Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

TIMELOCK: A CONCURRENT SIMULATION TECHNIQUE
AND ITS DESCRIPTION IN SMALLTALK-80

Jean Bezivin

Summary:

As part of a general project to build an experimental
evaluation environment for object-oriented simulation, several tools
have been developed. This paper first presents a client-server
approach to simulation within the framework of the Smalltalk-801
programming system. This basis is then extended to describe a
distributed simulation scheme called timeLock.

keywords: Discrete-event simulation; Parallel simulation
techniques; Object-Oriented languages; Smalltalk-80; timeLock.

1. Introduction.

The object-oriented programming paradigm is familiar to
simulation programmers. It is therefore a natural trend to take
advantage of modern object-oriented languages and systems to
improve the production of simulation software. Following an
approach similar to the DEMOS system built upon the Simula 67
language (Birtwistle 1979), we have defined an evaluation platform
on top of the Smalltalk-80 programming system. Within the
framework of this platform called SIMTALK, several aspects of the
methodology for producing simulation software are being
investigated: graphical programming, interactive programming,
automatic tracing and statistics gathering mechanisms, advanced
programming paradigms useful for simulation (e.g. constraint
programming), etc. In the present paper we start from a client-server
decomposition model and we first show how such a model can be
expressed within the defined framework. We are then in a position
to present the client-server concurrent simulation technique called
timeLock and to describe its main characteristics.

TimeLock, an algorithm first presented in (Bézivin and
Imbert 1982), is a concurrent simulation technique based on a client-
server approach. The basic idea is to associate to every client (or
process) a local virtual time and to allow it to execute its local actions
without control. When a client requests a service from a server (or
monitor), it is only allowed to go on if its local time is not greater
than a global virtual time. If this is not the case, then the process is
said to be anticipating and accessing the server is not allowed (the
meonitor is locked for it). The algorithm will be briefly presented
and a description of it will be given in the Smalltalk language.
TimeLock may be compared to another more innovative distributed
simulation scheme called Time Warp (Jefferson 1985). On the
contrary of timeLock, Time Warp does not follow a client-server but
an actor network approach. One of the project goals is also to use an
evaluation model of both techniques within the framework of
Smalltalk-80 in order to compare their behaviors and performances.

1 Smallialk-80 is a trademark of Xerox Corporation

503

2. Basic simulation and synchronization scheme.

A simulation problem may be structured according to several
schemes. One particular choice is between an actor network and a
client-server decomposition. In the first case all the simulation
entities are of similar nature and interact by sending messages to one
another. In the second case, a simulation entity may be an active one
(a client) or a passive one (a server). Clients communicate with
servers by sending requests.

The client-server model seems to be a natural structuring way
in Smalltalk-80 and we have based the main part of the present work
on this scheme. Our starting point is a simplification of the model
presented in (Goldberg and Robson 1983). Instead of using two
classes Simulation and SimulationObject, we use only one class
SimulationObject which defines all the basic simulation
mechanisms. This class will have two subclasses respectively
representing clients and servers:

- ActiveSimulationObject
- PassiveSimulationObject.

The class SimulationObject representing the self contained
simulation kernel, will offer the following primitives:

holdFor: a Duration suspends a simulation object for a
given amount of simulated time.

startProcess registers an activation or reactivation of a simulation
object process.

stopProcess register a temporary or permanent deactivation of a
simulation object process.

proceed executes one simulation step.

time returns the current value of the simulation time.

tasks is intended to be redefined by subclasses in order to specify
the algorithmic behavior of various simulation objects.

In order to provide these services, the following class
variables are used:

CurrentTime The current value of the simulation time.
ProcessCount The number of active simulation processes.
TimeQueue The queue of simulation processes blocked as a result
of a holdFor: operation in increasing order of their reactivation time.

Very often cooperation and communication schemes for
simulation processes are quite complex. The simulation programmer
needs high level mechanisms to deal with these situations. In our
client-server model usually the server control access to a given set of
resources shared between a number of user processes. The
programming paradigm corresponding most closely to a shared
resource is the monitor concept (Hoare 1974). A monitor is basically
a data structure accessible only by predefined entry points and
protected in a mutual exclusion scheme. At any time only one
process may be operating on the protected data of a given monitor.
Moreover, a monitor may contain so called condition variables
representing waiting queues of processes, A process may enter a
waiting queue (wait operation) or may awake another process
blocked on a waiting queue (signal operation).

