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ABSTRACT

This paper develops a generalized approach for
combining the use of the Schruben-Margolin correlation
induction strategy and control variates in a simula-
tion experiment designed to estimate a metamodel that
is 1linear in the unknown parameters relating the
response variable of interest
This

standard techniques of

to selected exogenous

decision variables. generalized approach is
based on regression analysis.
Under certain broad assumptioms, the combined use of
the Schruben-Margolin correlation induction strategy
and control variates is shown to give a more efficient
estimator of the metamodel coefficients than each of
the following conventional correlation-based variance

reduction techniques: independent streams, coumon

random numbers, control variates, and the

Schruben~-Margolin strategy.

1. TINTRODUCTION

In this section we present the notation wused in
this paper for describing simulation experiments, and
we briefly review the Schruben-Margolin correlation
induction strategy as well as the method of control

variates.

1.1 Setup for Simulation Experiments

Consider a simulation experiment consisting of m
is identified

settings of d factors or decision variables,

design points, where each design point
by the
that are wused as

Let the

denoted by ¢, to

inputs the

simulation model. response from the 1i'th
design point be denoted by Yy and let the vector of
be denoted by

Also, let ¢; be the setting

responses from all m design points

Y = (¥ys Y9 vees Yt

of the d factors for the i'th design point and let

{xk: k=1, 2, ..., p-1}
the factor settings.

represent known functions of

Then, assuming that the rela—

tionship between the response and the given functions

of the factor settings is linear in the unknown

parameters, we can write
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p~1
vy = Bg k£1 kak(¢i) + €

fori =1, 2, 1.1)

cee, M,

k=0, 1, «.., p-1} are the unknown model

inability of

where {Bk:

parameters and €; represents the

By + iéi kak(¢i) to determine Yie Define X to be
the (m x p) matrix whose first column is all ones and
whose (i, kt+l) element is xk(¢i) (fori=1,2, «¢., m
and k =1, 2, «es, p-1)-

response and the functions of factor set-—

Thus, the relationship be-
tween the
tings across all m design points can be written com-

pactly as the following general linear model:

y = X8 + €. (1.2)

On occasion later in this paper, we assume that
the {xk} are chosen such that X is orthogonal, that

is:

X'X = mIP, (1.3)

and can be achieved by a simple reparameterization, or

coding, of the functions of the factor levels.
We also assume that

{70 h =1, 2, ..o, T} TID ~ N (38,5), (1.4

where Yin denotes the response at the i'th design
point on the h'th independent replication of the basic
the (m x m) covariance

m-point experiment and I is

matrix.

A simulation model is usually driven by randomly

chosen streams of pseudorandom numbers. The streams

are sequences of real numbers scaled to the interval
[0,1] and constructed to appear random. For a single
replication of the basic m—point experimental design,
we represent the set of g pseudorandom number streams
in the following way: (a) the (infinite) sequence of
pseudorandom numbers available from the j'th stream at

the 1'th design point is

LT (rijl’ * 420 ees)
fori=1],2, ..., mand j=1, 2, ..., g; (b) the set
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of streams for the i'th design point is

R.i = (ril’ Tins e rig) for i =1, 2, ..., m; (1.5)

and (c) the aggregate pseudorandom input for the basic

m-point experimental design is
BR= (R, Ry, -v0, R,

Now at the i'th design point, R.i completely determines

the events of the simulation so that we can write

p-l
I3(Ry) = Bg *+ B B () + € (R). (1.6
In conducting a simulation experiment, the

random number
Three

simulation analyst must assign a set of

streams to each experimental point. common

methods of assigning the random number streams for the

simulation experiment are: independent streans,

common  random numbers, and antithetic variates.

Chapters 1 and 5 of Tew (1986) give a description of

each of these methods in the context of metamodel

estimation as well as references for further reading.

