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ABSTRACT

This paper considers the application of importance sampling
to simulations of highly available systems. By regenerative
process theory, steady state performance measures of a
Markov chain take the form of a ratio. Analysis of a simple
three state Birth and Death process shows that the optimal
(zero variance) importance sampling distributions for the nu-
merator and denominator of this ratio are quite different and
are both dynamic in that they do not correspond directly to
time homogeneous Markov chains. Analysis of this three state
example suggests heuristics for choosing effective importance
sampling distributions for more complex models of highly
available systems. These heuristics are applied to a large
model of computer system availability. The example shows
that additional variance reduction over that previously re-
ported can be obtained by simulating the numerator and de-
nominator independently with different dynamic importance
sampling distributions.

1. INTRODUCTION

The requirement for highly available systems, such as fault
tolerant computing systems, is increasing the importance of
reliability and availability prediction during the design phase
of these systems. While such systems can typically be mod-
eled as Markov chains (see, e.g., [3]), the size of the corre-
sponding Markov model increases rapidly with complexity of

the system. Thus numerical solution techniques are only fea-

sible for relatively small models, i.e., simple systems. Simu-
lation analysis is an alternative approach, however, because
system failures are rare, extremely long simulations may be

required in order to obtain accurate estimates of availability,

This paper discusses the use of importance sampling (see, e.g.,
[4]) as a varjance reduction technique for simulating highly
available systems. Importance sampling for rare event simu-
lation has been successfully used in [1], {7], [9] and [10].
Proper selection of the importance sampling distribution
makes the rare events more likely to occur and Walrand [10]
gives an additional intuitive explanation as to why importance
sampling can be an effective variance reduction technique for
rare event simulations. The key, of course, is to choose a good
importance sampling distribution. The theory of large devi-
ations was used in [9] and [10] to select an effective distrib-
ution for problems of essentially estimating buffer overflow
probabilities in queueing networks. Effective heuristics were
used in [1] and [7] to select importance sampling distributions
for availability estimation in large machine repairmen-like

models. For example, four orders of magnitude reduction in

! This work was performed while this author was visiting IBM Research.
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variance was reported in [1] for a system with 70 components

(the Markov chain for this model has 27° states).

In this paper we extend the method of [1] to obtain additional
variance reduction. Since the underlying Markov chain mod-
els are regenerative, the regenerative method (see, e.g., [2])
can be used to estimate steady state performance measures.
Furthermore, highly available systems act essentially like ma-
chine repairmen models with very low repairmen utilization.
Since the system is typically operational, an operational state
is an appropriate choice of regeneration state and the regen-
erative method is often well suited for this type of simulation
(particularly if all components have exponential failure time
distributions). For regenerative systems, steady state per-
formance measures can be expressed as a ratio. In[1], 2 single
importance sampling distribution was used to estimate both
the numerator and denominator of this ratio, The distribution
used in [1] is dynamic in the sense that it does not correspond
directly to a time homogeneous Markov chain. In this paper,
we -use different dynamic importance sampling distributions
to estimate the nmumerator and denominator independently.
For a simple three state birth and death process, optimal dy-
namic importance sampling distributions are derived that lead
to zero varjance estimates. For estimating system unavail-
ability, the optimal distributions for the numerator and de-
nominator are quite different. Furthermore, the analysis of
this three state model leads to a natural and simple heuristic
for selecting dynamic importance sampling distributions for

more complex models of highly available systems.

In Section 2, we review the regenerative method of simulation
for Markov chains and describe the proposed variance re-
duction technique in general terms. In Section 3, the three

state birth and death process is considered and its optimal

dynamic importance sampling probability distributions are
derived. The heuristic for choosing dynamic importance
sampling probability distributions for larger, more compli-
cated models of highly available systems is described in Sec-
tion 4 along with experiments reporting on variance
reductions obtained when this heuristic is applied to a larger
model of computer system availability. In some cases, an ad-
ditional 3 orders of magnitude reduction in variance are ob-
tained over the method of [1]. Section 5 contains concluding

remarks.

