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ABSTRACT

Various types of estimators have been proposed for
estimating the variance of the sample mean, a fundamental
quantity in simulation output analysis. When used with
low degrees of freedom, several of these estimators have
little bias. But the low degrees of freedom correspond to
high variance. One approach to creating estimators with
smaller variance while maintaining the negligible bias is to
‘Whether
linear combinations provide improved estimators — and, if

so, the choice of estimators to be included in the linear

use linear combinations of known estimators.

combination — depends upon the correlations among the
Linear combinations of estimators
having high positive correlation would provide little
improvement while combinations of independent estimators
would provide substantial gain. We

various estimators.

investigate the
correlation among four well-known estimators as a function
of the type of stochastic process generating the data, the
sample size, the estimator type, and estimator parameters.

1. INTRODUCTION

Consider

estimating the mean of a covariance-

stationary process X  using the sample
X = n7IS | X;. Let p, denote the lag-h autocorrelation
corr(X;,X; ). The variance of the sample mean is
V(X) =07V (X)L + 2551 = h/n)s)

V(X) is central to confidence-interval, tolerance-interval,

mean

Estimating

and ranking-and-selection procedures.

A variety of ideas have been used to estimate V(X)
from the observations X;,X,, - ,X,:
{Moran 1975), regression-based spectral-analysis estimator
(Heidelberger and Welch 1981), ARMA. time-series estimator
(Fishman 19871, Schriber and Andrews 1984), nonoverlapping

(Schmeiser 1982), overlapping
estimator (Meketon 1980, Meketon and
Schmeiser 1984, Welch 1987}, standardized time-series area
and maximum estimators (Schruben 1983, Goldsman 1984),
and the regenerative estimator (Crane and Iglehart 1975,

direct estimator

batch-means estimator

batch-means
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Crane and Lemoine 1977). Goldsman and Schruben (1984),
Goldsman, Kang and Sargent (1988), Goldsman and
Meketon (1985), Law and Kelton (1882, 1984), and Song
and Schmeiser (1987b) discuss relationships among various
estimators.

Each type of estimator has its own strengths and

weaknesses statistical

in terms of applicability and
properties. Each works well when underlying assumptions
hold, but the statistical properties deteriorate as a function
of the degree to which the assumptions are violated. Other
than the regenerative estimator, each type of estimator has
one or more parameters, These parameters determine the
estimator’s properties, in particular the tradeof made
between bias and variance. Usually the estimators are
approximately asymptotically chi-square random variables
and we speak of the number of degrees of freedom, which is
inversely proportional to the estimator variance. Often the
number of degrees of freedom is a function of a number of

batches.

Choosing the value of the parameter for a particular
estimator and application is difficult. Low degrees of
freedom result in small bias and large variance; in terms of
confidence intervals this implies good coverage probability
and interval widths that are both large and highly variable.
High degrees of freedom can result in large bias and small
variance; in terms of confidence intervals this implies poor
coverage probability and widths that are short and stable.
The problem is to find the number of degrees of freedom

that provides a good tradeoff between bias and variance.

‘When the number of degrees of freedom is determined
by number of batches, the typical approach has involved
repeatedly  testing hypotheses -of normality and
independence on larger and larger batch sizes (smaller and
smaller numbers of batches) in the hope of finding an

appropriate batch size.

Our research program has taken a different approach.
We hope to find estimators that use very large batches ~—
so large that the analyst is usually confident without any
hypothesis testing. Such batches might be one-quarter to



B.Schmeiser and W.T.Song

one-half as long as the entire simulation run. A reasonable
number of degrees of freedom is then obtained by combining
different types of estimators with the same or different
batch sizes. We refer to the estimators used to form the

linear combination as component estimators.

One way to combine different component estimators is
to form linear combinations with weights summing to one.
If each component estimator has low degrees of freedom,
the bias of the linear combination will be low. If the
component estimators are not deterministically related and
if weights close to the optimal (in the sense of smallest
variance) values are used, the variance of the linear
combination will be less than the variance of any individual
estimator. If the correlations among the component
estimators are not too close to one, then the variance of the
linear combination will be considerably less than that of
any one estimator.