1.2 The Schruben-Margolin Correlation Induction
Strategy

To facilitate the design of efficient simulation

experiments, Schruben and Margolin (1978) devised a
correlation induction strategy that utilizes the
variance reduction techniques of common random numbers
and antithetic wvariates in a scheme based on the

concept of blocking. In addition to the assumptions

(1.1) to (1.6), they assumed that the design matrix
X = (lmT) is orthogonally blockable. A design matrix
X that satisfies the properties of (1.3) is

orthogonally blockable into two blocks if there exists

an (m x 2) matrix W of zeros and ones such that

and m, are the
we

T'W = 0 and ;m'w = [ml, m2], where o,

respective block sizes. I1f let

1- rij = (1 - rijl’ 1- rijZ’ «++) denote the com—

plement of the random number stream rij’ then the

assignment rule of Schruben and Margolin can be

expressed as follows:

Assignment Rule; If the w-point experimental design

admits orthogonal blocking into two blocks of sizes my
and m,, preferably chosen to be as nearly equal in
size as possible, then for all my design points in the
first block, use a common set of pseudorandom numbers
that R, =R Ty,
i=1, 2, «o., m; and for all my design points in the

use the antithetic

so = (r11 , ey

Tig )s

second block, (complementary) set

that R, = R1 = (l—rll,

of pseudorandom numbers i

SO
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1—’:127 ceey 1-r];g), 1= m1+l, ceey m1+m2.

Schruben and Margolin decomposed the error term

ei into a random block effect bi and a residual e;,

both of which are functions of R. Thus the model in

(1.1) can be written:

4

- e o
v (R) = 8y F B (eg) B R+ )

ese, e (L.7)

for i =1, 2,

In order to analyze the properties of this assignment

rule, Schruben and Margolin made the following
assumptions (for 1 € i, j < m):
Foy i o 3
ei(k) = bi(R) + ei(R),
E[b, (R)] = E[e{(R)] = 0;
02 = Var(y,) = Var[y (R)] = 62‘
i i i ?
= 2 .
Cov[bi(R), bj‘R)] =py9°, where 0 < o <1;
Var[e}(R)] = o*(1-p;);
(1.8)
- _ 2 _ .
Cov[bi(R), bj(R)] = py0 where -1 < Py < 0;
o = ORYT = O:
Covib, (R), ej(k)] = Cov[b,(R), ej(R)] 0;
Cov[el (R), e3(R)] = Cov[el(R), €2(R)] = O
i j i h]
for i # j;
L= ﬂCov(yi, yj)ﬂ is positive definite.
These assumptions  imply the following  three
properties:
1. The response variance 1is constant across all
points in the design.
2. 1If y; and yj (for 1 # j) are realized from
the same random number stream, then
Corr[y, (R), YJ-(R)] =pp, 0 <p <L (1.9
3. 1If v and yj (for i # j) are realized from
antithetic  (complementary) random number
streams, R and R respectively, then
R, R antithetic » Corr[yi(R), yj(i)] = Py
-1 <p, <0, (1.10)
Under the Schruben-Margolin strategy with equal
block sizes, the metamodel of (1.6) takes the
following form:
¥(R) = X8 + WB(R) + £°(R), .11)
where: q = %-= m; =m, is the common block size;

B! = [b(Rl)’ b(§1>]' is the (2 x 1) vector of random

block effects; W is the (m x 2) block incidence matrix
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defined by Schruben and Margolin (1978)
(1979) ° is

€
errors. Note that

and Schruben

and the (m x 1) vector of residual

within each ©block, Schruben and

Margolin assume a common block effect that does not

depend on the design point. Let Xi (L1 =1, 2
represent the design matrix for the i'th block. If
the experimental points are so  arranged that
X= [xi Xé]', then we get
1 0
“q ! =q
W= ___:___ . (1.12)
0 11
~q ~q
where each column of W contains ¢ = m/2 ones. With
the assumptions of (1.8), we get
2 P1 P2
Cov[B] = ¢ . (1.13)
P P
Expressions (1.12) and (1.13), together with the
assumptions of (1.8), result ian the covariance

structure of y given by the following:

M1 e pl: Py see Py ]
L L R P
|
L LI
§
I L I PO
]
I
2 P 1y Pp =+ Py 2 §11 ! 512
il R Pl “ ot | SLLAZ,
Py o 92: 1 ... o Zyq " Iy
R I EL I
|
. e h l. .o .
1
. . l- .
e | s
I
Py soe Oyl Py oo 1
(1.14)
where §11 is (m1 X ml), §12 is (m1 x mz), §21 is
(m2 x ml)’ and §22 is (m2 X mz).
Based on experimental designs that  admit

orthogonal blocking, Schruben and Margolin proved the
following theorem.