J.Bezivin

" Qur first effort was thus to provide monitors and conditions
within the framework of Smalltalk-80. Using the mechanism
described in (Bézivin 1987) if x is a given object and if we evaluate
the following expression:

y <- x enveloped

then objecty is functionally equivalent to x with the added property
of method encapsulation, i.e. any call to a method of y results in the
corresponding call to a method of x bracketed by a previous call to
the prologue method and a subsequent call to an epilogue method.
The object x is supposed to answer both prologue and epilogue
methods.

To give an implementation of monitors using the method
defined above, we followed directly the translation scheme
suggested in (Hoare1974). For every monitor, two semaphores
were used: one for mutual exclusion and another for holding
processes that lose control as a result of issuing a successful signal
operation on a condition.

The Smalltalk simulation framework consists of a number of
hierarchically related classes. A typical architecture of a simulation

program is shown in figure 1. In this example several ships and
lorries exchange goods through a harbour.

Object

/ | HoareCondition l
SimulationObject

ActiveSimulationObject]

(PassiveSimulationObject)

¥

Main

HoareMonitor

Y

Harbourl

figure 1: an example showing related classes in a
simulation program.

Ship Lorry

3. A distributed simulation approach.

All the classical discrete-event simulation techniques suffer
from a common drawback: there is a severe limitation on the
duration and size of such simulations when executed on single
processor configurations. It is widely recognized (Misra 1986) that
the only way out of this situation is to use concurrent discrete event-
simulation techniques, for example on a network of processors.

A desired quality for a concurrent simulation technique is
transparency. This means that ideally the expression of a simulation
program should not have to be changed when converted from a non-
distributed to a distributed environment. The approach to concurrent
simulation that we are going to present has the transparency
property. Starting from a client-server simulation model as the one
outlined in figure 1, it is necessary to state on which site (i.e. a
processor with its memory) of the network each entity will be
installed. But the expression of the individual entities algorithms and
of the interaction between these entities will not have to be modified
whatsoever.

504

The presentation will be done in two stages. First the basic
time anticipation scheme will be described. Then the multi-site
underlying distributed configuration will be taken into account and a
model for implementation will be given.

3.1. A simplified model.

The basic idea is to define a Global Virtual Time (GVT)
common to all processes and a Local Virtual Time (LVT) for each
simulation process. A process is said to be anticipating when its
LVT is strictly greater than the GVT. It will then see all monitors as
being virtually busy. The rules to make this scheme work are:

- the message time delivers the value of the LVT when the call is
made inside a process and the value of the GVT when it is made
inside a monitor.

- every process is allowed to execute local actions whatever its LVT
and the GVT might be.

- when a process is anticipating, every monitor is virtually busy for
it, until the GVT catches up with its LVT,

The basis of the Smalltalk implementation may be outlined as
follows. First a variant of SimulationObject called
DistributedSimulationObject defines the general simulation
mechanisms. A variable MonirorGate is added to hold the simulation
processes that access a monitor while they are in anticipation state.
The method proceed is redefined to update the GVT whenever the
number of simulation processes becomes zero. The new value for
the GVT is then computed. All the processes blocked on
MonitorGate with a LVT equal to the new value of the GVT are
then freed. A partial description of this class is given below:

Object subclass: #DistributedSimulationObject
classVariableNames:
'GVT ProcessCount MonitorGate'
instance methods:
holdFor:aDuration
self subclassResponsibility
time
self subclassResponsibility
class methods:
initialize
GVT<-0.0.
ProcessCount<-0.
MonitorGate<-SortedCollection new
startProcess
ProcessCount<-ProcessCount+1.
stopProcess
ProcessCount<-ProcessCount-1
newProcessFor:aBlock
self startProcess.
[aBlock value. self stopProcess] fork

The DistributedSimulationObject class has now two
subclasses named:
- ActiveDistributedSimulationObject
- PassiveDistributedSimulationObject

The main characteristics of these classes are defined below.
First active objects will own an instance variable localTime and the
operations holdFor: and time will get a very simple implementation.
with respect to this variable. A more subtle problem is to ensure that
when a process starts another process, the starting time of the son
process will be the local time of the father process when the
operation is performed. This is defined by the start method. One
exception is for the initial process of the simulation who will be the
only one started by an external operator, The coldStart method
handles this case.