2. DYNAMIC IMPORTANCE SAMPLING

In this section, we review the regenerative method of simu-
lation for Markov chains and describe the proposed variance
reduction technique in general terms. We assume that the
process of interest {¥;, s > 0} is a continuous time Markov
chain with finite state space E = {0, 1, ..., N} and transition
rate matrix Q= (q@y)) (see, eg., [6]. Let
g(@)=—qg((ij)= —jziq (ij) denote the rate out of state i.
We assume that the process converges to a steady state dis-
tribution, i.e., ¥, =Y where => denotes convergence in dis-
tribution. The goal of the simulation is to estimate
r = E[f (¥)] for some functic;n f. Let {X,, n 2 0} denote the
embedded, discrete time Markov chain: {X,, n > 0} has tran-
sition matrix P where p (iy) = ¢ (i)/q (i) for isj and
P (i) = 0. Pick a regeneration state, say 0, let X; = 0 and let
74 be the first # > 0 such that X, = 0. Then the steady state
performance measure r of the continuous time Markov chain

can be expressed as

Ty ~1

E[ > g (X1
re—2=0 (2.1)

T —1

E[ D & (X)]

n=0
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where g (i) = f (i)/q (i) and h (i) = 1/4 (i). Simulation of the
discrete time Markov chain is gunaranteed to yield a smaller
variance than simulation of the continuous time Markov chain
(see [5D).
r = Bp[G(s)1/Ep[H (s)] where Ep[G(s)] and Ep[H(s)] denote

Letting s denote a sample path, then

the numerator and denominator, respectively, of Equation 2.1

and Ep denotes expectation using the transition matrix P.

If m iid regenerative cycles of the discrete time chain are sim-

ulated and if Gy(s) and H,(s) are the realizations of G(s) and

H(s) on cycle k, then r can be estimated by
P .(P) = élck(s)/élﬂk(s). In particular, lim 7,(P) = r
with probability one and

Vi (7,(P) = r) SN0, oX(P)/BplH(s)?) where N(0, ¢°) de-
notes a normally distributed random variable with mean zero
and variance o> and az(P) = Varp[Gy(s) — rHy(s)]. Thus the

asymptotic variance of ?m(P) is aZ(P) /(EplH (s)]zm).

Our goal is to use importance sampling to derive an estimator
with a smaller asymptotic variance than r’}m(P). First, let P(s)
denote the probability of a sample path s = (X, X3, ... , X))
the P:

transition matrix

1—1’X71)‘

denote the probability of s under another probability distrib-

using

P(s) = p(Xg, X)p(X1, %) -.. p(X, Now let P'(s)
ution.

(under some additional technical conditions)

P(s) P

EplG(s)] = ZG(s)P(s) = 26(s> 7R 2

= Ep'[L'(S)G(S)]

where Ep denotes the expectation using the probability dis-
tribution P’ and L'(s) = P(s)/P'(s) is the likelihood ratio of

the sample path s.

Letting L' (s) denote the likelihood ratio during cycle k, then

?m(P') = élL’k(S)Gk(s) / élL'k(s)Hk(s) converges to r with

Assuming P'(s) # 0 whenever G(s)P(s) # 0, then '
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probability one and is asymptotically normally distributed

with mean r and variance az(P') /(BplH (s)]zm) where

(") = Varp[L' 1 (s)Gy(s)]
d erOVP’[L,k(S) Gk(S), L,k(S)Hk(S)] (2.3)

+ r?Varp{ L' () Hy(s)].

We are free to chose P’ in an essentially arbitrary manner; in
particular P’ need not correspond to a time homogeneous

Markov chain. A general form for P’ is

Pl igy oev s i) = Py Lig)P () dgy 1) oo P (il dgy o s Byy)
©.4)

where

P(,ligy oo s b)) =P = 01 X =By oo, Xy = Ip_y)-

Thus the importance sampling one-step transition distrib~
utions may be dynamic in the sense that they can depend on
the past history of states and not just the current state as
would be the case in a time homogeneous Markov chain. We
call this dynamic importance sampling; this was used in {1] to
achieve dramatic variance reductions in simulations of highly
available systems. In Section 3 it will be shown that a zero
variance estimator for Ep[G(s)] of the form L'(s)G(s) cannot
be obtained using a static (time homogeneous) importance
sampling distribution for a three state birth and death process

but that dynamic importance sampling can be used to obtain

a zero variance estimator of the numerator Ep[G(s)].

Similarly, a zero variance estimator of the denominator
Ep[H(s)] may be constructed using a different dynamic im-
portance sampling distribution. Thus for this simple example,
a zero variance estimate of the ratio may be obtained by sim-~
ulating the numerator and denominator independently using
different dynamic importance sampling distributions. This

suggests that different dynamic importance sampling distrib-
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utions should also be used for the numerator and denominator

in more complex models. This allows customization of the

dynamic importance sampling distributions to account for the

particular forms of the two different reward functions g and

k. Furthermore, it is clear from Equation 2.3, that choosing P’
to, say, minimize the variance of the numerator may adversely

affect the other two terms in the asymptotic variance. If, for

example, cycles 1, ..., m/2 are simulated using P’ and cycles
m/2 + 1, ..., m are independently simulated using P”, then
Ao M2 n "

PPy = 2L ()G (s)/ 2 LU (s)H(s) converges

k=1 k=m/2+1

to r with probability one and is asymptotically normally dis-

tributed with mean r and variance
o*(P', P"")/ (mEp[H(s)]*/2) where
o*(P', P") = Varp[L',(5)G,(s)]
.5)

+ rZVarP"[’L' 'k(s)Hk(s)].

