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ABSTRACT

We present a meta-model which is useful for understanding
simulation frequency domain experiments. This model consists
of polynomial gain followed by a linear filter with additive noise.
The assumptions for performing frequency domain experiments
are thus made explicit. We demonstrate how the model leads to
a straightforward mechanism for factor screening via statistical
hypothesis testing.

1. INTRODUCTION

One topic which has interested many simulation researchers
has been the construction of a mathematical model which ex-
hibits the same behavior as a simulation. Since the simulation is
itself a model, the result is known as a simulation meta-model
(Kleijnan, Van den Burg, and Van der Ham [1979], Kleijnan
[1980]). One of the difficulties in meta-modelling is the iden-
tification of terms belonging in the model. If important terms
are excluded from a prospective model, then the model will
suffer from a lack of fit. If too many unimportant terms are
included in the prospective model, the data requirements will
be unnecessarily large.

Traditional experiments have used a run of the simulation as
the basic experimental unit, with each factor set at a specified
value for the duration of the run. Different runs are made with
different configurations of parameter values, and the response of
interest is studied as a function of the location in the parameter
space.

Recent work by Cogliano {1981}, Schruben and Cogliano
[1987], Sanchez [1987], and Schruben, Heath, and Buss [1987]
has addressed the problem from a different perspective. Fac-
tors are oscillated sinusoidally within the course of a simulation
run, with each factor being varied at a unique frequency. By
carefully selecting the frequencies assigned to the factors, it is
possible to construct an experiment in which both direct factor
effects and interaction effects between factors can be identified.
The advantage to this approach is that the experimental unit
becomes a frequency band rather than a run of thé simulation
program. A simulation run produces a time series, which can be
evaluated using spectral analysis. The resulting spectral esti-
mators consist of many virtually independent frequency bands.
Thus, many independent experimental units are obtained from
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a single run of the simulation using the spectral technique.

The spectral approach to factor identification has been em-
pirically succesful in producing results which are comparable
to those obtained via run-oriented response surface techniques
(Schruben and Cogliano [1987], Sanchez [1987]). In this pa-
per, we wish to formalize a model of the system in terms of its
input/output behavior. The proposed model lends itself to eval-
uation in the frequency domain in a quite direct fashion, but
also illustrates the strong ties between the spectral approach
and more traditional response surface methods. In this model,
time will be a discrete index set since our application is the
study of discrete event simulations.

Spectral estimators can be obtained using least squares es-
timation for a basis consisting of sine and cosine functions eval-
uated at certain frequencies. Thus, meta-models obtained via
the spectral technique are implicitly linear models, although we
remark that as in the technique of linear regression, the adjec-
tive linear refers to linear in the coefficients being estimated.
Over a sufficiently small range a linear model can provide a
good approximation to a non-linear response surface if appro-
priate terms are included in the model. However, we should
be concerned about potential lack of fit. In the spectral model,
lack of fit may be indicated by the presence of significant effects
at frequencies which do not correspond to any of the potential
explanatory terms considered a priori.

2. THE MODEL

We will initially consider a linear model of a deterministic
system which is a function of a single variable. We assume that
the system is causal and time-invariant, i.e., that current system
behavior does not depend on future inputs and that the function
which defines the mapping of an input sequence to an output
sequence does not change over time. If these assumptions are
true, then the system can be modelled as

(o]
() =Y h(r)z(t— 1), (1)
=0
where the z(£) is the input to the system at time ¢, and A(r) is
the impulse response function which describes the effect on the
output  time units after a unit change is made to the input.
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Of course we wish to consider systems which are non-de-
terministic, and which may depend upon more than one term.
We can generalize equation (1) to obtain an additive linear
model of such a system. We first introduce multi-index no-

tation. For a vector x = (z1,...,%,), a multi-index o
{aa,...,an) is a vector of positive integers which operate com-

ponentwise on x as follows:

o Qn
X =z Ty

)

The modulus of e is the sum of its components: ja| = ay+...+

o1 ,.o9
1 %"

