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ABSTRACT

Methods are presented for computing a joint
confidence region and simul taneous confidence
intervals for the mean of multivariate observations
from a simulation operating in steady-state. These
methods place observations into batches and use the
batch means to compute the confidence region or
confidence intervals. As sequential method to
determine the batch size that assures independence
among the multivariate batch means is presented and

empirical studies are used to demonstrate the
performance and properties of these methods.
1. INTRODUCTION

Suppose that a simulation operating in

steady—-state produces a sequence of vector—valued
observations Xl’ Xz ..., vwhere each Xi has p

X. = (X.;, X5, . X ).
i ii i2 ip

confidence region or simul taneous
intervals are desired for p = E(Xi)'

components. A joint

confidence

For example, consider a multi-item inventory
system in which items are substitutable or otherwise
interact. Let Xij be the amount of item j in the

inventory at the end of period i. Then, p is the
vector of mean inventory levels. This estimation
problem also occurs in simulations where, each time
an entity exits the system, one can record multiple
performance measure observations related to that
entity. For example, in a manufacturing system, one
might wish to estimate jointly the mean processing
time per item and the mean time required for a
special part of the processing.

A method of estimating p is proposed which uses
batched means of vectors of observations. Section 2
describes the proposed methodology; section 3
discusses determining an appropriate batch size; and
section 4 presents the results of some empirical
testing of the method. \

2.  MULTIVARIATE BATCH MEANS

Various papers (Fishman, 1978; Law, 1977) have
discussed batch means for univariate observations.

The objective of this paper is to propose an
extension of this methodology to multivariate
observations. Suppose that one has n vectors of

mk, where

The entire series then

observations Xl' X2, o Xn’ and that n

m> 0 and k > O are integers.

can be divided into m batches of k

observations each. The ith batch consists of
. .th

observations X( i-1)kel® T Xik. The i batch

mean, then is:

and
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Under appropriate conditions, one can show that as k
- 0o, )—(i and )_(J.. i # j, are uncorrelated. If the

batch size, k, is assumed to be large enough that
this is approximately true, then the m batch means
can be treated as if they are uncorrelated vectors of
observations, and standard multivariate confidence
region estimators can be applied.

In particular, the point estimator for p is the
sample mean of the batch means:

k
~ 1 _
k=" §X1
i=1
If 8 denotes the sample variance-covariance wmatrix
for Xl’x2' e Xm:
m
§=—1—3 (% - X)(x - &)
= m-1 & =X - X))
i=1
7
where X denotes the transpose of X. A
100{1-a)—percent confidence region for n is then

given by all vectors x which satisfy:

A g o
np - %) 8- ¢ By
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where F

o;p,m—p
the F-distribution with p and m-p degrees of freedom
in the numerator and denominator, respectively.
Other methods are available for computing
simultaneous confidence intervals for p; see Morrison
(1976).

is the 100(1-a)-percentage point of

3. DETERMINING THE BATCH SIZE

This batch means method depends, as does the
univariate batch means method, upon establishing a
batch size that is large enough that all batch means
from distinct batches are approximately uncorrelated.
Since the observations Xl’ X2, are from a
stationary process, the sequence of batch means )_(1.
Let I'(j) denote the autocovariance function of the
batch means process:

., )_(m are from a stationary stochastic process.




Multivariate Inference in Stationary Simulation Using Batch Means

() =E{ %, )‘(;”.} )

The batch size , k, must then be made large enough
that I'(j) = 0, for j=1, 2,

Fishman (1979) has presented a method for
determining the batch size for univariate processes.
The multivariate generalization of this method is
complicated somewhat by the fact that T'(j) includes

cross-correlations among components of )-{]. as well as

lag-j autocorrelations. The approach used in this

research was to assume that the batch mean process is*

a multivariate autoregresfive process of order p
Hanmnan, (1979):