The optimal weights are a simple function of the

covariances between the component estimators. Let
]2 = (X}l, 172, T ,T'}p) denote the vector of p component
estimators and let Eﬁ denote the covariance matrix of V.
Then g, the vector of weights that minimizes the variance

of the linear combination V = oV subject to 1 = 1 is
a=(Zz'1) / @ s5)

and the minimal variance is (ltzfll)"l, where 1 is a vector
of ones and assuming Iy has full rank (i.e., no component

estimators are deterministically linearly related).

The idea of linear combinations of component
estimators is not new. For batch size n /k, where n is the
run length and & is the number of batches, Schruben (1983)
takes a linear combination of the standardized-time-series
area estimator (with % degrees of freedom) and the
nonoverlapping-batch-means estimator {(with £—1 degrees of
freedom). For large batch sizes these two estimators are
asymptotically independent, so the combination has 2k—1
degrees of freedom. Therefore the variance of the linear
combination is about half that of either component
estimator. Another example is the overlapping-batch-means
variance estimator, which can be viewed as a linear
combination of mnonoverlapping-batch-means estimators
(Meketon and Schmeiser 1984). The degrees of freedom can
not be summed since the estimators are not independent,
but complete overlapping (that is, using every possible
batch of a specified bateh size) results in fifty percent more
degrees of freedom (asymptotically). Partial overlapping

(taking fewer in the

nonoverlapping batches linear

combination) results in somewhat fewer degrees of freedom

{Welch 1987).

In this paper, we report the results of some exploratory

Monte Carlo experiments designed to investigate the
The

Two

correlations among some well-known estimators.
experimental factors are described in Section 2.
particular experiments are described in Sections 3 and 4.
Section 5 is 2 discussion.

2, EXPERIMENTAL FACTORS

Four types of estimators are considered:
nonoverlapping batch means (NBM), overlapping batch
means (OBM), standardized-time-series area (STS-A), and .
Heidelberger-Welch
{HW). Each receives as input the sample size n and a

vector of data z; %, * - ,z,. Except for HW, which has

regression-based spectral estimator

only six different degrees of freedom, either the number of
batches or the degrees of freedom is an input, with the
other calculated. (The appendices contain the NBM, OBM,
and HW subroutines, which can be obtained from the first
Note the denominator of the OBM estimator is
different from the original used in Meketon and Schrmeiser
(1984). The OBM relationship between batch size and
degrees of freedom was determined empirically. The HW
routine was coded by James R. Wilson.)

author.

Two types of data are considered: independent,
identically distributed normal observations and steady-state
with

This particular value of ¢ corresponds to

first-order normal  observations

é, = .8182.
¢ =1+ 2%, p, = 10, 2 moderate value.

autoregressive

Four sample sizes are considered: n=100, 500, 2000,
and 10000. In all cases V(X) =1, so the variance of the
observations, V(X), is a function of n.

For each combination of estimator type, data type,
and sample size, correlations are estimated using 100
samples of size n to obtain each observed correlation.
Replicating 100 times (that is, 10000 samples of size n) we
obtain estimates of the correlation with standard error of
less than .01, so the entries in the table have an error
shown of one or two units in the last digit. The estimates
corresponding to n=10000 are based on fewer observations
and have standard errors of about .03. All observations are
independent; that is, common random numbers are not
used.

The first experiment, discussed in Section 3, considers

each of the four estimator types parameterized for seven
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degrees of freedom. The second experiment, discussed in
Section 4, considers each of the four estimator types
parameterized for fixed number of batches (batch size)
rather than fixed degrees of freedom.

3. EXPERIMENT 1: 7 DEGREES OF FREEDOM

Section 3.1 contains the results of a Monte-Carlo
experiment in which each of the four estimator types has
nominally seven degrees of freedom. The implications for

linear combinations are discussed in Section 3.2.

3.1. Estimated Covariances and Correlations

Table 1 contains the estimated correlations.