Theorem 1: If an  experimental design admits
orthogonal blocking, and 1f the assumptions of (1.13)
hold, then under the assignment rule the ordinary

least squares estimator of § has a smaller generalized
variance than it has under the following strategies:
(a) the assignment of one common set of random numbers
to all design points, or

(b) the assignment of a

different set of random numbers to each design point,
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provided
[1+ (@-1)p; = (2/m)(my)(my)(py=py) 1 (1=p;)P < 1
(1.15)
in the latter case.

Corollary 1: Under the assumptions of Theorem 1, the

assignment rule is superior to the use of common
random numbers in estimating Bo ; the two are
equivalent in terms of dispersion for estimating

(Bl’ 82, seley Bp_l)'. When compared to the use of a
different random number stream at each point, both the
assignment rule and common random numbers are superior
in terms of for

dispersion estimating

(B> Bys weer Byg)'

Thus, Schruben and Margolin showed that their
strategy is a successful meauns of combining the two
correlation mwethods of common random numbers and
antithetic variates for a large class of experimental
designs.

1.3. The Method of Control Variates

The method of control variates involves

identifying a vector of concomitant output variables,
c = (cl, Coy e cs)', having both a known mean B
and a strong linear relationship with the
The basic idea is

counteract the unknown deviation y - uy by subtracting

response of

interest y. to predict and

from y an appropriate linear transformation of the

known deviation c - B, v In the context of a
simulation experiment as defined by equations
(1.1)~(1.11), suppose that, along with the response
from the i'th experimental point ¥y
(1=1, 2, ..., m), we also observe an s-dimensional
column vector of control variates cy. In this
situation we may assume without loss of generality,
that E(ci) =0({=1, 2, ..., m). Moreover, we
assume that at each experimental point, the respounse

and the control variates are jointly normal.

If we let ¢ = (ci, cé, cees c&)', then we have

y X Ccv
~ N er) . 8, I1, (1.16)
where
azlm I,®:
£ = e b, Q.17)
{ L,®z, I ®I

gc is the (s x s) unknown covariance matrix of s and

is a (s x 1) unknown covariance matrix whose

I
%ye
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elements are the covariances between vy and c- (Note
that (1.16) indicates that gc and §yc do not depend on

1.)

In the following development it will frequently

be convenient to express results in terms of the right

direct product (or Kronecker product) of two matrices.
If 6 is a
then the right direct product of

(v x z) matrix,
Gand H is the

(t x u) matrix and H is a

(tv x uz) matrix
g1 gttt gy H

818 gy te gy H
CRH-= )

The model of (1.6) can be expanded to include the

control wvariates by the method of additional
regressors given in Section 3.7 of Seber (1977).
Thus, we have

y(R) = X8 + C(R)a + (R), (1.18)

where R is the selected set of random number streams
for the experiment, a is the (s x 1) vector of control

coefficients, and

1.19)

m | (m x s)

Often the (R) term in (1.18) is

dependence of y, C, and £ on R is understood.

dropped where the

Let P=1T - x(x'x)'lx' so that the least-squares

of @ is &= (C'PC)"lc'Py.  Them, by
substituting é for ¢ and subtracting Cé from both
y - Cé = XB + g

adjusted response vector y — C§ to find

estimator

sides of (1.18), we get: Using the
the least

squares estimate of § yields:
= oy - @ = @n iy - @nxee.
(1.20)

condition on C.
assumption (1.16), Nozari, Arnold, and Pegden (1984)
showed that E[E%Y|C] = g,

Next, we Under the joint normality

cov[glc] = 2t

+ TZ(X'X)_IX'C(C'PC)_IC'X(X'X)—]', (1.21)

where t°> = o> = L L 'f , and
Sye~e ~ey
§CV|C ~ NP(B, Cov[8°V|€]). This result can be used to

construct  conditional confidence regions and
conditional simultaneous confidence intervals for g or
its individual components. Assuning r independent
replications of the basic m-point experiment, Nozari,
Arnold, and Pegden also showed that E[Ecv] = 8 and
Cov[§V] = % (E‘f—;%)rz(x'x)'l if m-p-s=1 > O.

