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ABSTRACT

This paper describes a new procedure for using control
variates in multiresponse simulation when the covariance
matrix of the controls is known. Assuming that the
responses and the controls are jointly normal, we develop a
new unbiased control-variates point estimator for the mean
simulation response. We also compute the covariance
matrix of this point estimator in order to construct an
approximate confidence-region estimator for the mean
response. I the covariances between the responses and the

controls are unknown so that the

optimal control
coefficients must be estimated, then some of the potential
efficiency improvement is lost. This loss is quantified in 2
new variance ratio. We summarize the results of an
extensive experimental study in which we apply the
proposed estimation procedure to closed queueing networks

and stochastic activity networks.

1. INTRODUCTION

In recent years a large research efiort has been focused
on the control-variates method as a variance reduction
technique for Monte Carlo simulation. This is primarily
because of its potential for effective use in a wide variety of
discrete event simulation models, usually at a
computational cost that is negligible relative to the cost of
the simulation itself. Lavenberg and Welch (1981) survey
the development of this method for the case of a univariate
response. Subsequently specialized confrols have been
developed for queueing networks (Lavenberg, Moeller and
‘Welch 1982, Wilson and Pritsker 1984), stochastic activity
networks (Grant and Solberg 1983, Venkatraman and
Wilson 1985), and stochastic flow networks (Fishman 1987).
Much of the theoretical development has been concentrated
on generalizing the method to a

with a

control-variates

multivariate simulation

response nontrivial
correlation structure. Assuming joint multivariate normality
between the responses and the controls, Rubinstein and

Marcus (1985) provide a procedure for applying multiple
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controls to point and confidence-region estimators for the
mean of a multivariate response. When the optimal control
coefficients must be estimated, some of the potential
efficiency improvement is lost. Venkatraman and Wilson

(1986) quantify this efficiency loss.

A key assumption in all of the above work is that the
dependency structure of the controls is unknown and
therefore must be estimated as an intermediate result in the
estimation of the optimal control coefficients. However, in a
wide variety of applications, the covariance matrix of the
controls is known a priori; and it is only reasonable to
expect that incorporating this additional information into
control-variates estimation procedures would mitigate the
potential efficiency loss that occurs when the optimal
control coefficients must be estimated. This consideration
motivated the study described below.

This paper is organized as follows. In Section 2 we
establish the necessary nomenclature and summarize some
standard statistical results for the usual situation in which
the dependency structure of the controls is unknown. In
Section 3 we examine the situation in which the controls
have a known covariance matrix, and we exploit this extra
information to develop a new unbiased point estimator for
the mean simulation response. In Section 3 we also present
an approximate confidence region centered at the point
estimator, and we derive an appropriate variance ratio that
quantifies the efficiency loss due to estimation of the
covariance between the responses and the controls.: In
Section 4 we describe two classes of simulation models used
in our experimental study; and in each case, we emphasize
the development of control variates with a known
covariance structure. Results of the experimental study are
presented in Section 5. A summary of the main findings of
this research is given in Section 6.

2. STATISTICAL FRAMEWORK

that we
Y =[Yy, ...y Y, ] of p simulation responses and we seek an

Suppose have a  column  vector
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efficient estimator of the mean uy =FE(Y) that
incorporates a column vector C = [Cy, ..., C,) of g control
variates having the known mean pp=E(C). By

subtracting from Y an appropriate linear transformation of
the known deviation €' — pg, we have the control-variates
Y —a(C —pp). The
response Y (e) is an unbiased estimator of yy for a fixed
(p xg) matrix of control coefficients a. Let Ty and Zg
denote the covariance matrices of ¥ and C respectively,

estimator Y (a) controlled

and let Lyc denote the covariance matrix between ¥ and
C:

Sy = Cov(Y) = Y — pm)(¥ — Y,

Zo = Cov(C) = B|(C — po)(C — po)),

Zyc = Cov(Y, C) = E((Y — uy)(C — pc).