Table 1: Estimated Correlations for Experiment 1.
Nominal Seven Degrees of Freedom.
OBM STS-A ow
iid AR(1)| iid AR(1)| iid AR(1)|sample
normal ¢=10 |normal ¢=10 |normal ¢=10 |size n
NBM | .72 .90 .23 .33 .53 .60 100
g1 77 .26 32 .52 .56 500
72 .73 .26 27 .53 .50 2000
.68 .69 24 .23 .50 .53 10000
OBM 17 .28 .55 .52 100
22 .23 57 57 500
.19 21 .58 55 2000
24 .19 .59 10000
STS-A .38 .45 100
.39 44 500
.39 .37 2000
41 10000

The experimental results lead to several observations.

Observation 1. The asymptotic correlations are
reached quickly. In each case of iid data, a sample size of
n==100 yields about the same correlation as larger sample
sizes. In each case of dependent data, the asymptotic

values bave been reached by sample size 7=2000,

Observation 2. The largest deviations from the
asymptotic correlations occur in the most difficult case,
n=100 and ¢=10. Although not shown, this case has the
most severe biases: —40%, —30%, —70%, and —20%,

respectively, for NBM, OBM, STS-A, and HW.
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Observation 3. The asymptotic correlations are the

same for both types of data. Using the view that ¢

dependent observations play the role of a single
independent observation, we would expect more or less the
same behavior for n=100 independent observations as for
n=1000 dependent observations, which is not inconsistent

with the tabled values.

Observation 4. The NBM and STS-A estimators are
This
does not contradict Schruben (1983), who uses asymptotic

not asymptotically independent in this experimens.

independence, because he assumes equal batch sizes and we
are using equal degrees of freedom.

3.2. Optimal Linear Combinations

Let us suppose, based on the third observation, that
asymptotic correlations do not depend on the type of data
process (for some large set of processes satisfying some
reasonable mixing and moment restrictions). Then we can
calculate the optimal linear combinations of estimators and
the variance of the optimal linear combination. Assume
that for NBM, OBM, STS-A, and HW estimators

respectively we have the component covariance matrix

28 .20 .07 .14

20 .28 .06 .15
%9 =107 06 28 .10| °

14 15 .10 .25

based on the correlations shown in Table 1 and estimated
variances. (Since V(X) =1, an estimator with seven
degrees of freedom should have 2 variance of 2/7 ~ .286, so
HW is providing a variance more consistent with 8 degrees
of freedom.) Given X, the results that follow are

deterministic.

The resulting optimal linear combination has weights
« =(.19,.24,.39,.17). The minimal variance is .15, a 40%

decrease in the variance compared to HW. These values
are shown in Table 2 along with corresponding optimal
values taking combinations of three estimators and of two
estimators.

Negative correlation between component estimators is
unreasonable to expect, since they are functions of the same
data. Instead, independence among component estimators
provides a reasonable benchmark. Then for pairs of
estimators, the best variance that could be hoped for is
about .13, which is not obtained by any pair since all are
positively correlated. The best pair is (OBM, STS-A) at
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17, with (NBM, STS-A) and (STS-A, HW) close behind.

Table 2. Optimal Weights and Associated
Variances for Linear Combinations of Pairs,
Triples, and All Component Estimators.
Nominal Seven Degrees of Freedom.
NBM OBM STS-A Hw Variance
5 5 24
43 57 21
44 56 .20
45 .55 .18
5 A 5 18
5 5 17
.28 .23 48 .20
.32 .38 .30 16
.33 .39 27 .16
25 .30 45 16
19 24 37 .23 15

Of the triples, the immediate observation is that STS-
A should always be included, since all three of its triples

have a variance of about .16 while the triple without STS-A
has a variance of .20.

And of course using all four estimators in the linear
combination is the best with a variance of .15, which
corresponds to about 13 degrees of freedom.

