- C s
-~ -

Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

DE/LAB - A Simulation Laboratory

Miron Livny

Department of Computer Sciences
University of Wisconsin
1210 W. Dayton St.
Madison, WI 53706

ABSTRACT

DELAB is a simulation laboratory designed to provide
support to programmers who build complex simulation pro-
grams and to system analysts who use these programs. In this
paper we present the structure of the laboratory and report on
the current status of the effort to implement it. The laboratory
has been implemented in a "bottom up’ fashion. First we have
developed the DEMET simulation language which is a
Modula-2 based discrete event simulation language. Once the
language became operational, a database management system
was added to the laboratory. For each simulation study a rela-
tional database is automatically created. When a simulation
terminates it stores a description of the run in the database.
The system analyst can later retrieve this data by means of a
relational query language. DENET has been successfully used
in a number of real life simulation studies. The database
management system is currently evaluated by a number of
researchers in our department who employ it in their simula-
tion studies. The requests, criticism, and encouragement pro-
vided by users of both the language and the management sys-
tem have guided our iterative effort to design and implement
an effective simulation laboratory.

1. INTRODUCTION

Modern processing and manufacturing systems are
characterized by a strong interdependency between their com-
ponents. Consequently, performance analysis of such systems
almost always requires a simulation study. The size and com-
plexity of these systems make such a study a compound pro-
cess. A need thus arises for a simulation laboratory that sup-
ports the construction of compiex simulators and the manage-
ment of long term simulatijon studies. D is a simulation
laboratory currently under construction, that aims to provide
programmers and system analyist with such support. In addi-
tion to a powerful and modular simulation language, the
laboratory will include a data management support system, an
execution manager, and a set of output analysis utilities. In
this paper we present the design philosophy of the laboratory
and report on the current state of the DE project.

Guided by a desire for a belter understanding of the
needs of simulation studies and the observation that none of

the existing simulation languages meets our requirements, we
decided to take a 'bottom up’ approach to the design and
implementation of DELAB. One of the advantages of this
approach is that it enables us to experiment with partial imple-
mentations. Prototypes of the laboratory that support only a
limited set of functions can be tested in real life studies. The
experience gained from the usage of lower level elements can
be used to guide the design of higher level elements and to
improve the implementation of the tested elements. We
believe that such experience is crucial to the design of an
effective simulation laboratory.

Since the lowest layer of a simulation laboratory is the
simulation language, the goal of the first phase of the project
was to design and implement a simulation language. The first
phase of the project ended in the summer of 1985 when the
DENET (Discrete Event NETwork) simulation language
became operational. The language is based on the concept of
Discrete Event System Specifications (DEVS) (Zeigler 1976).
It views the simulator as a Directed Graph where a node
represents a DEVS and a directed arc represents a coupling
between two DEVSs. In the past two years the language has
been used in a number of real life simulation studies. It was
used to simulate distributed processing environments (Chang
and Livny 1986), communication protocols(Qu, Landweber
and Livny 1985), and production lines. A number of tools
have been developed around the language. All tools adhere to
the same modeling methodology and thus constitute a
cohesive simulation environment. A language for distributed
workload specification has been implemented and interactive
debugging tools have been developed. Utilities for *post mor-
tem’ analysis of traces generated by the reporting facility of
DENET have been designed.

We are currently in the second phase of the pELAB
project. In this phase we have been addressing the data
management problem. A Database Management System
(DBMS) that meets the special needs of a simulation labora-
tory was implemented. The DBMS can store descriptions of
simulation runs that were generated by D and provides
easy access to the stored data. The special data modeling
needs of a simulation laboratory are currently studied in order
to identify a data model that will meet the needs of such a

486

DELAB - A Simulation Laboratory

laboratory.

In the next section we present an overview of the struc-
ture of DELAB. Section 3 presents the main features of
DFJ\@‘T. The current status of the DBMS is discussed in sec-
tion 4. Finally, conclusions are stated in Section 5.