The generalized variance of Y (a) is minimized by the
optimal matrix of control coefficients

B=2ycE5", (1)
and the minimum generalized variance is
det {Cov [Y (f)]} = det (Zy ~ ZyeZe'Ser)
"‘det(Ey)[ 1(1—-»0])] (2)
o

where Loy =T, r =rank(Zyc) and {p;:1<5<r}
are the canonical correlations between Y and C.

Since both Lo and Ly are frequently unknown in
practice, ~ﬁ has to be estimated. Let (¥, C,) denote the
result observed on the jth independent replication of the

simulation for 1 < 7 < n. In terms of the statistics

= n_l i Y]’ SY = (n - 1)_1 i (Y] - f)(YJ —_ ?)’,
j=1 Jm=1
C=n3505 So=(n~1)7 5 (¢, - G)C; — O,
=1 F=1
Syc =(n — 1) 5 (¥, ~F)C; — €, Ser =Sk

j=1
the sample analog of (1) is

ﬁ = Sy¢ S5, (3)

and a controlled point estimator of by I8
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Y =7 —B(C — po).

To construct a confidence region for My, we assume that ¥

and C have the joint multivariate normal distribution

el 12 %)

Under this assumption f(ﬁ) is an unbiased estimator of uy,

Ty

Zey

Zre
Z¢

Y
C

My

[F

N He

r+q

(4)

and an exact 100(1—a)% confidence ellipsoid for py is

given by
[¥(B) ~ prV S;1 ¥ (B) — piy)
—g—1
p(n—g )D-F(l—a;P,n'-P —q),
n—p—q
where SY'C =(n—1)(n—q —1)—1[SY“SYCSEISCY]: D=

n7+ [(n=1)7HC ~ pe) SGH(C —po)l, amd  F(l—o;
my,my) is the 100(1 —c) percentile of the F-distribution
with m, and m, degrees of freedom. Using the estimated _,é
in place of the unknown g results in an efficiency loss which
is quantified by the loss factor

= [ Jp}

det {Cov[¥ (4]}
det {Cov[¥ (AN

so that the net efficiency of the control-variate technique is

given by the variance ratio

]v [ (1 —p ])]

J=1

n—2
n—q—2

det {Cov[i (ﬁ)]}
det {Cov(Y')}

n—2
n—q—2

|

(see Venkatraman and Wilson 1986).

3. A NEW CONTROL-VARIATES ESTIMATOR

In Section 2 we used an unbiased estimator S¢ of Lg
to construct ﬁ as an estimator of the optimal control
coefficient matrix ~ﬁ However in a wide variety of real-world
applications, we can devise control variables with a known
dispersion matrix ¥y as well as a known mean vector Ko
Examples of such applications are given in Section 4. In this
section we exploit this additional information to develop a
new control-variates estimator for Hy -

An alternative estimator of ﬁ is obtained by replacing
Sc in (3) with S

B =5yeZ5t
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The construction of the new control-variates estimator is
immediately apparent:

Y(f) =Y - f(C - uo)-

‘With the assumption of joint multivariate normality in (4),
Bauer (1987) proved that f(@) is unbiased for py:

E[Y () = pr.

Furthermore the covariance matrix of f(ﬁ) is given by

& =5 n —2 qg+1
= =—X v, (6
g CO‘V[Y(@)] n(n — 1) <~r.c + n(n _ 1) <Y ( )
where EY_ c=%r — SyeZg'Toy. Since Xye is still
estimated by Sy, the minimum generalized variance in (2)

is not achieved. The net efficiency of the control-variates
procedure using 17(,@) is given by the variance ratio

det{Cov[f(E)]} - [n +qg—1 ]V
det{Cov(Y')} nol

| |

Let § 'denote an estimate of S, obtained by replacing
Ly and Ly in (5) with the corresponding sample
quantities SY‘ c and Sy. To construct a confidence ellipsoid
for py, we make the following assumptions: (1) f(@) ~
va(yy,g"); 2 (n—g—-1)§ ~ Wy(n—g—1,%), where
W,(my,2) is a (pxp) random matrix having a Wishart
distribution with m; degrees of freedom and expected
matrix g, (3) 17(@ ) is independent of §. An approximate
100(1 — )% confidence ellipsoid for py is then given by

¥ (B)—prl S~ ¥ () —pr]
<29 g _aipin

< —p—4q).
n—p—gq
Bauer (1987) provides more details on the development of

this confidence ellipsoid.

