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OPTIMIZATION OF SIMULATION RESPONSES IN A MULTICOMPUTING ENVIRONMENT
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This paper describes the application of experi-
mental design techniques to computer simulation in a
multicomputing environment. Three principal areas of
experimental design are considered: (1) factor
screening experiments; (2) experiments of comparison;
and (3) response surface methodology.

INTRODUCTION

Simulation can be defined as the establishment
of a mathematical-logical model of a system and the
experimental manipulation of that model on a digital
computer. This definition emphasizes two principal
activities in computer simulation; (1) model develop-
ment, and (2) experimentation. This paper concen-
trates on the second of these activities, and assumes
that the simulationist has already developed a valid
model of the system under study. We show how simula-
tion experiments can be performed in a multicomputing
environment.

The simulationist attempts to utilize the simu-
lation model to gain an understanding of the rela-
tionships between a set of system responses
1,... (1)

n, = i=

5 gj(xl,...,xn), ,m

which are unknown to the simulationist.,_ But by con-
ducting a simulation trial, at a point X using a set
of random numBer skreams Sh, where X~ is the p-vector
of values (xl » By aeeerXy ) and S is the p-vector

of seeds (S h, S h,...,S h), the simulatjonist is
able to obsérve i set, of’time series {v. (O},
j=1,...,m, where y. (t) represents the measured
value of j~th responge variable n, at time t for the
h-th simulation trial. Unlike physical experimenta-
tion, which typically involveﬁ setting the values of
the controllable factors at X apd directly observing
an m-vector of physical values Y, simulation
rﬁquires a judicious selection of the initial seeds

S§" for the random number streams that are used to
generate the various random processes embedded in the
model, as well as a choice of the duration of the
trial. The duration is typically either (a) a fixed
number of realizations N of a given respomse 1.,

(b) a fixed period of simulated time T, or (C)Jthe
achievement of a specified state of the system. The
experimental design procedures discussed in this
paper are generally applicable to any of these three
approaches for choosing the duration of the simula-
tiomn.

Now the observed value y. of a given system
response nj as a result of a Yimulation trial has the
form

V. = g.(xy, X ,...,x ) + &, ] 1,...,m (2)
A 1 2 n hj
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whSre €. has mean E(¢.) = 0 and variance Var (g.) =
c.%. That is, J J

Yj="lj+8j,j=1,-~~,m (2a)

Now y. actually represents the mean of a time series
of redlizations &.,, £ = 1,..., r,, where r. is the
number of such reﬂ%izations recorded during”the

simulation. That is,
r,
L o5 (3
V., = — . i=1,...,m
Iorg ogm 3R

The variance of this time series can be estimated by
the relation

r
2

_ 1
s —_—

2= 3
j (rj - 1)

(5 g 2
A S .
gy 32 i

4

The esEimates y. and s.2 are unhiased estimates of n,
and 0., respectively,”where 0.° is the true varianc
of the response n.. If the sulcession of realiza-
tions E.z, £ =1,7.., r, are not independent, it is
necessa}y to employ othdr formulae to compute the
variance of this time series. Fishman (1978) dis-
cusses techniques for doing this.

In the following sections, we shall restrict our
attention to a single system response n as a function
of the n~vector of controllable factors X,
i=1,...,n

A Multicomputing System

Before we can describe how simulation can be
managed in a multicomputing enviromment, it is first
necessary to describe that environment. A multi-
computer is defined as a set of tightly coupled but
autonomous computers, capable of synchronizing and
communicating in parallel, and operating indepen-
dently. Multicomputing requires a variety of uncon-
ventional software support tools including a powerful
development operating system that can make use of the
multicomputer's full capabilities, concurrent pro-
gramming langnages, debugging and concurrency simula-
tion tools, a real-time operating system for parallel
processing, and a self-diagnostic facility to monitor
the activities of the entire system.

The Flex/32 Multicomputer provides a true
Multiple Instruction Stream/Multiple Data System
(MIMD) computing environment. It is a collection of
32-bit super minicomputers that share high-speed
memory, intercomputer synchronization, and interpro=~
cess messaging hardware within a Multicomputing
Environment. The Flex/32 Multicomputer can expand in
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processing power with minimal software modification
and its hardware can be easily configured and recon-
figured. Computer and/or memory cards can be added
at any time to increase processing power. The con-
figuration employed for this research has four 32-bit
superminicomputers.