2. The Structure of DELAB

Four main components can be identified in the current
design of D : a programming environment, an execution
manager, a data manager, and an output analysis environ-
ment. Each of these components provides support for a dif-
ferent type of activity. DELAB was designed to support the
activities of programmers who build simulators and system
analysts who use them. Programmers need support in map-
ping a discrete event model to a program, in debugging it, and
in verifying the implementation of the model. Once the pro-
gram has been debugged and verified it is transferred to the
system analyst who runs the simulator and evaluates the
tesults. At the data gathering stage of a simulation study sup-
port is needed in selecting values for input parameters, in util-
izing available computing resources, and in storing the data.
The last, and in most cases the most exciting, stage of a simu-
lation study is the results analysis stage, At this stage the sys-
tem analyst needs tools for data retrieval, statistical analysis,
and graphical display.

A block diagram of DELAB is presented in Figure 1.
The programmer interacts with the simulation laboratory via a
programming environment, whereas the system analyst
interacts with the laboratory via an execution manager and an
output analysis environment. The programming environment
that includes a powerful simulation language, an interactive
debugger, and a flexible tracing and reporting facility, sup-
ports the programmer in coding the simulator. The simulator

is automatically interfaced with the database management sys-
tem (DBMS) and the execution manager. Via the execution
manager the system analyst assigns values to simulation
parameters and assigns runs to computers. We view the simu-
lation laboratory as operating in a multi computer environ-
ment. In such an environment the allocation of runs to
machines is not a trivial task especially when some of the
machines are not available all the time; see Mutka and Livny
(1987). One of the services provided by the execution
manager will be remote execution of simulation runs. The
manager will assign waiting runs to available resources, moni-
tor their progress, and restart them in case of a failure.

One of the significant lessons we have learned from the
simulation studies we have conducted is the vital importance
of a database management support system. The amount of
data generated throughout the lifetime of a simulation study is
immense. Tens of attributes are required to define an experi-
ment and hundreds of values are generated by a single run.
Keeping the results in a file system is a nightmare since after a
short period of time there is no way to map the encrypted file
names and directories to experiments. At that point, the study
becomes highly vulnerable to errors in relating results to
experiments and a DBMS becomes essential.

Two users who share the same database do not neces-
sarily share the same view of the data stored in the database.
‘When more then one view has to be supported by the DBMS,
a mapping from the different views to a single schema of the
data has to be defined (Korth and Silberschatz 1986)., The
DBMS of DELAB is designed to support two different views:
the system view and the simulation view. In the course of the
different simulation studies we realized that we use both views
to describe an experiment. The first view is used when we
argue about the different runs, whereas we use the latter view

T T T [
! SIMULATOR | EXPERIMENT
PROGRAMMER | MANAGER SYSTEM
| ANALYST
J
N | | l | =
PROGRAMMING anaLysisVTEE =
ENVIRONMENT DBMS ZD
i ¢ ENVIRONMEN1

Figure 1: Structure of DELAB

487

MLivny

to define the experiment in terms of the primitives provided by
the simulation language. Since the system analyst accesses
the data via the execution manager and the analysis environ-
ment, the interfaces between these elements and the DBMS
are based on the system view. Data generated by the simula-
tor is described in terms of the simulation view.

The analysis environment will include utilities to sup-
port the statistical analysis and graphical display of data. The
current design of D does not include facilities for deci-
sion support or model management. Although we view these
facilities as very important it was decided not to include them
in the current design. We plan to address the issues of model
management and decision support in the context of simulation
studies once we have gained experience from using pELAB
in real life simulation studies. We trust that such experience
along with the insight that will be gained by current efforts to
study these issues (Balci 1986 ; Balmer and Paul 1986) will
enable us to design effective model management and decision
support systems for pELAB.

3. The DENET Language

DENET is a discrete event simulation language built on
top of the general purpose programming language Modula-2
(Wirth 1983). The language is designed to meet the needs of
system designers and performance analysts who face the prob-
lem of predicting the behavior of complex parallel systems.
The data structures, control structures, and timing mechanism
of DENET constimte an efficient tool for simulating the
behavior of compound processing and manufacturing systems.
DENET provides a powerful and highly modular simulation
environment. It is a successor of the DISS simulation
language (Melman and Livny 1984).