(1.22)
Nozari, Arnold, and Pegden used (1.22) to find
conditions under which the use of control variates

will yield a more efficient estimator of 8.

2. THE COMBINED STRATEGY

Schruben and Margolin developed a strategy for

effectively combining the two most  popular

correlation-based variance reduction techniques

(common random numbers and antithetic variates) in one
Their results

simulation experiment. suggest that

even more efficient simulation experiments may be
obtained by further integration of variance reduction
In this

the correlation~based

techniques into the experimental protocol.

section we combine all of

techniques (namely, common random numbers, antithetic

variates, and control variates) into a unified

strategy for the design and analysis of simulation

experiments. This combined strategy parallels and

extends the development of Schrubem and Margolin

(1978) and Nozari, Arnold, and Pegden (1984).
The model for the combined approach is

y(R) = Xg + C(R)a + WB(R) + *(R), 2.1

0

where y, R, X, 8, G, ¢, W, B, and ¢ are defined in

Section 1. We assume that the joint distribution of y

and ¢ = (ci, cé, veey c&)’ is

y X cm

Mo | (8 275 @-2)
9
where

zen I ®:2
e A R >

| W®L, L0
I°® 15 the unconditional covarlance matrix of y under

the model (2.1); and £ , £ , and £ __ are defined ia
~c’ ~cy ~yc

Section 1. Let pim and p;m be the analogs,

respectively, of Py and P9 under the model (2.1) and
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let
e = WB(R) + ¢°(R). (2.4)

Now, as a result of (2.1) and (2.2), we know that
g ~ Nm(gsgzm):

where gzm is of the form giveun by (1.14) with 02, Pl

and Py replaced by (02 - §yc§;1§cy)’ p;m’ and p; R
respectively. We also make the following two
assumptions: (a) B and §° are independent and (b) the
components of §° are independent. Assumption (a),
coupled with the previous result about the
distribution of ¢, implies that both B and ¢ have

normal distributions
(1970)).
wmatrix of

(see Theorem 19 of Cramer
Assumption (b) implies that the covariance
e° In addition, by (2.1) and

(2.2), we have

is diagonal.

2% = (z 3 'n )1 + 3%, 2.5)
~y ~ye~e ~cy’ m  ~g
We now discuss methods of designing the

simulation model (the experimental vehicle) as well as
the overall simulation experiment that will ensure the
validity of assumptions (2.1) through (2.5). Suppose
that the simulation model has been structured so that
the g random number streams driving the system can be
segregated into two complementary, muonempty groups -
the set of g, streams that do not affect the control

vector ¢, and the set of gy = & — g streams that

determine the value of c. For example, suppose that

in the simulation of a stochastic activity network

with g arcs, a separate random number stream is

dedicated to sampling each arc duration. If we use a
path control vector ¢ involving a total of gy arcs in
the network where & < g, then c¢ 1is stochastically
independent of the remaining g8 =8~ 8y random number
streams in the simulatiom. (See Venkatraman and
Wilson (1985) for an elaboration of path controls.)
As another example, suppose that a simulation model is
driven by and that a

g random number streams

simplified version of this system with a known mean
response can be driven by a subset consisting of gy of
Then the the simplified

external control variable

these streams. response of

system defines an for the

original system that is stochastically independent of
the remaining g, = g — g, streaus used in the original

system. (See Kleijnen (1974) for an elaboration of

external control variates.)

At the 1i'th design point in a simulation

experiment, let Ril

streams that do not affect the control vector

denote the set of g random number

c, and

i
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let R,, denote the set random number streams

12 of g,
that determine the value of cyt

Ry = (xyps Ty oo Figo Tige 41) Tigg2)

eesy tig) = (Bil’ Riz) fori=1, 2, ..., m,

(2.6)

i=1, 2, «.., m}
selected according to the assignment rule
The Ry, (1 =1, 2,

randomly selected without restriction.

where g; + g, = 8- The {Rilz are

of Schruben
m)

This procedure

and Margolin. ceey are
allows y to have a covariance structure given by E;m
and the

Thus,

(m % s) matrix C to have independent rows.
we induce the desired covariance structure on y

but not on the ci's.