These empirical results using identical degrees of
freedom for each compornent estimator make one appreciate
the asymptotic independence between STS-A and NBM
With seven
degrees of freedom for STS-A, there are seven batches.
With these seven batches, NBM has six degrees of freedom.
Therefore the (STS-A, NBM) covariance matrix is diagonal
with STS-A. variance .28 and NBM variance (7/6)x.28=.33.
The optimal weights are .54 for STS-A and .46 for NBM,
with variance .15. That is, the optimal linear combination
of NBM and STS-A has about the same variance as with
the optimal linear combination of all four estimators

obtained when the batch sizes are identiczl.

restricted to having seven degrees of freedom. In addition,
in the (NBM, STS-A) estimator the NBM batches are longer
(one-seventh of the sample rather than one-eighth), which
should improve bias.

4. EXPERIMENT 2: EQUAL BATCH SIZES

Since equal batch sizes looked good in the last

subsection, we now investigate using seven equal batches
Since HW doesnt use

batches in this sense, for HW we use seven and three

and then three equal batches.

degrees of freedom. Since n=100 for iid normal data
provided asymptotic values in Experment 1, we consider
If indeed the estimated
values are close to the asymptotic correlations, then the

only such small samples here.

results apply more generally.

4.1. Estimated Covariances and Correlations

For seven batches the estimated covariance and
correlation matrices for NBM, OBM, STS-A, and HW are

.33 .20 .00 .15 1. .77 .00 .51
.22 .06 .14 1. 24 .61

.29 .10 1. .38

.25 1.

For three batches the estimated covariance and correlation
matrices are

.97 .50 .00 .28 1. .68 .00 .38
.54 .19 .26 1. .06 .50
.66 .22 1. .38

.51 1.

The only practically significant change from the first
experiment is the expected drop to zero of the correlation
between NBM and STS-A. The variances are no longer
similar since the nominal degrees of freedom differ.

4.2. Optimal Linear Combinations

First a note about what is not important in this
section. The important comparison is not between the
variances obtained here with fixed batch size and the
variances obtained in the last section using seven degrees of
The is whether the

combinations provides an improvement compared to the set

freedom. issue idea of Ilinear
of component estimators used. Therefore, we compare the
variances of the linear combination to the variances of the

component estimators: .33,.22,.29, .25,

Table 3, which is analogous to Table 2, shows the
performance of the various optimal linear combinations
calculated from the estimated covariance matrix.

312



Correlation Among Estimators of the Variance of the Mean

Table 3. Optimal Weights and Associated
Variances for Linear Combinations of Pairs,
Triples, and All Component Estimators.

Batch Size is One-Seventh the Run Length.
NBM OBM STS-A aw Variance

13 .87 .22

.58 42 .19

.36 .64 21
44 .56 .18

47 53 .15
.59 41 15

.05 .54 41 .19
.36 44 .20 15
.45 .35 .20 15

25 .31 44 .15
21 .26 .39 14 14

Once again we see that, although the linear

combination of all four component estimators has the
smallest variance, pairs can do quite well. In particular,
(NBM, STS-A) is very good due to their independence and
(OBM, STS-A) is equally good due to their small correlation
and the small OBM wvariance. And again any ftriple
containing STS-A works very well. The variance of .14
obtained by combining four component estimators is about
64 percent of the OBM variance, so the improvement is not
as great as obtained with equal degrees of freedom. The

variance of .14 corresponds to 14 degrees of freedom.

Now we investigate batches one-third the length of the
run. Table 4, which is analogous to Tables 2 and 3, shows
the performance of the various optimal linear combinations
calculated from the estimated covariance matrix.

Here for the first time no pair of component estimators
is close to the variance possible using three or four
component estimators. The triples (NBM, STS-A, HW) and
(OBM, STS-A, HW) have variance .34, which is almost as
low as the .33 obtained using all four. The .33 is 65 percent
of the variance of HW and .85 percent of the variance
obtained from Schruben’s (NBM, STS-A) estimator. The
variance of .33 corresponds to 6 degrees of freedom.