TimeLock: A Concurrent Simulation Technique

DistributedSimulationObject subclass:
#ActiveDistributedSimulationObject
instanceVariableNames:'localTime'
instance methods: .
holdFor:aDuration

local Time<-localTime+aDuration
setTime:aTime

localTime<-aTime
tasks

self subclassResponsibility
time

AocalTime
class methods:
start
litsLocal Timel
itsLocalTime<-thisContext sender receiver time.
self newProcessFor:

[(self new setTime:itsLocalTime) tasks]
coldStart
self newProcessFor:

[(self new setTime:0.0)tasks]

Passive objects differently defines the time and holdFor:
methods. It may be noticed that a process can also be started from a
passive object. In that case the starting time will be the current value
of the GVT. Finally we have to take into account that the simulation
time may change while executing a method in a passive object. As a
consequence, the local time of the calling active object has to be
updated at the end of the call.

DistributedSimulationObject subclass:
#PassiveDistributedSimulationObject
instance methods:
heldFor:aDuration
self delayUntil:GVT+aDuration
ldlelayUntil:aTime
el
e<-DelayedEvent onCondition:aTime.
MonitorGate add:e.
DistributedSimulationObject stopProcess.
e pause.
DistributedSimulationObject startProcess

The second part of the timeLock description is an abstract
specification of the functions to be implemented to make the system
run on a distributed configuration. Although this specification must
be mainly regarded as implementation guidelines, it may also be
considered as an operational model. In this case a functional
simulation of the distributed configuration running the concurrent
simulation system may itself be easily derived from the following
description.

First every simulation object (active or passive) is associated
with a given execution site. This is represented by an instance
variable mySite defined in class DistributedSimulationObject. Then
three more classes are defined:

SMessage will represent actual messages sent to various simulation
objects. Several instance variables are defined here,
representing the various attributes of a message: sender,
receiver, methodSelector, parameters.

SimulationKernel will define the characteristics of the simulation
kernels implemented on each site. Such a kernel is itself a
system process running concurrently with the various
simulation processes. All kernels communicate together. Each
one handles calls from its site processes to other sites
monitors. It also receives calls from other site processes to its
own site monitors. In this case it will create a delegated
process on its site in order to handle locally the monitor call.
In addition to the mySire instance variable, each kernel defines
the GVT variable representing the local site estimation of the

global virtual time,
M
6

A\

direct call

prologue
Aself
epilogue
Aself
-time
AGVT
prologue:aLocalTime
aLocalTime>GVT
ifTrue:[self delayUntil:aLocalTime].
self prologue
epilogue:theSender
self epilogue.
theSender setTime:GVT

3.2. Multiprocessor implementation.

What has been described so far is only one part of the
timeLock technique, namely the anticipation mechanism. The
previous model is self-contained and can be used by itself to
experiment with some issues in concurrent simulation. However it
overlooks a number of important facts:

- in a distributed implementation there will be no more global time.

- the notion of a site must be explicitly taken into acount.

- the global variable GVT has be replaced by a set of site estimations
of the GVT, one per site.

Site A

A

Site B

figure 2; inter-site call from a process to a monitor.

Delegator is the class corresponding to delegated processes that will
be dynamically created to handle remote monitor call on the
receiver site,

Let us suppose that process P, installed on site A, sends a
request R to monitor M installed on site B, with A different from B.
The transmission from object P to object M is first trapped and an
instance Sm of class Smessage is created, recording in particular P,
M and R. The direct call from P to M does not actually take place
and is replaced by the following sequence of transmissions (figure
2):

505

J.Bezivin

1. Process P sends the message Sm to the simulation kernel of site a
(SKA). As aresult process P gets blocked on a waiting queue
of SKA (the control is not returned to P).

2. SKA§ I(gelivers the message Sm to the simulation kernel of site B
B).

3.SKB crezttes a delegate process (X) that will request service R
from monitor M on behalf of process P.

4. X sends message R to object M with the corresponding
parameters,

5. When X receives control back from monitor M, it will send a
message "end of mission" to SKB with the relevant
information.

6. SKp informs SK 4 that the call is finished and provides return
information. As a result, process P is now allowed to go on.

On each site the simulation kernel is responsible for
maintaining the local estimation GVT of the global virtual time. To
this end it executes an jterative multi-state algorithm outlined bélow.
An instance variable myState, defined in class SimulationKernel,
indicates the current state of the site and takes in turn the values
normalState, counselState and estimationState.

If myState = normalWorking, that means that there is at least one
process running with its LVT equal to the GVT on the site.