The DENET language is based on the Discrete Event
System Specifications (DEVS) modeling methedology. The
design of the language was guided by the desire to develop a
simulation language that will follow the modeling concepts of
this methodology as closely as possible. Discrete Event Sys-
tems Specifications were first formally defined by Zeigler
(Zeigler 1976). In (Liviny 1984) we have extended the
definition of a DEVS to include ports and introduced a new
definition for Discrete Event Networks. The port structure
enables us to represent a coupling between two DEVSs as a
mapping from the output port of one DEVS to the input port
of the other. Such a mapping preserves the autonomy and
structural independency of the two systems and thus leads to
modular and extensible models. A new model can be formed
from an existing one by adding, removing or replacing a
DEVS. Furthermore, it provides the means for maintaining
structural similarity between the simulated system and the
discrete event model. Topological changes in the simulated
system are easily mapped to changes in the layout of the

488

Discrete Event Network. Structural similarity improves the
effectiveness of communication between the designer and the
modeler consequently enhancing the model verification pro-
cess.

DENET carries this similarity one step further. Follow-
ing the modeling methodology that has emerged from the con-
cept of DEVS, it provides the means for maintaining structural
similarity between the simulated system and the simulator.
The Discrete Event Systems methodology constitutes the for-
mal foundations of D . Each of the elements of a
Discrete Event Network specification can be directly related to
an element of the language. Discrete Event Systems are
mapped to Discrete Event Modules (DEVM). The coupling
between DEVSs is represented by a Discrete Event Coupler
(DEVC). The DEVC captures the uniqueness of discrete
event simulation and thus differs from interfaces employed by
general purpose languages. Unlike other parallel simulation
languages that are message based (Bagrodia, Chandy and
Misra 1987; Schwetmann 1986), the sole synchronization
primitive of D is the event. Synchronization between
two DEVMs is viewed as an event triggered by the source
DEVM and observed at a given instance by the destination
DEVM. Countdown Clock state variables (Zeigler 1976) are
also realized by events. pENET distinguish between internal
events and input events. When a Countdown Clock expires it
triggers an internal event, whereas events triggered by one
DEVM and observed by another are defined as input events of
the latter. All events, whether triggered internally or exter-
nally, are treated in the same way and thus constitute a
cohesive timing mechanism.

The properties of the DEVM and DEVC make the
establishment of a library of DEVMs a natural and simple
task. A number of DENET DEVM:s, each of which represents
the bchavior of a different Discrete Event System, can be
easily grouped to form 4 library. A DEVM stored in the
library can represent, for instance, a local area communication
network, a machine tool, or a computer system. When an
implementor of a new model realizes that the specifications of
one of the models’ DEVSs is met by a library DEVM, the
DEVM can be easily incorporated in the new model. At any
time, a simulator can be constructed dynamicly from private
DEVMs and library DEVMs. As new DEVSs are realized by
DEVMs, they can be added to the library.

Since there is no structural dependency between two
DEVMs any pair of DEVMs can be connected by a DEVC.,
Each DEVM is a self contained compilation unit and therefore
there is no need to expose the internal structure of the DEVM
to potential users. DENET provides the means to dynamicly
construct a simulator from a set of executable presentations of
DEVMs and DEVCs. Consequently, the executable image of

DELAB - A Simulation Laboratory

a First In First Out server, an ETHERNET local area network,
or a Store and Forward communication processor can be
shared by many users. They can use these generic modules
whenever the functionality of the module meets their current
needs.

DENET views the simulator as a Directed Graph (D-
Graph). Figure 2 depicts a simulator of a Distributed Data-
base Management System (DDBMS). Each node of the graph
is an instance of a Discrete Event Module (DEVM) which is a
self contained module that realizes a Discrete Event System
Specification (DEVS). DENET furnishs a wide range of data
structures and event management primitives that support the
realization of a Discrete Event System by a DEVM. For
instance, in the DDBMS example the Optimistic Distributed
Concurrency Control algorithm is realized by- one DEVM
(OptCCManager), while the arrival process of transactions
and the communication network are realized by a second and
third DEVMs (source, and Network respactively). The com-
plexity, and thus the size, of an DEVM can vary from one
module to another. More than 1000 lines of D code
were required to realize the logic of the Optimistic algorithm.
However, less than 300 lines were needed to describe the
arrival process of transactions, and only 112 lines of code
were used to realize the model of the communication system.