Table 4. Optimal Weights and Associated
Variances for Linear Combinations of Pairs,
Triples, and All Component Estimators.
Batch Size is One-Third the Run Length.
NBM OBM STS-A Hw Variance
.08 .92 .54
47 .53 .39
25 75 .45
40 .60 .40
.40 .60 .39
57 43 .39
02 .46 .53 .39
25 .39 .36 .34
.35 29 .36 .34
22 .32 47 .37
14 .21 .33 .32 .33

5. DISCUSSION

We have empirically explored the wuse of linear
combinations of known estimators of the variance of the
(2) The
asymptotic correlations between estimators of the variance
of the sample mean do not appear to depend upon the
underlying process. (b) The asymptotic correlations appear
to hold more or less as soon as the number of degrees of

sample mean. Three observations are obvious:

freedom is low enough to provide asymptotic unbiasedness.

{c) In each of the three cases, the best linear combinations

produced about two degrees of freedom per batch or per.
degree of freedom in the component estimators.

If indeed the correlations among estimators don’t vary
much with sample size or process type, then the optimal
weights can be computed once for any set of component
estimators, thereby avoiding computational problems for
users and the statistical issues related to using estimated
weights.

Schruben’s linear combination of NBM and STS-A
deserves special mention. Except when the batch size of
the component estimators was low (three), this combination
did as almost as well as combinations involving three or all
four The their  asymptotic
independence, a property shared with no other pair of
estimators studied here.

estimators. reason is

So what do we know about the future of using linear
combinations of several component estimators, each with

low degrees of freedom and therefore low bias? Can we
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somehow build a composite estimator with degrees of
freedom more than twice what the component estimators
offer? The empirical results here are pessimistic when we
restrict the component estimators to have similar batch
sizes or degrees of freedom.

For two reasons, however, it may make sense to use

is that the
component estimators could be of the same type but differ

quite different batch sizes. One reason
in batch size or degrees of freedom, as discussed in Song
and Schmeiser (1987) for OBM. The second reason is that
the batch size should reflect what is known about the bias
properties of the component estimators. For example,
STS-A requires larger batches than NBM or OBM because
each batch needs to resemble Brownian motion, a stronger

requirement than placed on a batch mean.
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APPENDIX A: THE NBM ESTIMATOR

aoan

aooqQaonoQoQo0Q0QO0000Q0000Q000Q0

30

40

subroutine nobm (x,n,m, df, vxbar)

Tina Song may 22, 1987 purdue university

nonoverlapping batch mean estimator
of the variance of x bar
real x(n)

..parameter definitions

.input
n: number of observations
x: vector of observations
. .option
af: approximate degrees of freedom
for vxbar (2.5 .lt. df)
m: batch size
.output

vxbar: estimated variance of the
sample mean

..variable definitions

k: number of batches (n/m of Af+l)
i: index for data points
e index for batches

sumx: sum of data points 1 to n
xbar: sample average
bsum: sum of data points (j-1)mt+l
to jm (batch sum)
bsum2: square of the difference of the
batch mean and xbar
sumZ: sum of the square of the dif-
ference of the batch mean and
xbar (ie. sum of bsum2)
calculate m or df or both
if (m .gt. 0) then
k=n/m
df=float (k-1)
elseif (df .gt. 0) then
k=df+1.
m=n/k
else
df=7.
k=8
m=n/kK
endif
calculate the nobm estimator of
the variance of x bar
sumx=0,
do 10 i=1,n
sumx=sumx+x (i)
xbar=sumx,/n
sum2=0.
do 40 j=1,k
bsum=0.
do 30 i=((j-1)*m)+1,3*m
bsum=bsum+x (i
bsum2= ( (bsum/m) ~xbar) **2
sum2=sum2-+bsum2
vxbar= (sum2/ (k-1)) / (n/float (m) )
return
end