1 Y BX

Pl

+ ... + BX

—. = €,
pi-p i

s

B2.
i.i.d. random vectors with mean O and covariance
matrix Ee'

where Bl‘ vy Bp are p x p matrices and e, are

For a multivariate batch means process, two
assumptions seem reasonable to make: First, if the
batches are large enough that adjacent batch means
are uncorrelated, then they are large enough that a

X,

central limit theorem applies, and ; are
approximately normally distributed. Secondly, the
lag-1 autocovariance dominates the others.
Therefore, it is reasonable to fit the batch means

process to a first-order autoregressive model:

=g, , i=1,2,3, ... , m.
1

If this is the case, then B1 can be estimated by

solving:

=cc! ,

B =CC,

where Cj is the estimate of the autocovariance at lag

Jj.
Let:

vhere |A| denotes the determinant of matrix A. Then,

under the null hypothesis that )?1, )—(2, .y Xm are
serially independent (i.e., B1 = 0) the test
statistic - (k-p) log Q(k.p) is approximately

distributied as a chi~square random variable with.p2
degrees of freedom. Thus, if

-(k-p)log Q(k,p) > >(22(a) . where >(22(a) is the upper
P p

(1-a)-percentage point of the chi-square
distribution, then the conclusion will be drawn that
the batch means are mnot uncorrelated, and the batch
size is not sufficiently large.
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To determine a appropriate batch size, the
number of observations per batch was initially set to
20 and the test for serial independence was applied.
If the hypothesis was rejected, the batch size was
doubled and the test reapplied. This process
continued until either the null hypothesis was
accepted or the number of batches was less than 8.
This sequential method is the multivariate analog of
the approach described in Fishman [1].

4.  EMPIRICAL STUDIES

This methodology was tested on the University of
Georgia’s CYBER 170/750 computer. The system that

was simulated was a random queue with two servers,
infinite capacity in each queue, Poisson arrivals and
independent exponential service times. The
parameters that were estimated were: Hyv the
expected waiting time in queue 1; Mo the expected
waiting time in queue 2; and g the expected total

time in system. Clearly, waiting times in the first
queue are independent of waiting times in the second
queue; however, waiting times in each queue are
correlated with total time in system.

Initial sample sizes were set at 2000, 3000,
4000 and 5000 observations, and the simulation was
run with traffic intensities at stage 1 of 0.9
(high), 0.75 (moderate) and 0.5 {low). For each
case, 100 replications were run. Roy-Bose confidence
regions were computed using confidence coefficient
.975. The results are shown in Tables 1 and 2. The
failure rate in Table 1 is the proportion of
replications in which the test for uncorrelated batch

means failed to accept the null hypothesis and
conclude that the batch means are uncorrelated. The
conditional coverage rate 1is the proportion of

confidence regions that covered the true parameter
vector, omitting those replications where the batch
size test failed. The overall coverage rate is the
proportion of replications, out of 100, in which both
an appropriate batch size was found and the true
parameter vector was covered. Since the number of
replications was 100, these proportions can be
assumed to have an error of approximately + .08.

These simulations show two things: First, as
one would expect, wmuch larger sample sizes are
required to compute reliable confidence regions for
more congested systems. This is understandable since
the observations are more highly correlated and thus
each observation carries less information. Secondly,
required sample sizes for multivariate estimation are
much larger than for univariate estimation. with
sufficiently large sample sizes, however, this
approach does produce reliable confidence regions.
Additional simulation studies are being done to
compare alternative methods for computing confidence
regions and simultaneous confidence intervals.
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Table 1: Simulation Results for
High Traffic Intensity

Overall Conditional
Sample Coverage Failure Coverage
Size Rate Rate Rate
2000 .62 .11 .70
3000 .67 .08 .73
4000 .72 .03 .74
5000 .73 .05 i

Table 2: Simulation Results for Moderate
and Low Traffic Intensity

Sample Coverage Rates

Size Moderate Low
2000 .80 .94
3000 .89 .95
4000 .87 .95
5000 .91 .97
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