‘4. EXAMPLE APPLICATIONS

In this section we describe two applications, and in
each example we devote special attention to the
construction of control variables with a known covariance

structure.
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4.1 Closed Queueing Networks

In the last few years there has been extensive use of
queueing simulation models to assess performance
characteristics of various kinds of production systems,
telecommunications systems, and computer systems.
Queueing networks are commonly used to model such
systems; and although there is a large class of queueing
networks for which steady state results are available, many
queueing networks with complex real-world features are
analytically intractable. Such systems wusually lend
themselves well to study via simulation. However, such
simulations frequently consume excessive amounts of
computing time to yield steady state results with acceptable
precision. It is imperative therefore that such simulations
are carried out efficiently.

In the first part of our experimental study, we modeled
a simple interactive computer system as a closed queueing
network. Figure 1 depicts the basic form of the simulated
network. A total of M customers circulate indefinitely
among the g service centers. Center 1 can be thought of as
a room with M computer terminals, so that users never
have to wait for service at center 1. Centers 2, 3, ..., g are
single-server queues with FIFO service discipline. Center 2
is the CPU while centers 3, .., g are peripheral devices
available to the CPU as I/O devices or secondary storage.
Service time at cenfer 1 is a user’s ‘think’ time, A user’s
request for CPU service may or may not involve a
peripheral device. This means that requests leaving center 1
always enter center 2, while requests departing center 2
reach center j with probability p(j), j=1,3,4, ..., g-
Requests leaving centers 3, 4, ..., ¢ always return to center
2 for further processing.

SERVICE
CENTER 3

SERVICE

CENTER ! SERVICE

CENTER 2

SERVICE

CENTER ¢

Figure 1. Form of simulated networks with no subnetwork capacity
constraint,

A second class of networks that we studied has a
subnetwork capacity constraint at the CPU based on the
level of multiprogramming allowed in the computer system.
Pigure 2 represents a network of this class. Here station 2
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serves merely as a queue to allow at most M’ customers
into the subnetwork consisting of the CPU and the
peripheral devices, where M’ < M. In this case requests
departing center 3 reach center J with probability r(9),
J=1,4,..9 and requests leaving centers 4, ..., g always
return to center 3 for further processing.

SERVICE
CENTER |

SERVICE
CENTER 4

SERVICE
CENTER 2

SERVICE
CENTER 3

SERVICE
CENTER ¢

CAPACITY ¥ < i

Figure 2. Form of simulated networks with subnetwork capacity
constraint.

For both types of networks we assume:

1. Markovian routing so that the next center visited by a
customer only depends on his current location;

2. Service times at center j are independent and
identically distributed (IID) with mean y; and variance
ok

3. Service time sequences and visitation sequences are

mutually independent.

‘We now develop two sets of control variables both of which

have known mean and covariance matrix.

Standardized Work Variables. Suppose the service
time process at center j is the IID sequence {U;(j): ¢ > 1},
J=1,..,9. Let f; be the number of service times that
are finished at center 7 in the period [0, t]. A standardized
work variable for center j is then defined as

_Vi; % Ui(4) — 4

fw;j 24 95

W,

is the relative

(Wilson and Pritsker 1984). Here w;
frequency with which a customer visits center j and f =

g .

3} f;- In this case, as the simulation run length increases,
j=1
W =Wy, .., W,] to
multivariate normal distribution with mean 0 and identity

converges in  distribution a

covariance matrix:

D
W — N0, L) ast—roo.

337

Standardized Routing Variables. Noting that all of
the routing in the queueing network takes place at the
CPU, we define an indicator variable as follows:

-]

A standardized routing variable for center j is then defined

1 if the 7th departing request goes to center 7,
0 otherwise.

as

N0 E(5)=p()
A INOR-p e

i=1 .,9,

where N(t) (assumed to be greater than zero) is the number
of service requests that depart the CPU in the time interval
[0, ¢]. If we let h =g —1, then conditional on the event
{N(t) >0}, the random vector R == [Ry, .., R;] has
expected value 0 and nonsingular covariance matrix Xp,

where

for j =k,

1/2
—{[ } for j # k.