An autonomous computer has its own local bus,
local memory, and Input/Output. This kind of Comput-
ing Element (CE) can operate independently or with
other CE's as shown in Figure 1. This structure is
called "multicomputing" and the Flex/32 Multicomputer
is an example of such a system. The main advantage
of having such a structure is that it satisfies the
requirements for two distinct approaches of program
decomposition. The first approach is one in which
applications can be decomposed to individual pro-
cesses, and where these processes can execute

Commoun
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Interface
1/0

]
Bus

Local Bus
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Figure 1: Flex/32 Multicomputer System Structure

independently for an extended period of time, between
synchronization steps with other processes. This
kind of decomposition, which is called "macro-level"
decomposition, requires autonomous computers, having
their own local memory blocks and local I/0's, in a
tightly coupled environment. In the second approach,
applications can alsc be decomposed down to their
instruction level. In this type of application,
blocks of instructions (such as loops, if-else's, et
cetera) are divided into sub-blocks that can be
executed by different computers. This "micro-level"
type of decomposition requires a multiple processor
system with a large common memory and a quick access
of all processors to all common memory blocks.

The Flex/32 Multicomputer shown in Figure 1
provides a large common memory, while its processors
are capable of operating independently by means of
their local memory blocks and local I/0's.

The Flex/32 system provides a multicomputing
environment by offering the following capabilities:

. UNIX System V as the development operating

system,

. Concurrent languages such as Concurrent C,
Concurrent Fortran, and Ada,

. A generic run-time support to provide
multicomputing and real-time capabilities,

. Multicomputing Multitasking Operating
System (MMOS) as a real-time 0S,

. Concurrent UNIX Environment,

. Multicomputing development or execution
support tools,

Simulation in a multicomputing Environment

Distributed simulation is the process by which
large, complex simulation models are decomposed onto
a set of processors. There are two major strategies
by which this decomposition can be accomplished:

. Event decomposition in which each of the
several events making up a model is
assigned to a specific processor. This
technique requires close time control and
synchronization among the parallel pro-
cessors. See Misra (1986)

. Task decomposition in which the various
simulation functions such as I/0, event
processing, random number and random
variate generation, statistiecs collection,
and report generation are allocated to
different processors. See Wyatt and
Sheppard (1984). This technique has the
disadvantage that it requires a large
degree of message passing, and thus invites
the phenomenon known as "deadlock."

The procedure advocated here is simple in concept

and overcomes the disadvantages brought on with
either of the decomposition schemes mentioned above.
Entire simulation runs are assigned to the individual
processors, with only the experimental frames being
different owing to the change in the input variables
X and the random number streams S. The following
sections describe now simulation is conducted for
three main areas of statistical analysis and optimi-
zation:

+ Factor screening
* Experimental designs
* Optimization methods

FACTOR SCREENING EXPERIMENTS

Of the n controllable factors in a computer
simulation model, k £ n of these are also controlla-
ble in the real-world system. In addition to these,
there is also a set of n-k controllable factors in
the model that represent uncontrollable parameters in
the real environment, but the simulationist is also
interested in determining the response of the system
to changes in these uncontrollable factors. For
instance, in a model of a naval engagement, ship
speed and rate of antimissile fire might be factors
that are controllable by the commander in the real
system, whereas weather effects and rate of enemy
missile fire are factors beyond the commander's
direct control. But the simulationist would attempt
to measure the effects of each of these factors on
the system response, which might be "probability of
victory." In the simulation model, all of these
factors would be controllable.

In general, not all of the n factors are equally
important with respect to their effect on the
response n. In factor screeming, we attempt to
isolate those factors which are highly important from
those which are negligible. If g < n factors exert
important effects on 1, we seek to have an experi-
mental design indicate which factors these are.
Jacoby and Harrison (1962) discuss these concepts.
Smith and Mauro (1982) have produced an up-to-date
treatment of this subject.

In factor screening, it is generally assumed
that the relative importance of a set of n factors
can be established by examining the coefficients Bi
in the linear model
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n
y=8_+ Z B, x. t+¢ (5) The principal expeimental designs employed with
° i=1 * experiments of comparison are as follows:

To perform an experiment with the simulation model,
we perform simulation trials at each of a set of
settings of X which involve one or more levels of
each of the n controllable variables x.,, i = 1,...,n.
The method of least-squares is then emﬁloyed to
estimate the main effects and interactions. From
this analysis, the g most important factors are
identified.

Some of the experimental designs employed in
factor screening include the following:

. 2% factorial experiments, involving a
simulation trial at each of the N = 2
design points.

n

. 2™P fractional factorial designs, where n
is large and 2" simulations represent a
very costly investment.

. Supersaturated plans, in which each of the
n factors appears at high and low levels
N/2 times, N < n.

