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Section 1. The Problem

Monte Carlo experiments are sampling
experiments, performed on a computer, usually
done to determine the distribution of a
statistic under some set of probabilistiq
assumptions. These assumptions are such that
the distribution of the statistic in guestion

cannot be calculated in closed form.
Examples of such assumptions include the
assumption of a finite sample size or of

nonstandard sampling distributions.

An example of

solved using Monte

a problem that might be
Carlo experimentation is
the following: consider the simplified
Wilks-Shapiro test for the normal
distribution of data, W'. This test attempts
to determine if a set of data come from a
gaussian distribution. It is the correlation
of the sorted data with order statistics from

a standard normal. distribution. The
distribution of this statistic, needless to
say, is difficult to determine, and is known

only in the case that the data actually come
from a normal population in the limiting case
as the sample size becomes infinite (Leslie,
Stephens, and Fotopoulos, 1986). Knowing the
distribution of the statistic in finite
sample cases and when the data are not quite
normal but come from a contaminated normal or
a t distribution would help to understand the
power of the statistic. However, calculation
these distributions are intractable at
present and must be estimated by 2 Monte
Carlo experiment (Gastworth and Grier).

The paradigm for
experiment is the doubly
diagrammed in Figure 1. The inner loop of
the program is the sampling loop. Within
that loop, the computer generates a sample of
data from a probability model and calculates
the value of a statistic. In our Wilks-
Shapiro example, this within this loop the
program would repeatedly draw a sample of
fixed size from an identified distribution
and calculate the simplified Wilks~-Shapiro
statistic. The distribution of the statistic
would be calculated from the set of observed
values of the Wilks-Shapiro statistic.

a Monte Carlo
nested loop program
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Experiment Loop,
(perform over set of factors)

Replication
(perform set number of times)

Generate sample of data

Calculate Statistin

Calculate
Distribution of Statistic

Monte Carlo Program Model

Figure 1

The outer loop in the paradigm is the
experiment loop. This 1loop changes the
values of different factors in the
experiment. One common factor is the size of
the sample. One factor in the Wilks-Shapiro
example would be the distribution of the
data. In programming this experiment, we
might vary the distribution over a set

containing the gaussian distribution, certain
members of the t family of distributions and
certain members in the contaminated normal
family of distributions.

While the
typical of Monte

paradigm described above is

Carlo Experimentation, it
may be transformed to accommodate the needs
of +the problem. Often the amount of
computing may be reduced by modifying the
basic program. A common technique is to
invert the two loops so that a single sample
may be reused. Another technique involves
moving only part of the outer loop inside of
the replication loop, as, for example, in the
case of determining the +true rejection rate
of a test. In that case, the test may be
preformed at 4 or 5 different levels on a
common data set and the true rejection rate
computed at each level.
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Eor this system, a new looping operator
is introduced to handle the paradigm of Monte
Carlo programs. This operator loops over a
set produced by creating an experimental
design from the input parameters, which are
themselves sets. For example, suppose that

we have three input parameters, A, B. and C,
and that they each can take a value from a
set of three items: {a,, a,, a,} for A,

{bi, b,, by} for B and f{c,, ¢c,, c,} for C.

If we use the new operator to combine these

sets into a factorial design, it will cause
the program to loop over the set:
{la,,b;,c1 1, {a;.by,c, ), {a, .b..c, }.
fa, b, ,c1}, fai by ,c i, {a; b, .cy .
fa;.bs,cy }, {ai,b;,c. i, fa, .b..cy }.
fa,,b;,c; 1}, {a, ,b,,c, }, {a, .b, .c. }.
{a, \b,,cy }, {a; b2 ,c; }, faz b, .cy }.
fa: .by,c1 ), {a, b, ,c. 1, {a;,by,cy }.
{as ,by,c1 ), {a; .b;,c. §, {as b, .cy .
fas ,b,,ci }, fa; ,b,,c2 1, fa. .hy.cy 1,
ta;,bs ¢, {a;,bs,6: 1, {as,b;,c, 1)

If we use the new operator to combine these

sets into a latin square design, it will
cause the program to loop over the set:
{{a,,b;,c: 1, fa, ,b;,c; }, fa, ba.cy }.
{a; ,b,,c2 i, fa, ,b,,c 1, fa, \by,cy .
{fa, ,by,cs}, fa;,b,,c,}, fa, b, .c, 1}

Section 2 Organization of System

The need for a system to do Monte Carlo

Experimentation has become increasingly
evident. Monte Carlo experimentation has
become an important tool in statistical

research and yet virtually all of the Monte

Carlo work is done by custom higher level
language programs. A recent survey of
published Monte Carlo work (Hauck and
Anderson, 1984) shows that the bulk of
published Monte Carlo studies need the
systematization that statistical analysis
packages, such as SAS, S and SPSS have
brought to statistical analysis. In most

Monte Carlo experiments, the only sections of

codes that are unique to the problem at hand
are the section of code that generates the
random data set and the section that
evaluates the statistic of study. The rest
of the code just gathers the results of the
statistic and supports the double loop

structure of the standard Monte Carlo program
as defined in Section 1 above.