Furthermore, R converges in distribution to a multivariate

Er)p =
p(p (k)
1—p (NIl —p (k)]

normal distribution with mean 0 and covariance matrix Xp
as the simulation run length ¢ increases:
D
R — N,(0,Zg) ast—oo.
Finally, it can be proved that W and R are asymptotically

independent. Thus the combined vector of standardized
work variables and standardized routing variables yields

W o L o
=gl ™ Ner 0, 0 I as t —»00.

See Bauer (1987) for further details.

4.2 Stochastic Activity Networks

In the simulation of a stochastic activity network
(SAN), the usual objective is to obtain point and confidence
interval estimators of the mean completion time py of the
network. Here we demonstrate the derivation of the known
covariance structure for path control variates to estimate

Hy -
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A given SAN is completely described by the pair
(G, A), where G is the set of all nodes and A = {1,
2, ..., ¢ } is the set of all ares in the network. Corresponding
to activity 7 is the duration A; with mean y; and variance
of. We assume that the random variables {4;} are
mutually independent. Let ! denote the number of paths
from the source node to the sink node. Corresponding to
path j is the arc-set Q(j) = {i: are ¢ is on path _7}
1< j <!l. The duration of path j is the random variable
D;= 3 A; with mean and variance
ieq(s)

2
9

E(‘DJ)= 2 iy

Va.r(D]) = 2
1eQ(4)

i€Q(s)

(6)

respectively. Note also that for 1 < 7,k < !, the covariance
between path durations D; and Dy is

Cov(D;, D) = of.
i €Q(j)ne(x)

)

The univariate response of interest is the project completion
time ¥ = max {Dy, ..., D;}, and the target estimand is the
scalar uy = E[Y].

Ranking the ! complete paths in descending order -of
expected duration, we choose the first ¢ paths in the list as
control paths. The corresponding (g x1) random vector €
of path durations constitutes our set of path control

variates. Note that C' has both a known mean bo and 2
known dispersion matrix Ly with elements computed as
shown in (6) and (7).

5. EXPERIMENTAL RESULTS

We conducted an extensive experimental study to
evaluate the performance of the two control-variate
estimators f(ﬁ) {estimator 1) and f(ﬁ) (estimator 2)
relative to the direct simulation estimator ¥ {estimator 0).
The following two performance measures were used: ()
percentage reduction in the volume of 2 nominal 90%
confidence ellipsoid; and (b) actual coverage probability of a
90%

procedure involved conducting a metaezperiment consisting

nominal confidence ellipsoid. The experimental
of m independent simulation experiments, where each
experiment involved n independent replications of the basic
simulation model. For estimator k, experiment 7, let Vi{k)

be the computed volume and let
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1 if the computed confidence ellipsoid
Pyi(k) = contains the true mean py,

0 otherwise,
for k=0,1,2, and Jj=1,..,m Across  the
metaexperiment we computed the averages

m .
= (1/m)5V;(k) and  B(k) = (1/m) zP (k).
j=1

Then the final performance measures for the two control-
variates estimators are: (a) the percentage volume reduction
100 [ﬁ(O)-—ﬁ(k)]/VA(O), k = 1, 2; and (b) the observed
confidence ellipsoid coverage 1001;(10).

5.1 Results for Queueing Networks

In this case the two steady state characteristics
estimated were mean response time and CPU utilization, so
that p = 2. Response time is the elapsed time between the
departure of a request from center 1 and its subsequent
return to center 1. These characteristics are of interest

because the user measures system performance by the mean

response time; the system administrator, by CPU
utilization. Note that for the first type of queueing
network, it is possible to obtain these two quantities

analytically (Solberg 1980).

