources with
distinct characteristics and resource requirements.
They are:

o Incoming messages

The incoming messages arrive to the system via the
front end processor from external sources. The de~
fault arrival rate is 1000 per hour, and they have 60
blocks, and require 80 IOs and 80 database calls.
The processing sequence per device is as follows:

Fl
F2——>F4——>F5—>F6—>F8

External
Central

o Outgoing Messages

The outgoing messages are composed at the
workstations, sent to the Central Processor for
processing and to the External Processor for delivery
to external destinations. Their rate is 2 per
workstation per minute, and they have 12 blocks, and
require 40 IOs and 40 data base calls. The
processing sequence of functions is as follows:

Workstation Fl2

Internal F11—>F10—>F2
Central F5—>F6—>F2—>F8
External Fl

o Display Requests

Four types of display requests originate from the
workstations with default charateristics given as
follows:

Rate Block I0 DBcalls
User account 300 1 5 5
Mail 180 8 5 5
Logon 180 1 3 3
Help 300 1 3 3

The processing sequence for all display requests is
the same and is as follows:

Workstation Fl2
Internal F9~—>F10—>F11
Central F3—>F5~>F4—>F6—>F8



M.Pazirandeh and J.Becker

Analysis

The computed performance parameters are utilization,
and average and percentile response times by fun-
ction, device, and transaction. For this purpose we
use M/M/m queues with a First-Come-First-Serve
discipline. This will serve our purpose well, as we
. are interested in demonstrating feasibility of using
object oriented languages as a model development
environment. Other or more complex algorithms can
easily be accommodated. We skip citing the actual
formulas used as they appear in almost all standard
books on the subject, including [1,3,4].

Rules

We provide a set of PROLOG rules to diagnose system
performance problems based on the analysis described
above. To expedite the feasibility study and keep the
approach general enough, we have assumed that a given
end-to~end response time has been allécated to
various functions or devices, so that each function
or device is supplied with a performance budget that
it needs to meet. This approach is consistent with
the common practice of decomposing a message response
time requirement and allocating it to various system
components. Thus, we limit our attention to
individual functions and devices and assume that the
failure of one function or device to meet its budget
is tantamount to the transaction's failure to meet
its total response time. We can, of course,
reallocate the message end-to-end response time
requirements and reset individual budgets. There-
fore, we proceed to perform diagnostics on this
basis, realizing that certain problems are system
wide and will be detected only when the system is
analyzed as a whole.

The diagnosis has two parts. First, a performance
failure is identified. This can be a transaction
failing its response time requirement or a device or
a function exceeding its performance budget. Then,
the problem is examined in order to classify it and
find the cause for its failure . We have adopted a
hierarchical approach to problem decomposition and
isolation. Our approach is to take an increasingly
deeper 1ook into the problem. We are driven by the
fact that in performing this kind of diagnosis,
obvious and simple causes should be disposed of
before initiating complex and time-consuming
analyses. The modularity and the tree structure for
classifying problems will allow us to expand the
rules as they are developed. For transaction
failures, we have identified three general types of
performance problems, but the hierarchical approach
allows us to add new ones later. The three types
are depicted in Figure 4., and are as follows:

1. Transaction—~dependent problems: These
problems usually can be resolved by examining
the transaction itself. Problems such as
excessive service time, high number of data
base calls, high number of I0's, and high
arrival rate fall into this category. Some
of these problems will be easy to detect,
e.d., service time is larger than response
time requirement. Very subtle problems can
also happen. For example, a transaction may
fail its required response time because
system functions supporting it impose
additional wait time.

2. Device—dependent problems: The response time
failure is a system problem. These type of
problems represent deeper causes of

performance failure. Generally, we envision
these problems to be independent of a failed
transaction. For example, one component: of
the operating system may be a heavy resource
user increasing the total function or device
utilization, causing another transaction with
low performance margin to fail its required
response time. This, however, does not
preclude being led back to the failed
transaction itself and finding a subtle
internal problem contributing to its failure.

3. Desidn Related Problems: These problems have
more subtle causes and require reexamination
of the system design concepts to solve them.
Problems falling into this category are table
locks, a transaction needing another
transaction output, yet both calling the same
function, and a transaction affecting another
transaction's performance.

problem
transaction system other
service time utilization }~ table
overhead overhead lock
utitization memory - function
other dependence
- task
dependence

Figure 4. Types of Problems

There are three sets of PROLOG rules corresponding to
each of these diagnosis types. If the problem cannot
bg isolated using these rules, the 'fall-back!
diagnosis is that the transaction is using too much
of the device.