In published Monte Carlo
common to find gquestionable
generators, unanalyzed results
designed experiments (Hauck
1984); and it is these problems
Carlo System must be prepared to address.
The problem of the questionable number
generators is the easiest to solve by having
the Monte Carlo System provide a library of

studies. it is
random number
and poorly
and Anderson,
that a Monte

carefully chosen, well tested random number
generators. The problems of unanalyzed
results and poorly designed experiments are

harder to address.

It is common, in the
literature, to

read of experiments that have

been performed over an unrepresentative
sample of +the factor space and that have
results ‘that have been simply tabulated

without being analyzed, leaving the reader to
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fathom the results. (See, for example, the

results of an otherwise good experiment in
Bartels, 1982) This problem cannot be
handled in

a foolproof manner by any system,
just as a statistical analysis cannot be said
to be perfect just because it was done with
one of the standard packages. However, this
system attempts to encourage well designed
experiments and careful analyses by casting
the whole problem of Monte Carlo
Experimentation intoc the mold of classical
statistical design of experiments.

Our Monte Carlo System gives researchers
a tool that generates a Monte Carlo program,
called a target program, in the form given in
Section 1 above. The researcher has to
provide three things:

1. A routine to generate the random data
set, wusually assembled from the
library of random number generators
included with the system.

2. A routine to calculate the statistic

of study.

3. An experimental design.

Experiment Statistic

Data Set

Design Generator Algorithm

Monte
Carlo

System

Monte Carlo Target Program
(Pascal)

Monte

Carlo
Results
Analyzer

Diagram of Monte Carlo Processor
Figure 2
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The target program is a separate program, experimenter enters the names of the factors

Z’iiﬁiﬁfé iEn giagleliglgf 1:;:1 tiigggagiégrange. and the possible numerical values that they
C m 1s may hold, the number of replicati £ h
Pascal.) This program is then compiled and i in i P the type g
point in the experiment and the type of
run. The output of the program can then be ex i i i »

periment design (factorial fractional

read by another element of the system, the factori i : -
¥ » orial or 1latin square are the curr t
analysis program that can analyze the opti i io
> 3 ptions). The algorithms for data generation

results of the experiment, tabulate the and for the evaluation of the statistic are

results or write them in a form that may be i i i

ce T O entered in Pascal in an interactive editor.
read by a statistical analysis program such The Monte Carlo system also has a menu screen
as S, SPSS, or SAS. The organization of the to allow control of the random numb
system is seen in Figure 2. Hmoer

i . X . generator. Figure 4 shows pare of the menu
The exper}mental deglgn is entered in a for controlling the random number generators.
menu, as pictured in Figure 3. The
Experiment Name : [ ‘
F - Factorial
Number of Replications: l:! Type: L - Latin Square )
- P - Fractional Factorial
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Esc to Quit " Fl Help u F2 Next Screen " F3 Last Screen “ F4 Next Field

Experimental Design Menu
Figure 3

Random Number Generator Seeds

Linear Congruential: [1 lll ‘[} 4];1 l
Tauseworthe: l3 l|3 l|3 IIB I
Quadratic: ll‘ 'll Ill I
Spare: |1 | 1 l[} lll ]
Generator 1: Generator 2: Combination Technique:
Generator Types: L - Linear Congruential Techniques: Addition Mod 1

+
-~ Tausworthe - Subtraction Mod 1
Quadratic X Exclusive Or

- Fibonaci 1 Generator 1

- Spare (User defined) S Shuffled

n O H
i

Esc to Quit ” Fl Help " F2 Next Screen ” E3 Previous Screen " F4 Next Field

Random Number Control Menu
Figure 4
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Section 3 Example of freedom. We will also wuse the gaussian
distribution for a reference.
For this example, let us return to the

experiment involving +the Shapiro-Wilks W’'. The experiment 1is presented in Figure 5
Let’s prepare an experiment that will on the experiment control screen. There are
calculate the expected value of the statistic two factors, Sample size and Degree of
for finite sample size and nongaussian Freedom, each with a set of six possible
distribution. For our experiment, we will values. The value of O for the Degree of
use six different sample sizes: 5, 10, 15, Freedom factor is used to indicate a gaussian
20, 25, and 50. For our nongaussian distribution; see Figure 7 with the code.
distributions, we will wuse five members of The experiment is a factorial experiment and

the t family with 1, 2, 3, 4 and 10 degrees it will be replicated 1000 times for each
experiment point.