To summarize, if we take

Ry | R |
By B2
Ro H . and R* = .
L le ] L Rm2 ]

so that R = (Ro, R*), then we have
y(R®, R*) = X + C(R®)g + WB(R') + (R, R®), (2.7)

with the following properties (for 1 < i, j < m):
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g (R, B = b, ®)) + f®’, &%)

E[b; (R")] = E[e](R", R*)] = 0;

2
[

1 Var(yi)

= Var[yi(n°, R =

= (02 -z

Cov[b, (R%), b, (R")] Eyele

~cy)p1 s

where 0 < pim

s

Var[eg(ko, R*)] = -

2

e Cy>(1 - pl )!

I
~ye~

- I
yc-c ~cy

Covlb, (R"), by(R)] = Ca

)pz
where ~1 < pgm < 0;
(2.8)
Cov[b; (R%), e3(R", K]
= Covib; (R"), eJ(R", BH)] = 0;
Cov[e:(k°, R*), eg(Ro, R*)]
= COV[eg(Ro, R*), eg(i°, %] =0
for i # j;
]
Cov(b, (R"), cj(R*)]
= Cov[b (R"), c.(R*)] = 0;
i j 4
= Var[y(R)] is positive definite;
and
B(R') ~ N,(Q, Cov[B]), (2.9)
where Cov[B] is given by (1.18) with 02,

_ -1
(G g-:yc--c ~cy)

Py and p,

cm

replaced by Py s

respectively.

pim, and
2.2 Summary of Main Results

From (2.7), (2.8),

least squares estimate of B is

and (2.9) we see that the

= @ lx(y - ¢ (2.10)

gcrn
where
3" = (c'ee) lerey (2.11)

and P is given in Section 1.3.

§cm is

If X has rank p then
(1977), 61). The
given € 1is E[gcm]c] =8

and the conditional covariance of E, given C, is

unique (see Seber P

conditional mean of Ecm
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Cov[8°™M[c] = ré(x'x)'l+ 1(2)(1'11)'1x'c(c'pc)'lc'x(x'x)‘1

+ (x'x)'lx'WCov[B]w'x(x'x)'1

+ (X0 " 'xe(e're) LerencovBIW EC(C RC) o x(x' D) L,
(2.12)
where = (c - Eycgc ch)(l pl . These equations,

in turn, yield the following unconditional mean and

covariance of gcm when the basic m-point experiment is

independently replicated r times: E[écm] = B and
Var[ggm] 0
Cov[ "] = > (2.13)
0 Var[B1 ]
where
var(fg" = " -z it o @
covB™ = 05" - 5 Bl HGEEZ Gy

(2.15)

with T defined in the first paragraph of Section 1.2,

cm _ , 2 _ 1y .Cm cm
R C Zyc~c Z. )[1 + (q-1)p" + a0, 1, (2.16)
and
cm _ , 2 _ -0
X3 (o ~yc§c gcy)(l ). (2.17)
If X is orthogonal then (2.15) becomes
Acm cm _ -1 w-p=2 y, 1.
Cov[gl 1= (A yc~c ~cy)(m—p—s—2)( )I . (2.18)
Next, we compare the combined strategy to the

following 4 methods for conducting w-point simulation

experiments: independent streams, common random

numbers, control variates, and the Schruben-Margolin
In

and that

correlation induction strategy. each case we

assume that X is the same the overall

experiment consists of r independent replications.

The comparison 1is based on the notion of

domination that can be introduced between some pairs

of positive semidefinite symmetric (PSDS) matrices.

For such matrices P and Q, we write

P >> Q if P - Q is PSDS. (2.19)

Further, if Q <K P, then by definition ¢(Q) << &(P)

for all $. the
a PSDS

of that matrix;

nondecreasing functions Now

determinant, trace, and maximum eigenvalue of

matrix are nondecreasing functions
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thus if (2.19) holds for a given PSDS matrix Q and for
all PSDS matrices P, then Q is D—-, A-,
(For

and E-optimal.

a more complete discussion of the dominance
relationship see the comment by Kiefer in Schruben and
Margolin (1978).)

