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ABSTRACT

It is shown that a zero-variance solution exists
for any linear Monte Carlo problem and that this
solution can be obtained by sampling the random
numbers proportional to the expected score
subsequently produced by using these random numbers
in the random walk.
I. INTRODUCTION
The existence of zero-variance solutions to
certain classes of Monte Carlo problems is well known
(at least in the particle transport field.) For
example, Lux (1987?) writes

"Zero~variance schemes were first derived
through a special importance sampling
procedure and these schemes involve last
event (absorption) estimators (Kahn 1954,
Goertzel and Kalos (1958), Kalos, Nakache,
and Celnik (1968)).

schemes with collision estimator were

Zero-variance biasing

introduced by Ermakov (1975) and Hoogenboom
(1979).
unbiased estimators were derived from the

Schemes with arbitrary partially

moment equations by Dwivedi (1982) and were
Both
derivations concern non-multiplying games.”

generalized by Gupta (1983).

Lux generalized the zero-variance schemes to include
multiplying games, e.g. fission.

The present paper shows that any linear Monte
Carlo problem (transport or non-transport) has a
zero~variance solution if the random numbers used in
the calculation are sampled from a score-weighted
random nhumber density rather than a uniform density
on (0,1].
density produces a zero-variance solution these

Because the score~weighted random number

random numbers are called "intelligent random

numbers.," Furthermore, intelligent random numbers
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exist no matter what other variance reducing schemes
the calculation uses. Thus the intelligent random
number technique can be used together with all

variance reduction techniques.

II. INTRODUCTION TO THE INTELLIGENT RANDOM NUMBER

TECHNIQUE

In order to get the reader in the right frame of
mind, a simple example will be given before jumping
into the more general case.

Consider a particle in an infinite homogeneous
medium. The particle moves a distance x sampled from
the probability density function (p.d.f.)

“0 X
Po(x) =g o ,

(1)

(where 9 is a material constant). The particle

collides at x and it 1s absorbed at x. If a standard
random number generator uniform on (0,11 is

used, x is sampled by solving

X
r= [ po(y)dy (2)
0

that is

X = -log(l-r')/oo . (3
If x is sampled by Eq. (3), this is called an
"analog" sampling because x is sampled with the
p.d.f. that nature uses. Suppose Monte Carlo is used
to estimate the average distance to collision X.

That is, sample r from a uniform p.d.f.,

calculate x using Eq. (3), and assign a score
(4)

to the sample. The empirical average s 1s then an
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estimate of X where
X = I P (x)xdx . (4.1)

A common variance reduction technique is to sample x
from a fictitious density

ax

p(x) = oe (5)
so that (see steps between Egs. (1) and (3))

X = ~log(1-r)/o (5.1)
with a weight correction

wp(x) = p,(x)/p(x) (6)
because a fictitious density is sampled. Thus the score
becomes

s(x) = wp(x)x (7)

The average score xp is

o
]

- po(x)
I p(x)s(x)dx = J p(x) FORE dx

(8)

>t

! po(x)xdx =

and thus the mean is preserved as desired.

Note from Eq. 3 that x is a function of r and
thus the score can be viewed as a function of r
rather than x; that is

s(r) = wp(x(r))x(r) (9)

Thus

_ 1
X = I p(x)s{x)dx = [ s(r)dr (10)
O v

is estimated (with N samples) as

N

. str) . (1)

i=1

® >
"
= B

This is an "analog calculation in the random number
space" because the random numbers (ri) are sampled
from the correct (uniform) density. In other words,

one can view the calculation as a "black box" with
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the random number ri as input and the score s(ri) as
output. The FORTRAN program in Fig, 1 will serve as
the black box for this example. The program will
produce a calculation that is:
1) analog in the physical density (Eq. 1) and
analog in the random number density, if
sigmal=sigma0, crit=0, and q(r)=1 for 0 < r < 1.
program blackbx{tty,output=tty, input=tty)

¢ n=total number of samples

c s=score

¢ st=sum of scores

c w=particle weight

¢ crit=user supplied critical weight

¢ a=0 random numbers sampled from analog density

¢ a=npon-zero, random noa.‘s sampled from non-analog pdf

c ranf()=random numher generator uniform on (O, 1]

¢ sigO=constant for true density

¢ sigl=user supplied constant for fictitious density 1

¢ sig2=user supplied constant for fictitious density 2
write(+,+}’input n,a,sig0,sigl,sig2,crit="
read(*,+¥)n,a,sig0,sigl,sig2.crit
st=0
st2=0
i=0