If myState = counselStare, that means that all processes on the site
are either blocked or are anticipating. In this transient state, the site
initiates a transaction with other sites in order io agree on a correct
new value for the GVT. The first action is to signal to other sites that
itis in counselState by broadcasting a message meaning: "I am ready
to update the GVT".

If myState = estimationState that means that the site wants to update
the GVT and has received counsel messages from all other sites. It
computes the new value for the GVT for itself and broadcasts it to
other sites. When it has itself received the estimations of all sites, the
new value for the GVT is the minimum of all these values and its
own one. After updating its GVT and releasing processes blocked in
the local MonitorGate queue, the site state returns to
normalWorking.

It is important to stress several facts about the algorithm:
a) The cost of this algorithm is basically two broadcast operations
for each time update, one for the counsel messages and one for the
time estimations.
b) If the distributed configuration has native broadcast facilities, they
will be used for the implementation.
¢) A usual simplification is to permit creation of simulation entities
only on the site where their class is installed. This characteristic may
be taken advantage of in an actual implementation.

Moreover this algorithm runs concurrently with the
simulation processes installed on the same site and does not slow
down significantly their performances.

4. Conclusion.

Using modem object-oriented languages such as Smalltalk-
80 may bring a lot of benefits to the simulation programmer
Increased quality of programs results from the enforced modularity.
Development costs may be highly reduced due to the reusability
property. At the origin of this reduction lies te powerful abstraction
mechanism of class inheritance that was discovered by the designers
of the Simula-67 language. The simulation framework that we have
developed on top of the Smalltalk language follows an idea similar
to DEMOS, a system for discete event modelling on Simula
(Birtwistle 1979). However the Smalltalk basis seems to us much:
more flexible and powerful than the Simula basis.

Furthermore the facilities of Smalltalk enabled us to give a
description of the concurrent technique timeLock, here again using
the inheritance feature and a polymorphic style of programming.

506

The timeLock description in Smalltalk has the pleasant
property of being operational, i.e. it is in fact a simulation of the
distributed simulation mechanism itself. The first consequence is
that it has been possible to check the transparency property of
timeLock in the following way: a simulation program running within
the conventional framework, for example the set of classes {Main,
Ship, Lorry, Harbour} described in figure 1, works within the
distributed framework without any modification. A second
consequence that is being currently investigated is the possibility of
using this framework to explore several open problems of
distributed simulation. One of these problems for example is the
need to present to the outside world a coherent view of what is
going on inside the simulation. This is particularly difficult if the
local virtual time of the various processes is different. This problem
is perhaps one of the most important challenges to the development
of distributed simulation techniques, specially in the case of highly
interactive simulation.

Whether or not it is possible to go from a Smalltalk
operational simulation of the imeLock algorithm as outlined in this
paper to an actual implementation on a multiprocessor configuration
is still an open question. However several recent positive results in
actor and object-oriented language implementations, e.g. (Lalonde,
Thomas and Pugh 1986). allow us to be confident that the presented
description is quite close to a possible distributed implementation
scheme.

Bibliography:
Bézivin, J. & Imbert, H. (1982) Adapting a simulation language to a

distributed environment. Proceedings of the 3rd International
Conference on Distributed Computing Systems, Miami, Florida,
(october 1982), pp.596-605.

Bézivin, J. (1987) Some experiments in object-oriented simulation,
OOPSLA'87, Orlando, Florida,(october 1987)

Birtwistle, G.M. (1979) DEMOS A System for Discrete Event
Modelling On Simula, The MacMillan Press, LTD, 214 p-

Goldberg, A. & Robson,D. (1983) Smalltalk-80: The language and
its implementation. Addison Wesley, 714 p.

Hoare, C.A.R. (1974) Monitors: an operating system structuring
concept. CACM, V.17, N.10, (october 1974), pp.549-557

Jefferson, D.R. & Sowizral,H. (1985) Fast Concurrent Simulation

Using the Time Warp Mechanism. Proc. Conf. on Distributed
Simulation 1985, (january 1985), San Diego, pp.63-69.

Lalonde,W.R. & Thomas,D.A. & Pugh,J.R. (1986) Actorsin a
Smalitalk multiprocesor: a case for limited parallelism. SCS-TR-91,

School of Computer Science, Carleton University, Canada, (may
1986), 6p.

Misra, J. (1986) Distributed Djscrete-Event Simulation. Computing
Surveys, Vol. 18, N.1, (march 1986), pp.39-65