A node has an input port associated with each incoming
arc and an output port associated with each outgoing arc. An
arc in the simulator represents a mapping from the output vari-
ables that constitute the output port of the source node, to the
input variables and events that constitute the input port of the
target node. Nodes synchronize their activities via arcs. An
arc can be viewed as a multi-wire cable that connects two sets
of memory locations. One set is owned by the source node and
the other one is owned by the destination node. The connec-
tion is uni-directional; each wire goes from a source location,
which is an instance of an output identifier, to a destination
location, which is an instance of an input identifier. When a
value is assigned to an output variable, the assignment is pro-
pagated via the arc to the input identifier to which the given
output variable is mapped via a wire. If the target node con-
siders such an assignment an event, it is invoked as a result of
the assignment. For instance, when one ResourceManager of
the DDBMS wants to transfer a message via the communica-
tion network, it assigns the address of the entity that describes
the message to one of its output variables. Since this output
variable is mapped to an input event in the network node, the
assignment triggers an event at that node. The network node
‘awakens’ and performs the activity associated with a request
to transfer a message.

The arcs of the simulator are instances of Discrete
Event Connectors (DEVC). A DEVC is a mapping from

output identifiers to input identifiers. Each DEVM has a set of
output identifiers and input identifiers through which it
interacts with its surrounding DEVMs. Each input port is an
instance of the node input identifiers and every output port is
an instance of the node output identifiers. The simulator is
constructed dynamically from a given set of DENET DEVMs
and DEVCs. DEMET can be viewed as consisting of two
sub-languages - a low level and a high level language. The
Jower level language is used to describe DEVMs and DEVCs,
whereas the higher level language is used to define the simula-
tor. The structure of the simulator is given in a special file
called the topology file. Figure 2 depicts the layout of a
DDBMS simulator. This instance of the simulator consists of
65 nodes and 32 arcs. It models the behavior of a 16 site
DDBMS interconnected by a broadcast communication chan-
nel. The topology file that describes the structure of the simu-
lator is presented in Figure 3. An interpreter is invoked at
execution time to read the topology file, to translate the
description, and to build the simulator. Note how easy it is to
change the number of sites in the simulator or to replace the
Optimistic algorithm with another Distributed Concurrency
Control algorithm. Two numbers have to be changed in the
first case and only one identifier, the name of the DEVM that
realizes the algorithm, has to be modified in the second case.
Without much effort, a menu driven simulation environment
can be established using DENET. In the case of the DDBMS
example, once a set of Distributed Concurrency algorithms
was realized by DEVMs, a menu driven environment for the
study of this type of distributed algorithms can be established.
The modularity of DE and the flexibility of the language
used to define the structure of the simulator tum DE
a 'production line’ for menu driven simulation environments,

T into

DENET is based on 2 unique view of events. In a
discrete event system state transitions take place only upon the
occurrence of an event.
state is evaluated and a new state is established. An event is
represented in pENET by an identifier that has a type, a value,
a state, and an activity associated with it. Unlike the type
attribute which 1s static, the value, state, and activity are
dynamic properties of the event. Whenever a value is
assigned to an event variable its state is checked. If the event
is in the WaitFor state, i.e. the DEVM is waiting for an assign-
ment to take place, the module is invoked and the activity exe-
cuted. The waituntil statement, which is the main element of
timing mechanism of DMT, operates on a set of events. It
associates an activity with each event and suspends the execu-
tion of the DEVM until one of the events is triggered. Once
an event is triggered, the activity associated with it is executed
and control is transferred to the statement that follows the
waituntil statement. The activity associated with an event
represents the state transition logic of the event at the given

When an event occurs the current

489

M.Livny

DI}BMS site
rr — TrapsacionManager DEVM

X
RegquestDone DI:4€
SendStréam DEVC o~ _ [ransSiream DEVC
/ ﬁ)oneTraru DEVC
CCStream DEVC CCDone DEVC

Figure 2: Anexample of a DENET Simulator
(A Distributed Database Management Systern (DDBMS))

= network ; (* node 1 is the network node *)
(* define the sites *)

FOR i

END ;

=1 TO 64 BY 4 DO

i+l := Source ; (* first node is the source of transactions *)

i+2 := TransactionManager ; (* second node manages transactions *)

i+3 := OptCCManager ; (* third node is the CC manager *)

i+4 := ResourceManager ; (* last node allocates resources *)

i+1 1 i+2] := TransStream ; (* connects the source to the transaction manager *)
[i+2 | i+1] := DoneTrans ; (* connection for completed transactions*)

[i+2 | i+3] := CCStream ;(* connection for CC requests *)