Let §'°,
of B8,

streams, common random numbers,

gcs Esm be

under the methods

, and the least squares

estimates of independent
and Schruben-Margolin
strategy, respectively. Then, we have

2

cov{fi®] = < @)L, (2.20)
2 (1-p ¥ o'
R 2 m 17" -
Cov[gcs] = 2; >
0 (-p (T
(2.21)
and
1 1. '
o G2 | 2P (e °
COV[E ] = _)'.' »
0 (e
(2.22)
(see Schruben and Margolin (1978)).
From the discussion given above, we see that the
covariance matrix in (2.22) compares to the

covariance matrices in (2.20) and (2.21)

as follows:
Cov %™ << Covigl®], and Cov[A®™] << Cov[g°®]. These
two results follow as a

consequence of Theorem 1 of

Schruben and Margolin (1978). Now, substituting
(2.17) into (2.15) and comparing it to Var[ﬁim]
obtained from (2.25), we get
Var[B7"] < Var[]"] (2.23)
if the following condition is met:
n2 oemy _ o2 m-p—2 _
[A-R%(y, &)U ) ~ R7(y, )]G € (mepds
(2.24)
where R(y, ¢) is the coefficient of multiple

correlation between y and c.

Similarly, working with (2.22), (2.14), and (2.16)
yields

Var[ég“‘] < Var[s“g“‘_] (2.25)
if

415

{A-R2(y, ©))ap{™og™+(1-p5™)]

w2y, 1S < laloto)H(lmp )]s (2.26)

Thus, under the conditions of (2.24) and (2.26), we

have

Var[8%"] < Var[§°"] (2.27)
since X is orthogonally blockable, which implies that
geu
0
independent.
(2.15), we get

and éim are independent and that égm and gim are

Also, in comparing (1.22) to (2.14) and

Var[ég‘“] < Var[sg"] (2.28)
if
(LaCeS ™™ H(1-pT™)]
RZ( c) -2 m-p-1
TG < GREID, (2029
(1-R"(y, e))
and
c°v[§§‘“] « c°v[gfl"’] (2.30)
if
2
R°(y, €) m-p—2 , m-p—s—1
((-p7™ - : o1¢ ) < 1. (2.31)
1 2 —p-5-2° "% m-p-1
(1R*(y, e)) "PES WP
We can summarize these results with the following

theorem:

Theorem 2.1: 1f the
(2.30), and (2.31)

conditions of (2.24), (2.26),

are met, then with respect to D-,

E-, and A-optimality in the estimation of g, the
combined strategy (2.1) is superior to the following
methods: (a) independent streams, (b) common random
numbers, (c) Schruben-Margolin strategy, and (d)
control variates.

Thus, the combined approach can give the best

estimates of the coefficients in the metamodel of all

methods considered in this chapter.

3. EXAMPLE

In this section we illustrate the implementation
of combining the use of the Schruben-Margolin
correlation induction strategy and control variates in
a simulation  experiment. We also compare the
estimators of the metamodel coefficients under the
combined strategy, control variates, and the

Schruben-Margolin strategy.
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3.1, The Job Shop System (xl), service time distribution at station 2 (xz), and

Consider a job shop example similar to the one service time distribution at station 3 (x3). We

given by Nozari, Arnold, and Pegden (1987) and consider a first order model without interactions
» > >

depicted in Figure 1. This example was chosen to glven by

maintain consistency with earlier work done by Tew and y =By + Byx; + BZXZ + B3x3 + g, (3.1)

Wilson (1987) on validating the Schruben-Margolin
where y is the performance measure of interest, x5

(1 =1, 2, 3) is defined above, B = (Bys Bys Bys 83)'
is the vector of unknown model parameters, and ¢ is

the inability of BO + lel + 82x2 + B3x3 to determine

strategy. Jobs arrive at this shop according to a
Poisson process with an arrival rate of 10 per hour.
All jobs enter the system through station 1. Upon
completing service at station 1, 80% of the jobs go to

station 2, 5% go to station 3, and 15% leave the y-

system. A job at station 2, or station 3, leaves the We also consider two standardized control
system upon completion of service. The shop admits variables based on the service times at station 2 and
jobs from 8:00 A.M. to 4:00 P.M. every day. However, the service times at station 3. Let Uk(k) denote the
service at each station continues wuntil all jobs j'th service time sampled at station k and W and %
admitted on one day leave the system. Service time at be the mean and standard deviation, respectively, of
station 1 is a constant and service times at stations the service time distribution at station k (k = 2, 3).
2 and 3 are uniformly distributed over specified Also, let a(k,t) denote the number of service times
ranges. that are sampled at station k during the (simulated)