We chose two networks of the first type and two of the
second type (with subnetwork capacity constraints) for the
experimental study. Various network parameters are
presented in Tables 1, 2, and 3. The metaexperiment
consisted of m = 50 independent simulation experiments,
At the

beginning of each rum, all M customers began service at

and each experiment involved n = 20 replications.

center 1. For type 1 networks the control variables chosen
were the four standardized work variables collected at each
of the four centers and the three standardized routing
variables. For type 2 networks the controls were the three
standardized work variables at the CPU and the two
busiest disk drives, and four standardized routing variables,
excluding routing to less frequented disk drives. Thus ¢ =7
for both types of networks. The simulated time period was
20,000 time units and statistics were cleared at time 2,000
to minimize the effects of initialization bias.

In computing coverage probabilities for the analytically
tractable models (systems 1 and 2), we used the exact value

of the steady-state mean Py. To compute coverage
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probabilities for systems 3 and 4, we estimated Ky by 17', the
grand mean of the response vector taken across all 1,000
replications of the simulation model. Results of this study
are presented in Tables 4 and 5. Note that in system 2, the

loss of coverage is much worse for the conventional control-

variates estimator f(ﬁ) than for the new estimator ¥ (§).

Table 1: Queueing Network Configurations
Network Number of Subnetwork | Number of
evwor Customers M | Capacity M’ Stations
1 25 25 4
2 15 15 4
3 25 5 7
4 25 10 7

Table 2: Mean Service Times for Queueing Networks
Service Center
Network

1 2 3 4 5 6 7
1 100 1 0.694 | 6.25 — — -
2 100 1 2.78 25 - — —
3 100 | — 1 2.78 | 278 | 25 | 25
4 100 | — 1 2,78 | 2.78 | 25 | 25

Table 3: Branching Probabilities for Queueing Networks
Probability of Branching
Network from CPU to Center j
1 2 3 4 5 6 7
1 02 | 0 { 0.72 | 0.08 - —_ —
2 0.2 (0] 072 | 0.08 — - -
3 0.2 |0 0 0.36 | 0.36 | 0.04 | 0.04
4 0.2 {0 0 0.36 | 0.36 | 0.04 | 0.04

Table 4: Percentage Reductions in Volume
for Nominal 90% Confidence Regions for
the Queueing Network Simulations

Network Volume Reduction
etwor — —
Y (B) Y(B)

1 73 45

2 83 52

3 61 43

4 46 34
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Table 5: Coverage Probabilities for Nominal
80% Confidence Regions for the
Queueing Network Simulations

With Respect to uy | With Respect to Y
Network pP——= = —= =
Y (8) Y(B8) Y8 | Y(B)
1 78 80 86 86
2 28 64 78 80
3 - - 82 90
4 - — 83 84

5.2 Results for Stochastic Activity Networks

This part of the experimental study involved the
simulation of a set of five SANs in which the following
characteristics were systematically varied: (a) the size of
the network (the number of nodes and activities); (b) the
topology of the network; and (c) the relative dominance
(criticality index) of the critical path. Relative dominance
of a path is defined as the probability that the path is
critical in a single realization of the network. For each
network, we manipulated the duration of activities on the
path with longest expected duration to achieve the
following three levels of relative dominance for that path:
{50%—60%, 70%—80%, 90%—100%}. In each network
50% of all activities, randomly selected, had exponentially
distributed durations; the other activity durations were
normally distributed with standard deviation equal to 25%
of the mean. Table 6 shows the range in the number of
nodes and activities for the five chosen networks. The
quantity estimated was the mean completion time Ky so
that p = 1.

Table 6: Stochastic Activity
Network Configurations
Network | Nodes | Activities | Referencef
1 10 14 E, p. 275
2 23 42 A, p. 190
3 30 49 E, p. 318
4 41 56 E, p. 218
5 51 65 M, p. 324

{Note: E == Elmaghraby (1977),
A = Antill and Woodhead (1982), and
M = McKenney and Rosenbloom (1969).