[i+3 | i¥2] := CCDone ;(* connection for CC replies *)

[i+2,i+3 | i+4] := RequestStream ; (* for resource requests *)

[i+4 | i+2,i43] = RequestDone ; (* for completion notices *)

(* Connect the sites to the network *)
FOR i ;=5 TO 65 BY 4 DO

END ;

i117:
[11i]:

SendStream ; (* connect resource manager to network*)

ReceiveStream ; (* connect network to resource manager *)

Figure 3: Ancxample of a DENET topology file

490

DELAB - A Simulation Laboratory

instance. A change in the state of the system may entail a
change in the transition logic of the event. The waituntil state-
ment of DE supports such dynamic changes.

DENET includes utilities that support the creation and
manipulation of entities and queues. The queue data structure
is a widely used structure and has a number of basic opera-
tions associated with it. Another structure supported by
DENET is the probe structure. Probes are used for data sam-
pling. Time weighted sampling and batch sampling are sup-
ported along with means to derive statistics for the values
sampled.

The Dd\@T environment consists of a compiler, a set
of Modula-2 definition modules, and an object file that con-
tains the runtime support of the language. In a three step pro-
cess, DENET modules provided by the user are tumned into an
executable file. Using the same executable file the user can
construct different simulators, run them with a variety of input
parameters and control the tracing information generated by
each run. Figure 4 summerizes the structure of the environ-
ment and the flow of activities involved in compiling and run-
ning a DE simulator. The three input files read by
DENET at runtime enable the user to select the nodes and the
arcs of the simulator, to assign values to the input variables of
each node, and fo control the debugging and reporting
mechanisms of the language. The phases of the compilation
process are transparent to the user unless the user wants to see
them.

Each Discrete Event Module type is represented by an
execution module and an optional definition module. D
modules are compiled into Modula-2 by the DE/NET compiler.
A definition module is created by the compiler for each
translated module. The compiler is written in Pascal and has
an error correction mechanism. Each DE module is com-
piled separately into a Modula-2 module that is compiled, in
turn, by the Modula-2 compiler into an object file. Therefore,
when a DEVM is modified, only one file has to be recompiled.
There is no need to update the object file of modules whose
DENET code was not changed.

DENET is currently running on VAX computers and
SUN workstations. On the VAX it runs under both BSD
UNIX 4.3 and VMS. The language can be easily ported to
any combination of processor and operating system that have
a Pascal and Modula-2 compiler.

4. The Data Management System

When an analytical presentation of the relationship
between the properties of a system and its behavior cannot be
derived, the system has to be simulated in order to predict its
behavior. The simulation program that realizes a model of the
system captures this relationship and thus can be viewed as a

function that maps a system specification to a quantitative
behavioral profile. Each simulation run relates such a profile
to a set of simulation parameters that defines the system and
its operational environment. Consequently, the outcome of a
simulation study can be represented by a relation (table) (see
Korth and Silberschatz 1986) on two compound domains: the
parameter (P) domain and the result (R) domain. We refer to
this relation as the experiment relation (EXP) of the study.

A run of the simulation is represented by a tuple (row)
in EXP. The first column of a tuple represents the values
assigned to the simulation parameters. These parameters con-
trol the properties of the simulated system and the environ-
ment in which it operates. Simulation parameters can be used
to control the size of the system, its speed, the load imposed
on the system, or the temperature in which it operates. The
second column of each tuple represents a profile of the system
behavior. A profile may consist of a histogram of response
times, a report on system utilization, or a count of completed
jobs. In most cases each of the two columns of the EXP rela-
tion is a compound entity that consists of a large number of
attributes. For instance, if we simulate a processing system
with 32 sites, where each site is characterized by 5 parameters
and generates 10 result values, the first column represents the
value of at least 160 simulation parameters. A profile of the
simulated system, represented by the second column, consists
of 320 numbers. Due to size of the entities represented by a
tuple and the number of tuples generated in the course of a
typical simulation study, the management of the EXP relation
is a time consuming and error prone process. A need thus
arises for a Database Management System (DBMS) that will
ease the burden of managing the data generated in the course
of a simulation study. A DBMS can provide means for storing
the data in a database and utilities to efficiently retrieve it.