APPENDIX B: THE OBM ESTIMATOR

[elNe N o eI ¢]

aooaQaonnQn

subroutine obm (x,n,m,df, vxbar)

bruce schmeiser purdue university

overlapping batch-means estimator
of the variance of x bar

reference: Meketon and Schmeiser,
1986 wsc proceedings

real x(n)
... parameter definitions

«input
n: number of observations
x: vector of observations

.option
df: approximate degrees of freedom

for vxbar (2.5 .1lt. 4f)

m: batch size

c .output
c vxbar: estimated variance of
c the sample mean
St variable definitions
c i index for both data points
c and batches
c sumx: sum of data points 1 to i
c sumd: sum of data points 1 to i-m
c bsum: sum of data points i-m+l to i
c (batch sum)
c epsdf: accuracy for degrees of freedom
c sum: sum of the batch sums
c sum2: sum of the squared batch sums
c xbar: sample average
c sumbm: sum of the batch means
c sumZbm:sum of the squared batch means
Covunn calculate m or df or both
data epsdf/.1/
if (m .gt. 0) then
if (m .eq. 1) then
af = n-1
else
fk = float(n)/m
df = 1.5 * (fk-1.)
1 * (1. + (fk-1.)**(-.5-.6%fKk))
endif
elseif (df .gt. 0.) then
fk = d£f/1.5 + 1.
do 5 j=1,100
fk = (Af/1.5 -~ (fk-1.)**(.5-.6*fKk)) + 1.
dftest—lS* (fk-1.)
1 * (fk-1.) ** (- .5-.6*fKk))
if (abs (df dftest) lt.epsdf/n) go to 6
5 continue
stop 666
6 m=n/fk + .5
else
af = 7.
m = n/5.6666
endif
[ process the first m observations
c ~-- the first complete batch
sumx = 0.
do 10 i=1,m
10 sumx = sumx + x(i)
sum = sumx
sum2 = sum*sum
C.ovvnnn process observations m+l through n

sumd =

do 20 :L—m+1,n
sumd = sumd + x(i-m)
sumx = sumx+ x (i)
bsum = sumx - sumd
sum = sum + bsum

20 sum2 = sum2 + bsum*bsum
Civeennn convert batch sums to batch means

Xbar = sumx / n

sumbm = sum / m

sumZbm = sumZ / (m*m)

(<2 calculate the OLB estimator
vxbar = ((sum2bm - xbar *
1 (2*sumbm - (n-m+1) *xbar)))
2 / (((a-m+L.} * (n-m) ) /m)
return
end
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APPENDIX C: THE HW ESTIMATOR

subroutine hwspec(x,n, £ft, £0,dof, ler)

»
»
*
*

cENE * ek g *

c* Subroutine hwspec calculates the Heidelberger-Welch estimator .
c* £0 for the spectrum at zero frequency corresponding to an input
c* time series {x(j) : J =1, ..., n] of length n.

c* A quadratic polynomial is fitted to the first 25 points of

c* log-averaged periodogram using ordinary least squares; then

c* the intercept estimator is exponentiated and adjusted for the
c* bias introduced by the exponential transformation in order to
c* to yleld the final estimator of the spectrum at zero frequency.

c* Reference: Heidelberger, P. and Welch, P. D. (1981). A spectral
c* method for confidence interval generation and run length con-
c* trol in simulations. Communications of the ACM, 24, 233-24S.

c* This program was written by:

P R R R R R

ok

c* James R. Wilson

c* School of Industrial Engineering

o Purdue University

c* West Lafayette, IN 47907, U.S.A.

c* (317) 494-5408

o

s * ARk
<

c

chirt Inputs:

x ~- The array containing the input time series. Must consist
of at least 100 observations. Note that x(.) is real and
must be dimensioned to n (at least) in the calling
program.

n -- The length of the input time series. Although the
internal work arrays of huwspec are currently
configured to accomodate up to 10000 cbservations,
hwspec should be able to process much longer series
{up to n = 2**20)} without modification.

However, if there is inadequate space in the internal
internal work arrays wk(.) and iwk(.} to handle a
particular series, then an error message is

written to the standard output device telling the user
how to redimension these arrays by resetting the
value of the symbolic constant iwkmax in the first
parameter statement below.

*

#%% Ourputs:

fft -~ The Fast Fourier Transform of the time series
[x(l) + ..., x(n)). Note that f£ft(.) is complex
and must be dimensioned to n (at least) in the
calling program.