. To illustrate, let n=2; then for x = (z1,2,), xO® = z; and
x(2) = 2,22, The modulus of (1,3), say, is |(1,3)| =1+ 3= 4.
Our model is now defined as

y(t) = D Y xO(t — m)ha(r) +&(t) (3)

lo| <k =0

where €(t) is 2 random process, the x*’s are potential explana-
tory terms, and the h,’s are impulse response functions for each
respective term. This model is a generalization of a so-called
Hammerstein model (Narendra and Gallman [1966]) and rep-
resents the result of passing a (multivariate) input through a
memoryless polynomial followed by a {multivariate) linear fil-
ter with additive noise. Thus, both memory and nonlinearity in
the system are modelled by equation (3), which are two saliant
features about large scale simulations that make their analysis
difficult. Equation (3) can equivalently be written as

[o=}

y(®) =Y {m(Dzlt=1)+... + ha(r)za(t — )} +£(t), (4)
T=0
where & = Cardinality({|a|] < k}), and each z;, ¢ = 1,...,«,
corresponds to x* for some a.

3. THE TEST

We formulate as the null hypothesis, Hy, that term ¢ has no
effect on the outcome of the system, i.e, that hi(r) = 0 for all 7,
fori=1,..., . Itis not evident how such a hypothesis could be
tested in the time domain, but in the frequency domain we shall
see that the hypothesis can be tested in a rather straightforward
manner.

‘We now consider the frequency response:

Y(w) = Hi(w)Zi(w) + ... + Ho(w)Za(w) + B(w), (5)

where Y(w), Zi(w), and &(w) are the power spectra of y, hi, 2;,
and &, respectively. (To simplify notation, frequencies w are in
radians throughout this paper.) Recall that the power spectrum
is the Fourier transform of the auto-covariance function. In the
case of deterministic functions, such as z; and h;, the auto-

covariance function is defined in terms of time averages (Ljung

[1987]).
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Under Hy: hi(r)=0fori=1,...,k,

+00
Hi(w) = Z 0e™™ =0,
T=—00
and hence

Y(w) = &w). (6)

Recall also that the periodogram I(w) is an (inconsistent) esti-
mator for the spectrum f(w), which is equal to a constant times
Y%(w). If the &;’s have a normal distribution, then I(w) will be
proportional to a X% random variable. A consistent estimator
F(w) can be obtained using window estimation techniques, and
is also proportional to a x* random variable (Priestley [1981]).

The normality assumption for the &;’s is not required if the
€¢’s can be obtained by passing iid random variables through a

linear filter:

[e=]
6t=y Ci-rgr (7
=0
where the filter g, is such that
(o]
> i< (8)

7=0

Under these assumptions, the smoothed periodogram estimator
}N(w) is asymptotically proportional to a x* random variable
(Priestley [1981], pp. 466-467).

We can test the hypothesis Hy under quite general circum-
stances in the following way. First, a run of the experiment is
conducted in which the factors are all held at nominal values.
This is designated as the noise run. Since all factors are be-
ing held constant, their Fourier transforms will all be zero for
w# 0, ie., Zi(w) =0for i =1,...,x. It follows immediately
from equation (5) that the Fourier transform of the noise run,
Yn(w), is given by the relationship

Yy(w) = Hw) Vw#0. 9

Next, a run of the experiment is made in which the factors are
varied according to an appropriate frequency selection scheme.
Since the z;(t)’s are being oscillated, there will be some set of
w > 0 such that Zj(w) # 0. However, under Hy, all of the
corresponding transfer functions H;(w) will be equal to zero,
with the result that the Fourier transform of the signal run,
Ys(w), is given by

Ys(w) = Hw) V. (10)
Thus, under the null hypothesis, both }N(w) and fs(w) will be
proportional to x? random variables. Also, if Hy is true, they

will have the same spectrum for w 3 0, and hence
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fs(w) - fs(w)/f'(w)
fn@w)  faw)/f(w)
Xz /vs
~ —_XgN/VN (11)

~ F VSN

for w # 0, where vy is the appropriate degrees of freedom for
the spectral estimator of the noise run, and v is the appropriate
degrees of freedom for the spectral estimator of the signal run.
In other words, we can test Hy by comparing the spectral ratios
of the signal and noise runs to an F value with vg and vy
degrees of freedom.

Actually, Hy is both stricter and less informative than nec-
essary. Rather than require that all & transfer functions must
be simultaneously zero, we can construct the experiment so that
no two distinct terms have non-zero Fourier transform at the
same frequency, i.e., Zi{w)Z;(w') = 0 for all 7 3 j, and for all
w'. Thus the Fourier transform of each explanatory term will
occur in a set of frequency bands which does not overlap with
the frequency bands utilized by any other term. This is done
by varying each factor at a carefully chosen frequency.