. Groups screening designs, in which h groups
of the n factors are identified, each such
group is considerﬁg a single factor, and a
2" factorial or 2 fractional factorial
design is employed to evaluate these group
effects.

An important comsideration in factor screening
is that of variance reduction. Because simulation
produces a times series of realizations §,,
£ =1,...,r for the response n, where the time series
is induced by a series of pseudorandom numbers, it is
possible to reduce the variance of the time series by
judicious selection of these pseudorandom numbers.
Two well-known variance reduction techniques are as
follows:

. Common pseudorandom numbers, where the same
set of initial random number seeds S are
employed for each simulation trial in the
designed experiment.

. Antithetic pseudorandom numbers, where the
series of random numbers for one stream R'
is the complement of another stream R; that
is r' = 1 - r for each successive pseudo-
random number.

Schruben and Margolin (1978) describe a very useful
technique for pseudorandom number assignment in
simulation experiments to achieve variance reduction.

EXPERIMENTS OF COMPARISONS

Some of the n controllable factors are such that
they assume quantitative levels in the experiments
design. For example, ship speed and rate of anti-
missile fire are quantitative variables which can be
set at selected levels over a continuum of values
a, < X, < bi. Other controllable factors are defini-
tely qualitative in nature. For example, the sea
state could be calm, high seas, or stormy. In many
simulation situations, the simulationist seeks to
compare the response n at one level of a controllable
factor to that at a different level. Such evalua-
tions are called "experiments of comparison." The
controllable variables in such experiments are called
factors, and the different levels of each factor are
called treatments.
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. 2" factorial designs, as discussed by Biles
and Swain (1980) or Montgomery (1976).

. 2P fractional factorial designs, as
discussed by Box and Hunter (1961).

These designs are illustrated in Figure 2.
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Biles and Swain (1980) discuss analysis of
variance procedures by which the simulation results
obtained from factorial designs are evaluated. These
techniques enable the simulationist to test the null
hypotheses that the individual factors exert no
influence on the behavior of the system response 1,
ox that two-factor interactions exert no effects. As
with the factor screening experiment, it is necessary
to adopt either common pseudorandom numbers or anti-
thetic pseudorandom numbers to minimize the variance
of the estimates.

RESPONSE SURFACE METHODOLOGY

Factor screening and experiments of comparison
are not the only objectives the simulationist might
have with respect to simulation experimentation.
Often it is necessary to utilize the simulation model
to attempt to find the optimum conditions for operat-
ing the system. These optimum conditions are here
denoted as X* and n¥.

The body of techniques by which one experimen-
tally seeks an optimum set of system conditions is
called response surface methodology. The following
sections describe first and second order respomse
surface methods as they relate to simulation experi-
mentation.

First-Order Response Surface Methods

First-order response surface methods attempt to
accomplish experimentally what the "method of steep-
est ascent" accgmplishes computationally. From a
current point X, a designed experiment is conducted
(with a simulation trial at each des%gn point) to
estimate the gradient direction Vg(X ). Simulation
trials are then conduﬁgfd at points along this direc-
tion to a new point X which represents Ehe best
solution obtained along the direction Vg(X ). This
process is an experimental approximation of the
relation

G I hk[Vg(Xk)] (6)

The step length hk can be estimated by a line search
or by a regression procedure as described by Biles
and Swain (1979).
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The gradient direction Vg(Xk) is estimated by
placing an appropriﬁte first-order experimental
design, such as a 2= factorial, 2 fractional
factorial, or nydimensional simplex design around the
current point X . A simulation trial is performed at
each point in the selected experimental design. From
these N observations the multiple linear regression
model

)

can Ee estimated. Since the gradient direction
Vg(X™) is mathematically defined as the n—vectorkof
first partial deriﬁatives of g(X) evaluated at X, it
is clear that Vg(X') is simply the n~vector of
regression coefficients, exclusive of the bo term;
that is,

Vg(X) = (b,...,b)" ®)

n

In the multiple-response simulation problem, a
simulation trial is conducted at each design point in
the selected first-order design and the m observa-
tions y., j = 1,...,m are recorded at each design
point. “Multiple linear regression is applied sepa-
rately to each set of observations (assuming inde-
pendence among the m responses), producing the m
models

n
yJ = bj,O + ifl bj,ixi’ i=1,...,m 9)
and hence the m gradient vectors

k - ] q =
ng(X ) = (bj,l""’bj,n) , J=1,...,m 10)