We have implemented a relational DBMS that meets
the special nceds of DENET.
environment of the language have been instrumented to
automatically generate a description of the run. Since the
structure of the P and R domains depends on the simulated
system and the experimental frame of the study (Zeigler
1976), the structure of the data generated by a simulatiol pro-
gram varies from one study to another. The structure of these
domains, in turn, determines the input/output structure of the
simulation program that realizes the model employed by the
study. Therefore, one relational scheme cannot satisfy the
needs of all experiments. Moreover, it is very unlikely that
the same database can be used by two studies. For each study
a relational schema that captures the structure of its P and R
domains has to be devised and a database that realizes this
schema has to be created.

The compiler and runtime

491

M.Livny

DEVM files DEFINITION DEVM
(DeNet) files (DeNet)
DENET DEFINITION MODULE
SCHEMA FILES Compiler files Modula-2)

ODULE files
(Modula-2)
nnn "ﬂ“

el =

BJIZCT files (machine dependent)

to DBMS Modula-2
compiler * - -
\ Linker
EXECUTABLE INPUT files (text)
' ;wm e
logy Paramelers Contral
/ ! Files Created by System
DATA FILES ! :
' :
ununn ~ w ~E % Files Provided by User E
to DBMS '— ----------------------------- i

Figure 4: DENET Environment

PENET provides the means by which a simulation pro-
gram can declare the structure of both its P and R domain.
Since the language views a simulator as a Directed Graph it
imposes a graph structure on the P domain. A run of a
D program is characterized by the topology of the
discrete event network and the values assigned to the input
parameters of the nodes. Input parameters are special vari-
ables defined by the DEVM and used to personalize each of its
instances. For each run the user provides a file that contains a
description of the network and values for the input parameters.
The runtime environment of DENET reads the description and
the values from the file, builds the network of DEVM and
DEVC instances, and assigns the values to the input parame-
ters. Qutput parameters and probes are the means by which a
DEVM declares its contribution to the R domain. Each ele-
ment in R is a list of nodal results where each element in the
list consists of the values of the output variables and probes of
one DEVM instance. Each probe represents a sequence of
samples preformed by the node. When a node terminates, the

values of its output parameters as well as the mean, standard
deviation, and count of its probes is automatically displayed.

All the information required to plan the relational
schema (Korth and Silberschatz 1986) of a simulation is avail-
able to the DENET compiler. We have instrumented the com-
piler to automatically generate such a schema. The schema is
passed to the DBMS that creates the relational database.
However, the structure of the P domain leads to a database
design which does not meet the criteria of first normal form.
Since P is not an atomic domain not all the attributes of a tuple
in EXP are atomic values.

Based on a schema generated by the compiler, a
separate relational database is established for every simulation
program. The relations that constitute the database can be
classified in to three groups: a 'global’ group, a 'per DEVM’
group, and a 'per run’ group. The first group consists of two
relations whos schema is common to all studies. The second
group consists of subgroups each of which corresponds to a

492

DELAB - A Simulation Laboratory

DEVM type. Each subgroup consists of three relations that
represent the inputfoutput structure of the respective DEVM.
The third group of relations represents the set of topologies
that were used in the course of the study.

For each DEVM the compiler generates a file that con-
tains a list of the names and types of all input parameters, out-
put parameters, and probes declared by the DEVM. Follow-
ing the first successful compilation of a DEVM, the DBMS
reads the file and creates three relations that capture the
input/output structure of the DEVM. Each time a DEVM is
recompiled the DBMS checks whether the input/output struc-
ture was modified. When a modification is encountered, the
structure of the relations associated with the DEVM is
updated. Depending on whether an attribute was added or
removed from a relation actions to guarantee the integrity of
the stored data are performed. '

When a simulation run terminates, the runtime environ-
ment of DENET passes to the DBMS a description of the
topology of the discrete event network and the values of all
input parameters, output parameters, and probes. The DBMS
adds a new tuple the EXP relation and checks whether a run
with the same topology was recorded. When a topology is
used for the first time, a relation is created and tuples that cap-
ture the topology of the discrete event network are stored in it.
The values of the input parameters, the output parameters, and
the probes are stored in relations associated with each DEVM
type.

A rich set of relational operations and aggregate func-
tions is provided by the DBMS of DELAB. For example two
projections and one join operation are needed to retrieve a
table that relates the aggregated arrival rate of a system to its
throughput. The database can be accessed via an interactive
interface or by invoking a set of C procedures. The DBMS is
written in C and it assumes a UNIX environment.