20 t=i{+19
w=1
if(i.gt.n)ao to 110

c random number selected from q{r)=({+a+r)/(1+.5+a)

c with weight multipltier wr=1 if r sampled

c from uniform density (a=0)

[ with weight muit. wr=1/q(r) if r sampled from q(r)
eta=ranf()
if(a.ne.0)r=(~1+sgrt(1+2vax(1+.5*a)%eta))/a
if(a.eq.0)r=eta
q=(1+a*r)/(1+.5+a)
wr=1./q
wEWRWr
if(w.1t.crit)go to 50

¢ sample distance to collision using fictitious sigit

c rather than true sig0 and apply appropriate weight

¢ correction
dist=-log(1-r)/sigi
wp=sig0+exp(-sig0+dist)/( sigitexp(-sigi+dist) )
wEWrwWp
s=wrdist
st=s5t+s
st2=5t2+5++2
go to 100

50 continue

¢ sample distance to collision using fictitious sig2

c rather than (rue sig0 and apply appropriate weight

c correction

dist=-log(1-r}/sig2
wp=sigOrexp(-sigotdist)/( sig2rexp(-sig2+dist) )
WEWIWp
s=urdist
st=st+s
St2=st2+s5*+2

100 continue
go to 20

110 continue

c compute estimated mean distance edist

edist=st/n
relerr=sgrt( (st2/n-edist¥+2)/n )/edist
write(#+, «)‘edist,relerr=’,edist,relerr
end

2) non-analog in the physical density (Eq. 5) and
analog in the random number density, if sigmail
= sigma0, sigma2 = sigmaO, and q(r)=1 for 0 < r
< 1.

3) analog in the physical density (Eq. 1) and non~
analog in the random number density, if sigmal =
sigma0, sigma2 = sigma0, and gq{r) = 1.

4

~

non-analog in the physical density (Eq. (5)) and
non-analog in the random number density, if

sigmal = sigma0, sigma2 = sigma0, and q(r) = 1.
Cases 1 and 2 have already been treated and the
mean scores were shown to be the same in both cases.
For cases 3 and 4 the random number r is not selected

from a uniform p.d.f. but rather from a p.d.f. q(r).
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(Note that case 3 is a limiting case of case 4 so that

only case 4 need be discussed).

For case 4 ri is selected from q(ri), by solving

r.
n; = l Y alp)dg (12)
0

for r, as a function of the uniformly distributed
random number ny . The particle's weight is

multiplied by
wq(r) = 1./7q(r) 13
because the random number r was not selected from the

correct (uniform density). Eq. (5) is then sampled
for x by solving

X
r= I ply)dy (1)
0
that is,
x = =log(l-r)/oc . (15)

If s(r) is the score produced by sampling x from the
fictitious density in Eq. (5) with an unbiased random

number r, then
sq(r) = wq(r)S(r) (16)

is the score produced by sampling the fictitious
density in Eq. (5) with a biased random number
sampled from q(r).

The expected score is

= 1
X = [0 q(r)sq(r)dr . (7

Note in Fig. 1 that depending on wq(r) the ¢ in Eq.
(5) might be either o=o,
code, If the variable crit=0.9 then an analog

or 0=0, in the computer

sampling of r will always use ﬂ=01 to sample the
distance to collision because wq(r) =1 > 0,9 for an
analog sampling of r. However, wq(r) might be less
than 0.9 if r is sampled from q(r) and there exists a
range of r for which q(r) > 1/0.9. Thus biasing in
the random number space can affect how the program
calculates the distance to collision. If ¢, is used,

1

then Xy = -log(l-r)/o1 whereas in the biased random

number case then 9, might be used and X, = ~log(l-

r-)/o2 * X In this case not only has the particle's
weight been altered by the biasing of r, the

particle's random walk has also been altered (x1 =
x2).

Rewriting Eq. (17) to explicitly indicate whether
a

or g, is used yields (wc = ¢rit):

1 2

_ 1
Xoq ™ ! q(r‘)[H(wq(r‘)—wc)sq1(r‘) + [1-H(wq(r)-wc))

sqz(r)]dr (18)

where sq (r) uses x, from Eq. (5.1) with g=0

i i i?
substitutes xi into Eq. (9) to obtain si(r), and
substitutes si(r) into Eq. (16) to yield

sqi(r) = wq(r)wp(xi(r))xi(r‘) . (19)

The q(r) in Eq. (18) will cancel the wq(r) of Eq.
(19). Next change variables in Eq. (18) from r to Xy
(use Eq. (5.1)) to yield

9%y

qu = Io wp(x1)x1o1e H(wq(r‘)-wc)dx1 (20)

“0,X

+ {0 wp(xz)xzoze 2 2(1—H(wq(r)-wc))dx2 .