These estimates can then be employed in
several opﬁiTization schemes to produce
solution X A generalized procedure
plishing this improved solution, and an estimated
Yoptimum,”" will be described later. But first it is
necessary to give attention to the experimental
desigﬁs employed to estimate the gradient vectors
ng(X b, i=1,..,m

any one of
an improved
for accom-

In selecting a first-order response surface
design, it is usually desirable to minimize the
variances of the regression coefficients b,,
i=1,...,n. To accomplish this the first-orxder
experimental design should be orthogonal. An
orthogonal first-order experimental design is con-
structed as follows: The placement of the N experi-
mental points (in our case, simulation trials) is
described by the N by n design matrix D, where

1 %1 777 *m
¥12 %22 777 Fpp
D= . (11)
*w w777 *my
An N G} ntl matrix X is then formed by placing a unit

vector to the left of D. Thus

405

[1 ... -
Toxyy %y ¥
Loxgy Xy ttoxp,
b= |- (12)
1 x X cee x
A U aN

It is usually convenient to code the levels, design
so that the following conditions are achieved:

N
A
u=1
i=1, N (13)
N
z x, = 0
u=1 ke

If the actual value of the u~th level of the i-th

variable is L. then the corresponding coded value
is

_ diu i
¥in T T8, (14)
i

where
~ N
z; ={Z =z /N (15)

u=1
and

N -2
Si = uzl (z u-Zi) /N (16)
Then

N o 0 (R 1]

X'X=1]0 N 0 .- 0 (17)

0O 0 o s N

Since the (n+l1) - vector of regression coefficients b
is estimated by the least squares relation
- ..1 -

b= (X'X) " X'y (18)

where y is the N-vector of response estimates
obtained from N simulation trials. The variance of

the regression coefficients b, , i = 1,...,n is given
by *
2 .
Var(bi) =0¢" /N, i=1,...,n (19)
2 .
where 0" is the variance of the error term £. Since

we are interested in m separate system response y_,

j =1,...,m equations (18) and (19) can be general-

ized to

o= @0 X §, =1, (20)
2, . .

Var(bji) = Gj/N’ i=1,...,0; j=1,...,m (21)
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Again, with the codiyg scheme in (14), equation (20)
simplifies to b, = n "X'y.. For an orthogonal first-
order design, the resultsdin (17)-(21) holdﬂ giving a
so-called "minimum-variance" design. The 2

factorial and 2 fractional factioral designs are
orthogonal and hence minimum variance. Orthogonal
n-simplex designs can be easily constructed Since
n-simplex designs provide the minimum number of
design points needed to estimate the multiple-linear
regression models in (7) or (9), and are hence the
most "economical" of the first-order response surface
designs, they are especially attractive for the
purpose proposed here. Figure 3 illustrates
n-simplex designs.

X3

X2

AR5 VA

Two Dimentional Three Dimentional
Simplex Simplex

FIGURE 3. n~SIMPLEX DESIGNS

Biles and Swain (1979) have described a first-
order response surface procedure for approaching the
constrained formulation of the multiple-response
simulation problem. This procedure involves perform-
ing a first-order design around a cuxrent point X to
estimate the gradient direction Vg(X) according to
relagion (8). A line search is then performed along
Vg(X") to estimate an optimal step A in (6). As long
as the search remains interior to the region bounded
by the constraints, the procedure is basically a
gradient search. If one or more constraints are
encountered, however, Biles and Swain (1979) propose
that the gradient projection direction be followed.
The procedure for estimating the gradient projection
direction is as follows.

Suppose that at an estimated boundary point Xk,
g constraints are satisfied as equalities. Let B_be
the n x q matrix of first partial derivatives of
these active constrainks. Thus, B consists of the g
gradient vectors Vg. (X)), j =1,..%,9. This is

~8g1/8x1 R 8gq/3x1
B = ) : (22)
aq . .
9g,/3x dg /0%,
Since g.(X), j = 1,...,q denotes the set of binding

constraint functions, for the moment let £(X) reprei
sent the objective function. The V£(X ) and Vg.(X) ,
j = 1,...,q represent the gradient vectors of the
objective and constraint functionﬁ, respectively,

evaluated at the boundary point X .

Performing a first-~order response surface

experiment about the boundary poinﬁ X" yields Esti-
mates of the gradient vectors Vf(X ) and Vg, (X)),

Jj =1,...,q in the form of the vectors of regression
coefficients. The gradient projection direction is
then given by

K _ kyy , -1, Kk
s = [VE(X)] Bq(B qu) B'q [VE(X™)] (23)

A line search is performed along direction Sk until
either (a) a local "optimum" is found, or (b) other
constrainﬁilare encountered. This new point is
denoted X . This procedure iﬁ repeated until the
gradient projection direction S is approximately
zero. This point X* is taken as a 'constrained
optimal" solution. Figure 4 illustrates the applica-
tion of the gradient projection procedure to a con-
trained optimization problem.