In principle each prospective term in equation (4) may be
present. The driving frequencies for factors =, ¢ = 1,...,n
should be chosen so that output frequencies corresponding to
distinct terms 2;, § = 1,..., &, are not equal. For a given order
polynomial this can always be done (Jacobson, Schruben, and
Buss [1986]; Schruben and Cogliano [1987]). The elements of
the set of output frequencies corresponding to a particular term
are called the term indicator frequencies. It is desirable to max-
imize the bandwidth (i.e. the minimum distance between two
distinct term indicator frequencies) so that spectral estimates
at adjacent frequencies are as independent as possible.

The term indicator frequency corresponding to a linear term
is the driving frequency for that term. Term indicator freque;x—
cies for quadratic terms are the sum and difference of the re-
spective driving frequencies. This can be seen by observing that
for z;(t) = A;j cos(w;t), ¢ = 1,2, the product can be written

21(2)2(t) = 5 A1 s feos((w1 + w2)t) + cos((wr — wn)D)]. (12)

Thus, there will be §-functions in the frequency response at w; -+
wy and w; — wa. (Recall that a well defined spectral estimator
still exists because it is the change in the distribution function
over a range which is estimated.)

This provides a mechanism for testing a hypothesis about
each term, independently of what is going on with any other
terms in our model. For example, consider a model with two
factors, #; and zg, which are assigned driving frequencies of
wy and ws, respectively. We might then construct the model
to contain three terms: 2z = 21, 22 = %9, and z3 = z329.
The indicator frequencies corresponding to those terms would
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be {w1}, {wa}, and {w; + wo,w; — wy}. Our goal is to choose
values for wy and wy so that the sets are non-overlapping and
preferably have maximal distance between the elements. (For
the situation described by equation (12), the desired spacing is
over the interval (0, ). If the problem was specified in terms of
cycles/observation, the desired spacing would be over the range
(0, 0.5).)

Now consider the null hypothesis for term 2z;. In the fre-
quency domain, the Fourier transforms Z;, 7 = 2,3, of all other
terms in the model would be zero at frequency wy by construc-
tion. As a result, the Fourier transform of the output of the
signal run at frequency w; would be a function of only term 2;

and the randomness,

Ys(w1) = Hi(w1)Z1(w1) + (wy). (13)

I the hypothesis that there is no factor effect for z; is true,
then Hy(w) = 0 for all w, including wy, and the result is that

the ratio of the signal and noise spectra has an F* distribution,
just as in equation (11).

4. DISCUSSION

Some remarks about the procedure described here are in or-
der. First, no assumptions were made about the independence
of the y’s. In fact, under the model described by equations (1),
(3), and (4) the y’s may be highly serially correlated. We do
require a stationarity assumption, however.

Next note that the model certainly allows for the presence
of time lags, but that any time lags which may occur in the
model do not affect our analysis since the Fourier spectrum
is lag invariant. In fact, the model specified in equations (3)
and (4) is the sort of model which we would construct for a
traditional response surface model if we knew the duration of
time lags in the system. Time lags must be taken into account
in that we must observe the output for a sufficiently long time to
observe the results of our changes to the inputs. Given that we
observe the system for a sufficiently long time, however, spectral
analysis does not rely on prior knowledge of lag durations.

Finally, the technique will work under quite general cir-
cumstances. Priestley [1981, p. 466] states, “In fact, these
asymptotic [x?] distributions still hold for any fized number of
frequencies if the residuals {¢;} are independent but not neces-
sarily Gaussian...”. Thus, to analyze the model in equations
(8) and (4) we need to assume a sufficiently large sample and
independent error terms.

The result is a technique which can be used to identify a
set of factors which are significant determinants of the system
outcome. The technique works in the presence of serial cor-
relation and constant lags of unknown duration, under quite
general assumptions. This gives us the capability to screen the
set of potential explanatory factors and select a subset which
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affects the outcome with some pre-determined statistical level
of significance. The subset to be selected is not of fixed size,
and the data need not meet the classical assumptions of being
independent, identically distributed normal random variables
with no delay between an input and its effect upon the system.
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