PROLOG also includes a database feature which allows
the user to assert facts and pose queries. There are
two basic fact types in our database. The first
describes the transactions:

trans(name, arrival rate, utilization, actual
response time, response time requirement, ser—
vice time, effective service time)

The database includes one such fact for each
t;ransactio,n using the device in question. It also
includes a single fact for this device (there is only
one device in question):

cpg(l:)ame! speed, average arrival rate, total
utilization, operating system utilization, num-—
ber of transactions using the device).

These facts allow the rules to pose queries about the
System. For example, one rule checks to see if a
transaction is a major resource user resulting in
degradation of total device performance.

transHog (roT):~ cpu(_,_, , ,_,n),trans—
(name,_,roM,_,_, , ), is(x, roT/n) gt(roM,x),
deepTransProb (name) .

522



Object Oriented Models With Knowledge- Based Diagnostics

This rule evaluates to true if the number of
transactions using the device in question is n AND
there exists a transaction 'name' in the database
with utilization roM AND roM > roT/n where roTl is the
maximum utilization threshold supported by the
device. The last item in the rule chains to another
set of rules to check for problems of type 3 above
for this transaction. The underscore ' ' is used to
mark the place of a value which is not important to
the rule.

After the rules have isolated a problem, the screen
displays an appropriate message to inform the user.
Only a single diagnosis is made for each problematic
transaction, and hence, one message is displayed for
each. Highlighting the probable cause of transaction
response time failure in this fashion enables the
user to focus the forthecoming effort to alleviate the
problems.

4. TEST PLAN AND RESULTS

We have adopted a two phased incremental approach to
testing the program. The purpose of testing is to
ensure that individual modules of the program provide
the intended results. Our approach, therefore, is to
prepare test cases with known results to validate
individual modules.

a. Algorithm Validation

The algorithm validation is accomplished by choosing
test cases with known results, running them through
the model and checking the model output against these
results. The process is continued with proper
correction until the two sets of data agree.

b. Rule Validation

The rule validation is accomplished by preparing a
set of data known to have no performance problem and
running it through the system to ensure that the
program provides the desired system response. We
then change individual parameters to invoke specific
performance problems leading to a specific rule
invocation. The system response is then compared
against the known result to assure agreement.

The system in figure 2 was constructed and the
workload was specified using the transactions
described earlier. We computed the relevant perfor-
mance parameters (response times and utilizations)
and checked these against the results produced by the
program's analysis routines. We then ran ten test
cases to evaluate the rule base. The test results are
summarized In Table 2.

Each of the above cases shows the change made to the
basic data used to test the program's analys:}s
routines along with the corresponding diagnosis
provided by the rules. Cases 8 and 9 bear a strong
resemblance but are slightly different. The rule base
offers two paths to reach the same conclusion and tt_xe
cases were created to test both paths. The main
result of these cases is that the diagnoses are
intuitively correct based on the causes. These were
also checked with performance experts at AST.

5. Sumary
o Conclusions

The prototype tool has indicated that object oriented
languages in conjunction with a rule base (exp(?rt
system) provide an ideal environment for d_evelopmg
performance models. Further, our experience has
shown that the models developed using object oriented
languages not only have features not available with
the traditional approach, but also can be done in a
fraction of the time. We developed the prototype tool
with the extra features in only three weeks, while a
similar model of the system developed in PASCAL
required an order of magnitude increase in time and
costs.

An even more far reaching consequence of this paper
is the possibility of building performance models in
a radically new way. To see how this can be
accomplished, we need to discuss two limitaiglons of
performance models in addition to the ones discussed
earlier:

1. The development of a performance model always
requires moderate to extensive programming,
most of which is application specific with
very little re-usability. This is true
whether one uses a modeling package, a
simulation language, or a standard
programming language.

2. Almost all models are 'hard-wired', in the
sense that the flexiblity and the reusability
of the models are limited by the language
used and the foresight of the modeler. For
example, it is very difficult to develop
models of supercomputers using the present
day approaches, as the operational concepts
of the supercomputers are dynamic and
hardware dependent.

Case Action Diagnosis
0 - (base data presented above) no problem,
1 raise service time of logon logon fails due to service timedresponse time requirement
2 raise # I0's of logon logon fails because effective service
time > response time requirement

3 raise arrival rate of incoming incoming fails due to high arrival rate
4 raise number of blocks of incoming incoming fails due to high ratio of overhead to service time
5 raise service time of all transactions outgoing fails due to high device utilization
6 raise service time of outgoing and arrival outgoing fails due to high arrival rate and

rate and number of blocks of incoming overhead of incoming
7 raise overhead of all transactions outgoing fails due to unacceptable wait time
8 slightly raise service time and number of incoming fails due to excessive use of the device

¥ blocks of transaction incoming
9 same as (8) for transaction mail majil fails due to excessive use of

with different amounts of change

Table 2., Results of Test Cases