The purpose of this example is to estimate the time period [0,t]. The standardized control variable

effects that different service time distributions have accumulated at station k up to time t is

on some function of the expected system sojourn time

e (6) = [a(k,t)]

-1/2 alk,t)
RS CACSNILS

for a job. Thus, the performance measure of interest

= 3.2
is the daily average system sojourn time for all jobs for k =2, 3, ( )
entering the system. This estimation is done under (Wilson and Pritsker (1984)). Furthermore, from
the following three techniques Ffor conducting a Wilson and Pritsker (1984), we have that

simulation  experiment: control variates, the L
= T —> 3.3
Schruben-Margolin strategy, and the combined use of e(t) ("2(”’ c3(t)) NZ(Q’ 12) as t >, ( )

control variates and the Schruben-Margolin strategy. if the service times are sampled independently. Thus,

the model in (3.1) becomes
3.2. The Hodel of the Response ,
(y —ca) =B, +B,x +Bx, +Bx, +e. (3.4

To study this system we employ a 23 factorial ~ 0 171 272 373

design with the following independent variables In simulating this system we dedicated a separate

random number stream to each of the following four

(factors): service time distribution at station 1
893} scation 2 >
Poisson (10)
wmpenlpd  Station 1
.05
Station 3 >
W15

Figure 1. Job Shop System
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random components in the model: dinterarrival times at
L (5),

completion of service at station 1 (rz), service times

station probabalistic  branching upon

at station 2 (r3), and service times station 3

Under the

at

). Schruben-Margolin strategy all four
4

random number streams are used for blocking whereas

under the use of control variates and the combined

strategy of control variates and the Schruben-Margolin
strategy ounly r) and r, are used for blocking be-
cause Tg and r, are used to generate the standardized

control variables at stations 2 and 3, respectively.

Next, we consider the estimation of B under each

of the three techniques for conducting simulation

In 20
by
independently replicating the basic 8-point experiment

mentioned above. each

of

experiments case,

estimates B obtained

independent are

20 times. The sample covariance matrix based on these
20 estimates is used as an external estimate of the
covariance matrix of the estimator of B.
3.3. Numerical Results
For the Schruben-Margolin strategy we get
4.804 .689 -.271 1.472
n asm .689 .810 .025 -.047
Cov(E™) = | _ 371 .o025 .070  -.098 |’
1.472 -,047 -.098 .629
which ylelds tr[Cov(8"™)] = 6.313 and
det[CSv(Esm)] = .0138. TFor the control variates
technique we get
29.498 8.452 -4.277 -.392
. acy 8.452  22.484 2.277 .594
Cov(E™) = | 4277  2.277  19.659  8.385 |’
-.392 .594 8.385 24.181
which yields tr[Cov(§®Y)] = 95.823 and
det[Cov(Y)] = 222,990.360.  Fimally, for the
combined strategy of control variates and the
Schruben-Margolin strategy we get
25.675 8.513 -8.188 -6.594
. ncs 8.513  25.700 -3.817 -5.749
Cov(E™) =1 _g.188 -3.817 21.176  6.979 |’
-6.594 -5.749 6.979 21.919

which yields tr{Cov(f°®)] = 24.471 and
det[COvV(B®)] = 195,610.348.
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4.  CONCLUSIONS

Although any statistical comparison of the sample

covariance matrices given in Section 3.3 will have low

power due to the small number of replications the
results suggest that the Schruben-Margolin strategy
gave superior performance to the use of control

varlates and the combined use of control variates and

the Schruben-Margolin strategy. We believe

large block effect induced

this is
the
Schruben—Margolin strategy brought about by the simple

due to the under

structure of the system and the use of all four random
blocking. In
the system allows the block effect to

numbexr streams for

effect, the

simplicity of

account for most of the variability in the model. We
expect that with a more complex system that this would
not be the case and that the efficiency due to the
control variables would surpass the efficiency due to
the block effect.

combined

Currently, we are investigating the

use of control  variates and the

Schurben-Margolin strategy for a more complex

stochastic system.
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