Using Egs. (1), (5), and (6) in Eq. (20) yields

>0

bq = {0 po(x1) x, H(wq(r)~wc)dx1

0

+ [0 po(xz)x2(1-H(wq(r)~wc)]dx2

[o po(x)xdx = X (21)

as desired.

Thus far it has been shown that selecting r from
a biased random number density q(r) and multiplying
the sample weight by 1/q(r) results in the same mean
as without the random number biasing. The
"intelligent random number technique" provides a
zero-variance solution to this problem by score-
weighting the random number density. That is,

q(r) = s(r)/x

447



T.E.Booth
so that from Eq. (13) and (16),

= X = %
sq(r) = wq(r)s(r) ) s(r) = x .,

Thus every sample contributes the mean score and a

zero-variance solution results. In the next section
this score-weighting is generalized to provide zero-
variance solutions to any linear Monte Carlo problem.

III. THE GENERAL CASE
Typical Monte Carlo calculations require more

than one random number to obtain a sample. Let ; =

(r1,r2,...). That is, each sample takes as many

random numbers from a random number generator as the

Fig., 2a. Typical random number tree for general
Monte Carlo simulation.

sample requires. For each random number vector
simulated an estimate s(;) is produced. Following
particle transport terminology s(?) is called the
sample's score. Each time a random number is
selected an event occurs. (The event being the n re
particular value of the random number). There is an s Sz
event score (often zero) associated with each event.

The sample score is the sum over all the event scores

in the sample.
Fig. 2b. Random number representation of two

A typical event tree is illustrated in Fig., 2a.
yp g independent games.

The branches indicate the dependence/independence of
the games and scores. For instance, the knowledge of

r and ru (along with the densities they were sampled ;:

from) determines the game r1o will be used to sample. re

Every game depends only on the events above it. For Sg

example, in particle transport calculations ry might

have selected a fission process with three emerging

fission neutrons whose random walks correspond to the Fig. 2c. Random number representation of dependent

X games.
three independent branches emerging from node 4.

Two things are worthy of note here. First, all
These branches are shown independent because the © things a v !

linear Monte Carlo calculations have a tree structure
fission neutrons' subsequent (after node Y4) random nea

Fig. 2 hether not variance reduction
walks are sampled independently. An s1 is the event like Fig. 2a whet or M

i . Second n s need
score that would be generated by the selection of ri techniques are used econd, the random numbers nee
s not be selected from a uniform density. There will
from a uniform density on (0,11].

of course be a weight correction.
W, = l./qi(ri) ,

if r is sampled from qi(ri) instead of q(ri) = 1.
That is, if a random number is made qi(ri) times as
likely to occur, then any branch containing ri will
be weighted by q;1(ri) 80 that the expected score
generated by r, and all branches below 1 is
preserved. Stated mathematically, if s(ri) is the
event score generated by sampling ry from a uniform
4 density then si(ri)/qi(ri) is the event score if ry

448




Zero-Variance Solutions and Intelligent Random Numbers

is sampled from qi(ri). Furthermore, if Mi(ri) is
the mean total score for all events below ry (when ry
is sampled from a uniform density), then
Mi(ri)/qi(ri) will be the mean total score for all
events below ry when ry is sampled from qi(ri). The
mean total score produced by sampling r, from a

uniform density is
si(ri) + Mi(ri) . (22)

whereas the mean total score produced by sampling ri

from qi(ri) is
wi(ri){si(ri)/qi(ri) + Mi(ri)/qi(r‘i)} = s,(r))
+ Mi(ri) (23)

as desired. (Note that the mean score for a particle
of weight w has to be w times the mean score for a
particle of weight one, otherwise the calculation
will not produce the correct estimate).

It may help to visualize your favorite Monte
Carlo code using your favorite variance reduction
techniques. The only difference suggested here is
that each time the Monte Carlo code calls the random
number generator, a random number ry is sampled from
qi(ri) and the branch weight is multiplied by
1/qi(ri) so that all subsequent events below ry
include the weight multiplication. (In particle
transport terminology, the particle track weight is
multiplied each time the random number generator is
called.) All other processes continue as before.
The theorem below shows the proper random number

p.d.f. to produce a zero-variance solution.