5. CONCLUSIONS

Conducting a simulation study of a modern processing
or manufacturing system is a compound and time consuming
process., It is not uncommon to find simulation studies that
use large simulation programs, generate immense amounts of
data, consume a large amount of processing capacity, and span
many months of activity. The complexity of the simulated
systems leads to the construction of large simulation programs
that have to be debugged, verified and maintained over a long
period of time. Each run of the simulation generates data that
has to be stored on a mass storage device in a way that will
provide efficient retrieval at a later stage. When a simulation
study is executed in a multi-computer processing environ-
ment, the availability of resources has to be monitored in order
to guarantee efficient usage of these resources.

493

The different activities involved in a simulation study
raise a number of challenging problems. pELAB encapsu-
lates our solutions to part of these problems. The methods and
tools that constitute the simulation laboratory are based on
techniques that were developed by a number of different dis-
ciplines. QELAB is an example for how advanced program-
ming and management techniques can be translated into a
cohesive set of tools that improve the efficiency and effective-
ness of simulation studies. Although different disciplines
have contributed to DELAB all the components of our simula-
tion laboratory are based on a common modeling methodol-
ogy. A prototype of the laboratory is operational and has
been used in a number of real life simulation studies. The
requests, criticism, and encouragement provided by colleagues
and industrial users have guided the iterative design and
implementation effort. However, much still remains to be
accomplished before a simulation laboratory that covers all the
aspects of a simulation study is available.

REFERENCES

Bagrodia R. L., Chandy M. and Misra J. (1987). A Message-
Based Approach to Discrete-Event Simulation. /EEE
Trans. on Software Engineering Vol. 13 No. 6.

Balei O. (1986). Requirements for Model Development
Environments. Comput. & Ops. Res. Vol. 13, No. 1.

Balmer D. W. and Paul R. J. (1986). CASM - The Right
Environment for Simulation. J. Opl. Rec. Soc. Vol 37,
No. 5.

Chang H. and Livny M. (1986). Distributed Scheduling
Under Deadline Constraints: A Comparison of Sender-
initiated and Receiver-initiated Approaches. Proceed-
ings of the 1986 IEEE Real-Time Systems Symposium.

Korth H.F. and Silberschatz A. (1986). Database System
Concepts. McGraw-Hill, New York.

Livny M. (1984). The Study of Load Balancing Algorithms
for Decentralized Distributed Processing Systems.
Ph.D Thesis, Weizmann Institute of Science, Rehovot,
Israel. (also available as Technical Report #570,
Department of Computer Sciences, University of
Wisconsin-Madison).

Melman M. and Livny M.(1984). The DISS Methodology of
Distributed Systems Simulation. Simulation April
1984.

M.Livny

Mutka M. W. and Liviiy M. (1987). Scheduling Remote Pro-
cessing Capacity in A Workstation-Processor Bank
Network. Proceedings of the 7th International Confer-
ence on Distributed Computing Systems.

Qu Y., Landweber L.H. and Livny M. (1985). PARING: A
Token Ring Local Area Network with Concurrency.
Proceedings of the 10th Conference on Local Comput-
ing Networks.

Schwetmarm, H.D (1986). CSIM: A C-Based Process-
Priented Simulation Language. Proceedings of the
Winter Simulation Conference, December 1986.

Wirth N. (1983). Programming in Modula-2. Springer-
Verlag, New-York.

Zeigler B.P. (1976). Theory of Modelling and Simulation.
Thon Wiley & Sons, New York.

AUTHORS’ BIOGRAPHY

MIRON LIVNY is an assistant professor in the Com-
puter Sciences Department at the University of Wisconsin -
Madison., He received a B.A in mathematics and physics from
the Hebrew University in 1975, and an M.Sc. and Ph.D in
computer sciences from the Weizmann Institute of Science in
1978 and 1984 respectively. He has been involved in a
number of simulation based performance studies of existing
and planned processing and communication systems. His
current research interests include distributed resource manage-
ment, communication protocols, and modeling and simulation
techniques. He is a member of ACM and IEEE.

Miron Livny

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton St.

Madison, WI, 53706,U.S.A

(608) 262-0856

494