Because there is no covariance term in Equation 2.5, the use
of different distributions allows one to reduce the variance of
the numerator without adversely affecting the variance of the

denominator and vice versa.

3. ATHREE STATE EXAMPLE

In this section, the optimal dynamic importance sampling
probability distributions for evaluating Ep[G(s)] and
Ep[H(s)] are computed for a three state birth death process.
States 0, 1 and 2 have mean holding times T, T; and 75, re-
spectively, p(1,0) = p and p(1,2) = (1 — p). The steady state
measure r of interest is the stationary probability of being in
state 2. For availability modeling, we interpret states 0 and 1
to be operational states and state 2 to be the failed state. Thus
r is the steady state unavailability. This could be obtained by
a regenerative simulation with functions g(0), g(1) and g(2)
and functions

equal to O, O and T,, respectively,
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h(0), h(1) and h(2) equal to Ty, T; and T, respectively. As-

sume state O is the regenerative state.

The optimal P'(s) and P”(s) are computed from explicit enu-
meration of all sample paths. Let s; denote the sample path
containing exactly 7 + 1 visits to state 1 between visits to state
P(s) = p(1-p),

H(s) = Ty + (i+ 1)T; + iT, for i > 0. The optimal (ie.,

0. Now, G(s;)) = IT, and

zero variance) P'(s) for estimating Ep[G(s)] can be computed

as follows [4],

P"(s,-) = Ms_,)__ = P’z(l _p)f—li
S P()G(s)

3.1)

for i > 0. Similarly, the optimal P (s) for estimating Ep[H(s)]

is given by
o o Ty + TG+ D + Ti)p*(1 - p)f
P =~ L LAt
Ly + Ty + (1 -p)T,
From Bquation 3.1, P (sp) =0, P°(s;) = p%

P'*(sz) = 2p2(1 — p) and so on. That is, in the notation of

Equation 2.4 P"(010,1) = 0, P"(0/0,1,2,1) = p?,
P'*(O 10,1,2,1,2,1) = 2p2/ (1 + p) etc. Therefore, each suc-
cessive time the simulation enters state 1, the probability of
returning to state O changes (under both P'*(s) and P”"(s)).
Thus the optimal change of measures for both the numerator

and the denominator of Equation 2.1 are dynamic,

The following observations may be made from these optimal
importance sampling distributions. In highly available sys-
tems, we are specifically interested in the case where p is close
to 1, ie., the probability of entering state 2 in a regenerative
cycle is very small. While simulating the numerator using
P"(s), the probability of returning to state O from state 1 is

zero if state 2 has not been visited, otherwise, for p close to
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1, it is order p for small values of i and goes back to zero for
large values of i. On the other hand, while simulating the de-
nominator using P"*(s), the probability of returning to state
0 from state 1 is order p. Thus, the optimal importance sam-
pling distributions are very different for the numerator and the

denominator in rare event simulations.

4. HEURISTICS FOR LARGE MODELS

Based on the observations made on the three state example,
heuristics may be developed for larger models. One natural
way to do rare event simulations would be that while simulat-
ing the numerator, we should force the simulation to enter the
desired rare state as quickly as possible, and once this state is
entered, we should make P'(s) = P(s) for the remainder of
the regenerative cycle. Therefore, typically a small number
of transitions take place in the remainder of the regenerative
cycle. The heuristic assumes this condition would occur and
does not change P'(s) any further. (Instead of a single rare
state, there could be a set of rare states with non-zero g(X,)
reward functions.) On the other hand, we should not change
the sampling distribution to simulate the denominator (i.e., the

length of the regenerative cycle), that is, P”(s) = P(s).

The dynamic importance sampling distribution employed in
[17] was the same as above heuristic employed to simulate the
numerator. However, both the numerator and the denomina-
tor were estimated from the same simulation runs. The
P'(s) (= P'(s)) was selected such that from any state the
probability of getting closer to a rare state was p’ and getting
closer to the regenerative state was 1 — p’. Once a rare state
was visited in a regenerative cycle, P(s) was used for the re-
maining part of the regenerative cycle. Experiments done in

[17 suggested that p' should be selected as 0.5. Typically, the
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confidence intervals became wider as p’ deviated from 0.5.
The heuristic employed in [ 1] will be referred to as DIS (dy-
namic importance sampling) while heuristic proposed here will
be referred to as MSDIS (measure specific dynamic impor-

tance sampling).