For a given level of relative dominance, we conducted a

metaexperiment composed of m =32 independent
simulation experiments. Each experiment involved n = 32
replications with ¢ =3 controls. In this case the

performance measures were: (a) percentage reduction in
half-length of a nominal 90% confidence interval; and (b)



K.W.Bauer, S.Venkatraman and J.R.Wilson

actual coverage probability of a nominal 90% confidence
interval. In computing coverages, we took the overall mean
response Y across the 1,024 replications as the true value of
Hy -

For the
procedures, Tables 7 and 8 respectively show the percentage
in half-length and the
probabilities as a function of relative dominance of the path

controlled confidence-region estimation

reductions actual coverage

with the largest mean. The percentage reduction in half-
length generally increased with increasing levels of
dominance. This is to be expected: if the path with the
largest mean tends to be the critical path with greater
then the correlation between the overall
completion time and the corresponding path control
variable becomes progressively larger, The estimator f(ﬁ)
yields the largest half-length reductions; however, it fails hi‘;o
achieve nominal coverage in several cases. The estimator
f(ﬁ), which incorporates the known covariance matrix of
controls, yields significant half-length reductions. More
importantly, 17(@) is very robust in that it achieves
nominal coverage. The estimator f(é) based on the
estimated covariance matrix of controls S; seems to be
more sensitive to departures from normality than the
estimator f(g ) based on the known matrix .

frequency,

Table 7: Percentage Reductions in
Half-Length for Nominal 80%
Confidence Intervals for the
Stochastic Activity Networks
Relative = A — ..
Y

Model Dominance Y(E) (g )
50%—60% | 49.6 40.2
1 70%—80% | 60.3 46.6
90%—100% | 82.3 54.3
50%—60% | 37.2 32.4
2 70%—80% | 50.4 38.6
90%—100% | 69.6 50.4
50%—60% | 69.3 53.0
3 70%—80% | 75.1 56.3
90%—100% | 95.4 63.1
50%—60% | 34.7 28.2
4 70%—80% | 65.4 50.8
90%—100% | 90.3 62.2
50%—60% | 43.5 36.0
5 70%—80% | 53.5 43.1
90%—100% | 80.3 58.9
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Table 8: Coverage Probabilities for Nominal
90% Confidence Intervals for the
Stochastic Activity Networks.
Relati N
Model exe ¥ | T(H) | T
Dominance ~ o
50%—60% | 78.1 | 81.2 90.6
1 70%—80% | 87.5 | 81.2 93.8
90%—100% | 84.4 | 31.3° | 84.4
50%—60% | 87.5 | 84.4 81.2
2 70%—80% | 87.5 | 81.2 84.4
90%—100% | 84.4 | 68.8° | 87.5
50%—60% | 87.5 | 68.8° | 84.4
3 70%—80% | 87.5 | 75.0° | 87.5
90%—100% | 87.5 | 65.6° | 90.6
50%—60% | 84.4 | 84.4 90.6
4 70%—80% | 84.4 | 937 | 87.5
90%—100% | 87.5 | 31.3" | 87.5
50%-60% | 78.1 | 812 | 75.0"
5 70%—80% | 90.6 | 687" | 78.1
90%—100% | 87.5 | 18.8" | 84.4

*
Significant coverage degradation at the 5% significance level.

8. CONCLUSIONS

The control-variates estimation procedures described in
this paper provide an unbiased point estimator and an
approximate confidence-region estimator for the mean of a
multivariate normal simulation response. In comparison to
the standard confidence-region estimator based on direct
simulation, the approximation proposed in this paper
appears to yield a substantial volume reduction with no
significant loss of coverage probability. In comparison to the
usual controlled confidence-region estimator, the proposed
procedure appears to yield a confidence region which is
somewhat larger but which has substantially more reliable
The
estimator seems to be more robust against departures from

normality that the usual controlled estimator.

coverage properties. proposed confidence-region

We are currently attempting to develop a more refined
estimator of the covariance matrix Cov[l?(f)]. In
connection with this work, we are also seeking to develop
an improved confidence-region estimator for MKy centered at

I—f-(ﬂ) We hope that this line of investigation will yield
results on the method of control variates that are valuable
from both a theoretical and practical standpoint.
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