Theorem

If every random number 1s sampled proportional to
the expected score beneath it (i.e. "intelligent"
random number sampling) on the event tree, then a
zero~-variance solution results for a finite event

tree.

Proof.

Suppose L samples are taken using "intelligent"
random numbers as described above. This results in L
independent event trees. It will be shown that each
of the L samples produces a sample score equal to the
mean sample score, independent of the structure of

the sample's event tree. Thus a zero-variance
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solution results. Consider an arbitrary event tree,
say from the k-th sample. It will be shown that the
score produced below any node for the k~th event tree
is equal to the mean score produced below that node
(taken over all possible samplings of events below
the node). Stated another way, the score below any
node can be made independent of the sampling beneath
that node.
Because the event trees are finite, the branches
eventually terminate. For node N define:
1) TN = total score due to all events below
node N
MN = average score over all possible events
below node N
One can evaluate TN and MN at branch termination
points as TN=MN=O because no score can be produced
after termination. Now it is possible to go back up
the tree and calculate TN for any node that has all
connected nodes below it evaluated. On the first
pass, the only known nodes are termination nodes
where T=M=0, s0 the only nodes that TN can be
evaluated at are the nodes that only have termination

nodes below. For instance,

Here TN can be evaluated because the ri are known to

have been chosen from the density:

[si(ri) + Mi(ri)]

g, (r,) =
1ot j[si(x) + Mi(x)+dx (24
and the corresponding weight multiplier is
~1

wilr) = g () (25)
and the unweighted score is

si(ri) (26)
so that the total score due to branch i is
(Mi(ri) = 0 upon termination)

wi(ri)[si(ri) + 0] . (27)

Now for the particular r, chosen, the branch termin-
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ates and
[[si(x) + Mi(x)]dx

si(ri) + 0

wi(ri)si(ri) = si(ri)

= I[Si(x) + Mi(x)]dx . (28)
Thus the total score at node N is:
Ty = Z I[si(x) + Mi(x)]dx (29)

i

However, note that this is the average over all
possible subsequent events, thus

(30)
a constant, regardless of the choice of the ri. That
is, once node N is reached the score generated
beneath it is always MN with score-weighted random
numbers. After all nodes that are connected (below)
only to termination nodes have been evaluated one can
evaluate all nodes that are connected only to
previously evaluated nodes and termination nodes.

The proof thus works its way back up the tree to the
source node provided that each node has a constant
score beneath it, Thus it needs to be shown that an
arbitrary node N:(like shown below) that is connected
only to nodes that have a constant score below them,
will ensure that node N has a constant score below
it,

M(ry)

=0

M(ry)

TN here can be evaluated in the same way except that
instead of s(ri)+0 one uses s(r1)+Mi(ri).

Thus

si(ri> + Mi(ri)

= 'si(x) + M (x)dx
s.(x) + M, (x)dx
wi(r') = J_i_______i_____ .

* s;(ry) + M (r))

g (r) (31)

It

(32)

The total unweighted score along this branch is
si(ri) + Mi(ri), thus the total weighted score is
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w e s (r ) + M ()] = [si(x) * M (x)dx . (33)
Thus the total score to node N is

o= 2 f[si(x) P 0 lax = Hy (34)

i

Thus every node has exactly its average score beneath
it, including the source node 0. This implies that
every sample contributes the average score, hence a

zero variance solution.

IV. CONCLUDING REMARKS

This paper treated only finite event trees
because of space considerations. The theorem is also
true for infinite event trees provided only that the
mean score is finite. This generalization will be

submitted to Nuclear Science and Engineering along

with some comments on practical experience with the
intelligent random number technique for particle
transport problems.

Although not shown here, it is also possible to
obtain zero-variance solutions by biasing the
p.d.f."'s the random numbers sample and using uniform
random numbers. One simply score-weights the
p.d.f.'s in the same fashion as the random number
density. For example, if 3 represents the current
state and 3' represents the next state, then the
zero-variance scheme for sampling Bt uses the density

KB = [s(B1) + M) IKBEC . (35
Here K is the true density, E is the biased density,
s(?»g') is the score generated by the event §+3',
M(ﬁ') is the mean score generated after arriving at

?', and C is a normalization constant such that

IK(g-r-P)')dP? = fK(?»F')dﬁ' . (36)
Note that Eq. (35) is essentially Eq. (24) except

that the true random number density in Eq. (24) does
not explicitly occur on the right-hand side because

it is equal to one.
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