Experiment Name : |Example - Shapiro Wilks Simplified W

F - Factorial
Number of Replications: }[1000 Type: L - Latin Square

P - Fractional Factorial

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Sample Sizel ‘Dgr of frdmi l l | l l

5 0
10 1
15 2
20 3
25 4
50 10
Esc to Quit u Fl Help “ F2 Next Screen “ F3 Last Screen n F4 Next Field
Example Experiment.
Figure 5 .

The preparation of the random number congruential and the tausworthe generator.
generator is seen in Figure 6. We are using The seeds for each generator are set on the
an additive combination of the linear top of the screen.

Random Number Generator Seeds
Linear Congruential: {7 !1362 ll459 —1[416 ]
Tauseworthe: i4 ||123 l133 I[;— ;]
Quadratic: |1 ||1 |l1 I

Spare: |1 ||1 Ill ' _J
Generator 1: IE‘ Generator 2: Combination Technique:

Generator Types: L - Linear Congruential Techniques: + Addition Mod 1
T - Tausworthe . Subtraction Mod 1
Q - Quadratic » Exclusive Or
F - Fibonaci 1 Generator 1
S - Spare (User defined) B Shuffied

Esc to Quit " Fl Help “ F2 Next Screen ” E3 Prevnou< qc1pen H_Ed Na!L Field

Random Number Control
Figure 6
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D.

The Pascal code that performs the
experiment is seen in Figure 7. The code
performs the experiment once, all looping for

the experiment is handled by the system. The
code:

1. Generates approximate Normal Order
statistics
2. Generates a random sample
3. Sorts the sample
4. Computes the correlation between the
sample and the Normal order
statistics, which is W~
5. Accumulates the result.
Var
(o] : X _array:
X : X_array;
i Integer;
c Rezl;
sample_size Integer;
Begin
sample_size := trunc(factf{1]);

A.Grier

The procedure
random variables.

rnorm generates normal
The procedure rt generates
t random variables. The gsort procedure is a
quick sort and cor computes the correlation.
The procedure accum_ave is a system procedure
that accumulates the average of the 1000
replications of each experiment. The system
array fact[] contains the current values of
the factors. The system variable
changed_fact, gives the number of the last
factor that changed; each time that changed
fact is equal to 1, a new set of order
statistics must be generated.

{hold normal order stats}
{hold random datal !
{index}

{correlation]
{sample_size]

{first prepare normal order stats]

If (changed_fact 0) Or (changed_fact
For i := 1 To sample_size Do os[i]

For i := 1 To sample_size do
1f (fact{2] = 0) Then
x[i] := rnorm
Else
x[i]

{0 me

:= rt(trunc(facti{2]));

gsort(x,l,sample_size); {sor

c := cor(x,os,sample_size); { compu

accum_ave(c*c,1); faccu

End; {main_procedure}

1) Then
:= inv_norm((i-0.5)/fact{1]);

ans use normal}

{generate random t variates}

t data}
te Shapiro-Wilks}

mulate it in location 1}

Experiment Code
Figure 7

Boxplots of the results can be seen in
Figure 8. These side. by side boxplots are
made across the Degrees of Freedom factor.

Section 4 Conclusion

Packages for discrete event simulation
have existed for nearly 25 years, yet none
have existed for Monte Carlo experimentation.
(Friedman and Friedman, 1984) The Monte
Carlo System, described in this paper,
attempts to systematize the process of
preparing Monte Carlo Experimentation. The
system prepares most of the program, leaving
the researcher to prepare only the
experimental design and the sections of code
unique to the given experiment. This system

not only speeds the process of preparing an
experiment but it also encourages a careful
design of the experiment and the thorough

analysis of the results.

Avajlability

An experimental version of the software
is available from the author at:

The George Washington University
Department of Statistics,
Computer and Information Sciences
Funger Hall
Washington, DC 20052

The software runs on the IBM PC, PS/2,
Apple Macintosh architecture machines,
or without a math coprocessor,
the Turbo Pascal programing environment
(Borland, 1987). A fee of $10.00 is
requested to cover the costs of handling and
shipping.

and
with
and requires
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Example - Shapiro Wilks Simplified W

L[]

Escape to Quit

Page down to Continue

Page up to go back

f1 to Toggle between Boxplot and 5 Number Display

Boxplot of the results
Figure 8
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