» Froctoriol Design Polnts

o Polynomial Regression
Points

Response

*2

Constraining
Response

Xt

FIGURE 4, FIRST-ORDER RESPONSE
SURFACE OPTIMIZATION

The following generalized procedure is followed
in employing a first-order response surface approach
to the multiple-response simulation problem. The
particular problem formulation and optimization
procedure will govern the precise sequence of steps
in implementing this procedure.

1. Identify the known experimental region a, <
X, Lc., i=1,...,n. Select a starBing1
point X’ within this region. With X~ as
its center, array an orthogomnal first-order
response surface design within a selected
design radius. Place = n/2 > 2 points
at the design center X (coded as the
0 -vector).

2. Perform simulation trials at each of the N
experimentai design points and recoxrd the
responses y., j = 1,...,m; £ =1,...,N.

Using multiﬂle linear regression, fit
linear models of the form (9).

3. Apply the appropriate mathematical pro-
gramming technique to locate the next
center point in the search.

4. Repeat steps 1-3 until an "optimum" solu-
tion is located. It may be appropriate to
add design points to complete a second-
order response surface design to test this
optimum solution. The procedure for
accomplishing this is described in the next
section.

Second Order Response Surface Methods

A second-order response surface approach to the
multiple-response simulation problem consists of one
or more repetitions of a two-stage procedure:

(a) the execution of a computer simulation trial at
each point in a second-order response surface experi-
mental design covering the known experimental region,
and the use of multiple linear regression to fit
second-oxder regression models to the resulting data;
and (b) the application of a suitable mathematical
programming procedure to obtain a solution to the
resulting optimization problem. In contrast to the

406 first-order methods, in which the optimization proce-
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dure was part and parcel with the experimental proce-
dure, these procedures are distinct and sequential in
the proposed second-order approaches.

The first step in the second-order approach is
to identify the range of each input variable. A safe
strategy is to cover the entire known region a, < c.
i=1,...,n with the first (and possibly only)lexperl-
mental design. If we let . denote the radius of the
n-dimensional hypersphere within which the design
points are contained, then

@, = (24)

: (ci - ai)/Z, i=1,...,n
is effectively the maximum radius we could construct.
It is convenient to adopt the coding convention
expressed in (14)-(16), but choosing x. in such a
way that o, satisfied (24). Biles and Byain (1980)

describe this coding process.

The second-order fitted response surface has the

form
n . n 2
¥ = b + Z b. %t z biixi +
=1 i=1

n n

z oz bk FTRILY (25)

i=1 =1 o

i#j
k=1, ,m

where ¥ is the estimate of the true response 1} at a
given value X = (x,,...,x_) and the b, and bi' are

regression coefficients in the fitted model. Jsince
we must estimate m separate response relationships,
equation (25) is modified to

A 2
¥y, =b + X b x. + X b .. x o+
k k,o i=1 k, i=1 k,ii 7i
n 1
IZ by o KX, (26)
i=1 j=1 b
i#j
k=1, ,m

Given the independence of the m responses, these m
regression equations can be estimated independently
from a set of N > (n+1) (n+2)/2 data points obtained
by performing a simulation trial at each point in a

second~order response surface design.

An experimental design employed for the purpose
of estimating the regression coefficients in (26)
must contain at least as many design points as there
are coefficients b, and b,. in the fitted model, of
which there are (n*l) (n+ﬁ§/2. Because of the
non-linearity of (26), the experimental design must
also have at least three levels of each controllable
variable x , i = 1,...,n. It is also desirable to

i

have a design which is rotatable; that is, the pre-
dicted response y at some point X is a function only
of the distance from the design center to X and not a
function of the direction.
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The most widely used design for fitting a
second-order model is the central composite design,

shown in Figure 5 for n=2 and n=3. These designs
consist of a 2 axial points and k center points. A
central composite design can be made rotatable by
propexr choice of &, the distance of the axial points
from the design center. With the proper choice of
the number of center points k, the central composite
design can be made either orthogonal or uniform
precision.

Having estimated the m second-order regression
equations (26) and formulated the appropriate optimi-
zation problem, it remains to apply mathematical
programming to obtain a solution. For the con-
strained formulation, any of the following procedures
could be employed: (a) Box's complex search;

(b) Rosen's gradient projection method; or (c) one of
Zoutendijk's methods of feasible directions. These
are described in Biles and Swain (1980).

x2 X3

//

X2

Cd

FIGURE 5. CENTRAL COMPOSITE DESIGNS
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