From our analysis it becomes clear why this phenomenon oc-
curs. As p’ increases, we move closer to P"(s), but further
away from P""(s), and when p’ decreases, the reverse effect
occurs. Therefore, for small p’ the variance of the numerator
dominates, while for large p’ the variance of the denominator
dominates. This phenomenon was clearly visible when we du- |

plicated the experiments done in [ 1].

As a simple experiment, we ran the three state example of
[1] which has Ty = 1/2A, Ty = 1/(p + A), T, = 1/u and
p=p/(e+A). In this example, A is the component failure
rate and p is the repair rate. We used p’ = 0.999 for the nu-
merator for a total of about 52,500 events and used no change
of measure for the denominator for a total of 52,500 events.
We completed the regenerative cycle in progress when the
desired number of events was exhausted as suggested in [ 8].
The results obtained from this experiment are compared in
Table 1 to those in [ 1] where the results were obtained from
a single simulation run of 105,000 events with p/ = 0.5. As
A decreases (p increases), we observe a greater improvement
factor in the confidence interval widths (the improvement
factor is the ratio of the confidence interval widths). The last
row in the table shows two orders of magnitude reduction in
the confidence interval widths, which means four orders of
magnitude reduction in variance over and above the method
in [ 1], which itself is a few orders of magnitude improvement

over the direct simulation (i.e., no importance sampling).
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Table 1

Half-Widths of 99% Confidence Intervals for
Three State Example With p = 1.

A DIS MSDIS Improvement
Factor

107! 044x 1072 0.13x 1073 3.5

1072 0.54x 1075 0.64x 1076 8.4

1072 055x 1077 0.17x 107 324

107* 055x 1077 0.69x 1071 797

107°  055x 1071 0.56x 107 982

The same heuristic is employed to simulate a larger fault-
tolerant system with ten types of components where each type
has two components. This yields a Markov chain with 31°
states. The exponential failure and repair rates of each com-
ponent are assumed to be 0.00001 and 1, respectively. There
is a single repairman in the system. The failed components are
selected for repair according to a Random Order Service
Preemptive Resume discipline. The system is considered una-
vailable if both components in any given type are failed. The
measure of interest is the steady state unavailability of the
system. Table 2 shows the results obtained using the various
importance sampling techniques (the exact value was obtained
from the product form queueing network results). In 200,000
events, direct simulation produces a 99% confidence interval
that includes negative values and has a relative width of
368%. DIS gives 182 times reduction in the confidence in-
terval widths, and MSDIS gives another 50 times reduction in
the confidence interval widths over DIS (for MSDIS we used
approximately 180,000 events for the numerator and 20,000

events for the denominator; the contributions of the numera-

tor and denominator to the asymptotic variance are then ap- '
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proximately equal). Thus almost 8.3 x 10’ times reduction in

variance over direct simulation is obtained.

Table 2

Unavailability Estimates for the
Fault-Tolerant System Example.

Unavailability  Half-Widths of 99%
Confidence Intervals

Exact 0.20005x 1078

Direct 0.40030x 10~%  0.73x 1072

DIS 0.20100x 10~ 0.40x 10~1°

MSDIS 0.19997x 1073 0.82x 10~ 12
5. SUMMARY

This paper considered the application of importance sampling
to simulations of highly available systems. Analysis of a sim-
ple three state Birth and Death process showed that the opti-
mal (zero variance) importance sampling distributions for the
numerator and denominator of the ratio in regenerative simu-
lations are quite different and are both dynamic in that they
do not correspond directly to time homogeneous Markov
chains. Analysis of this three state example suggested
heuristics for choosing effective importance sampling distrib-
utions for larger models of highly available systems. These
heuristics were applied to a large model of computer system
availability. The example showed that additional variance re-
duction over that previously reported can be obtained by
simulating the numerator and denominator independently

with different dynamic importance sampling distributions,

We have observed similar improvements for many models of
computer system availability. Whenever DIS works well,

MSDIS works even better. Furthermore, since for unavail-
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ability estimation r~0, by Equation 2.5 the variance of the
numerator is the dominant term in the asymptotic variance of
the ratio. Therefore, our current research is concentrating on
selecting good importance sampling distributions for the nu-

merator.
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