£0 -- The Heldelberger-Welch estimator of the limit
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1im A*Var( X(@) 1,
n->inf

where X(n) is the sample mean of the series.
This is the spectrum evaluated at zero frequency.

dof -- The “effective" degrees of freedom associated
with the estimator £0.

ler -- Error indicator:

ler = 1 if n is less than 100.

ler = 2 1f n is greater than 10000 AND there
is inadequate space in wk(.) and iwk(.)
to compute the required FET. An error
message reports the required dimension
for wik(.) and iwk(.) as specified by the
symbolic constant iwkmax.

***% Notes: This program requires the IMSL routines vdeps, fftcc,
becovm, and rimul to run.

The following parameter statement defines the constants
of the procedure:

Xpts -- The number of points in the log-averaged
periodogram that are used to fit a polynomial in
the (averaged) Fourler frequencies., Although the
default value is 25, this constant can be reset
to 50 as described by Heidelberger and Welch (1381).

ideg -- The degree of the polynocmial fitted to the log-
averaged periodogram. Although the default value is
2, this constant can be set to 1, 2, or 3 as
described by Heldelberger and Welch (1981).
If either kpts or ideg is reset by the user, hwspec
automatically resets the appropriate constants
for computing f0 and dof.

iwkmax -~ The length of the work storage arrays wk(.) and
iwk(.) used in computing the FET, If error code 2
occurs in the execution of hwspec, then the user
should reset iwkmax to the required value and
recomplle hwspec.

parameter (kpts=25, ideg=2, iwkmax=60150)
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parameter (idpl=ideg+l, issm=(1dpl* (idpl+l))/2)
parameter (ivmax=(ldeg* (ideg+l)) /2 Jc=kpts/25)
parameter (iumax=2*kpts, adjl=0.270)

complex fft(n)
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dimension x(n), y(kpts) g(kpts idpl) ,phat (dumax), <l (3, 2) ,c2(3, 2)
dimension wk(ivkmax) Wik (Awkmax) , nbr (6) , temp(idpl), vmeans (1dpl}
dimension gssm(issm), beta(idpl, 7) varb ({vmax}), anova (14)
dimension ipf£(13), iexp(13), ipwr{13)

equivalence (y(1), g(l idpl)), (wie (1), 1wk (1))

data ¢1/0.948,0.882,0.784,0.974,0.941,0.895/

data cZ/lB.,7.,3.,37.,16.,8./

Check for acceptable time series length..
if (n .1t. 100) then

ler =1

£0 = -1.0

retun
endif

Compute the space requirements for the EET...
call vdeps (n,npf, 1pf, Lexp, ipwr)
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. ' Inadequate work sturage to compute the FET’
print *,O' Reset iwkmax = ', imax, ' and recompile hwspec'

Compute the FET of the time series...

do 2001 =1, n
Lfe(i) = cmplx (x(1))

continue

call fftcc(fit,n,iwk,wk)

C the corresp ing periodogram...

do 300 fu = 1, iumax
phat ({u) = (cabs(fft(iu+l))**2)/n
continue

Compute the log-averaged pericdogram and the corresponding
average of adjacent Fourier frequencies...

do 400 iu = 1, kpts
iu2 = 2*iu
iuZml = iu2 - 1
avireq = ( float(iu2mi + iu2) }/{(2.0*n)
avper = ( phat(iuzm) + phac(iuz) )/2.
y(iu) = alog(avper) +
do 350 jv = 1, ideg
g(iu,3v) = avereqrriv
continue
continue

Perform a quadratic regression of the log-averaged periodogram
on the correpsonding averaged frequency to obtain the estimated
intercept...

rbor (1) = idpl

nbr (2) = kpts

nbr (3) = kpts

nbr(4) =1

nbr(5) =1

nbr(6) =

call becovm(g,kpts, nbr, temp, vmeans, gssm, ierl)
alpha = 0.05

call rlmul (gs)sm,vmeans,kpcs, ideg, alpha, anova,beta, 1dpl, varb,
§ ler]
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Exponentiate to untransform the intercept estimate, then
adjust for the bias introduced by the exponential
transformation...

= cl(ideg, jc) *exp (beta (1dpl, 1))
dot = 2 (ideg, jc)
return
end
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