Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

SOFTWARE REUSE AND SIMULATION

Richard Reese

General Dynamics

Data Systems Division
P.O. Box 748 - Mz 2203
Ft. Worth, TX 76101

ABSTRACT

Software reuse technology has the
potential of impacting significantly the
software development process. This paper
addresses issues of software reuse and their
application to simulation software. A
simple classification scheme is presented to
assist in the identification of software
components. Historical approaches to reuse
are then discussed along with desirable
attributes of reuse systems and components.
Following this, impacts of reuse technology
on the software development process are
discussed. The paper concludes with
sections on the application of reuse to
simulation and a methodology for developing
reuse systems.

1. INTRODUCTION

The underlying concept of reuse is the
identification and extraction of software
components from other projects. Software
reuse is an old concept which has recently
recelved renewed attention as a result of
efforts to address the high cost of software
development. Contributing to this renewed
interest has been advances in hardware
performance, artificial intelligence,
database systems, and in programming
language design. For example, the DoD’s
considerable investment in the development
of Ada and supporting tools is partially a
result of the belief that features of Ada
will support reusability.

Software reuse is defined as the
isolation, selection, maintenance, and use
of software components in the development
and maintenance of a software project. A
component is any element of a software
system and can include elements from
requirements specification, design, code,
and testing. The term, software component,
refers to any documentable aspect of the
project. For example, a software component
may be a user’s guide, data flow diagram,
high-level language code, or test plan.
is important to note that reuse is not
limited to code, but can be extended to
include any element of a software
development project that requires effort.

It

To make reuse possible, it is necessary
to develop a methodology for the reuse of
these components. This method must
encompass not only the use of the
components, but also the initial selection,
incorporation, maintenance, and overall
management of the components. This reuse

185

Dana L. Wyatt

North Texas State University
Dept. of Computer Science
P.0O. Box 13886

Denton, TX 76203

process, as shown in Figure 1, illustrates
the interaction of the user, administrator,
and the reuse system. The reuse
administrator is responsible for the
development and maintenance of a database of
reuse components. Users access the system
as needed to search for and select
components.

The primary benefit often cited for the
reuse of software is the expected
improvement in productivity. If components
are reused, then less time will be required
to develop systems. In addition to
productivity, other benefits include
improved quality, reliability,
maintainability, and timeliness of the
software system.

2. TAXONOMY OF REUSE COMPONENTS

Many facets of a software development
project have potential for reuse. Each
rhase and activity in the software
development process is repeated for most
projects. The key to successful reuse is to
specify components in such a way that future
projects might benefit.

A reuse system is based upon a set of
underlying components which can be
classified and quantified. This section
will provide a simple classification scheme
to clarify the term component. Section 4
will address methods of quantifying
individual components.

The taxonomy used herein is based upon
two factors: the level of reuse components
and the functionality of reuse components.
The term, level, is used to denote a
grouping of components according to phases
of the software development process. A
functionality classification groups
components by their application area. The
complexity of component classification is
more complex then presented here. A more
in-depth discussion of this issue is
presented in (Prieto 1897, Kartashev 1986).
2.1. Levels of Reuse Components
Components may be classified by the
software development life cycle phases or
activities. The result of such a

classification scheme might contain
components relating to the following:

Requirements Specification
Design



R.Reese and D.L.Wyatt

USER

Reuse
Components

Reuse
System

Database

Reuse
Administrator

Figure 1l: Reuse System Process

Code

Testing
Verification/Validation
Configuration Management
Manuals

The documents produced by each of these
activities may be treated as components for
reuse. The effort required to select and
insert these components, as well as their
eventual usability, will vary from component
to component.

Examination of the software development
activities reveals that coding is only one
activity in the process and, as pointed out
in Boehm’s text (Boehm 1981), is not always
a major activity in terms of effort. Figure
2 illustrates the average actiwvity
distribution for medium~size software
projects. The left~hand column represents
the activities performed in each phase
listed on the top row. These numbers,
representing percentages, are based on
COCOMO estimates (Boehm 1981). For example,
the coding phase consumes 54% of the total
activity in a software development project,
yet only 55% of that activity is devoted
exclusively to coding.

This figure emphasizes that there are
other areas where reuse may be applicable.
Notice that the maintenance effort is not
shown. Yet, maintenance is usually the
major cost of a project, making up 70-90% of

Plans and

the total life~cycle cost. Reuse should
also address this activity to lower the cost
of this phase.

2.2. Functionality of Reuse Components

This classification scheme is based on
a grouping of components by application.
There are hundreds of possible functional
application areas from which to choose.
This paper addresses the simulation-specific
functional components in section 6.
Examples of other functional areas include:
I/0, graphics, statistics, and communication
protocols.

A functional classification can aid in
the component selection process. It does
not preclude the classification of a
component under two or more groups.

3. REUSE APPROACHES

Historically, there have been attempts
to develop reusable software routines.
These are commonly represented as a
collection of utility subroutines. However,
these have tended to be very primitive in
nature. More ambitious attempts in the
effort to reduce or eliminate the software
development process have recently surfaced
in the form of program generators. Although
somewhat successful, they tend to support a
very limited domain.

Product Progrm- Integration

Requirements Design ming and Test

8 18 54 28

Requirements 46 10 ° 3 2

Design 14 42 6 4

Programming 6 12 55 40

Test Planning 4 6 6 4
Verification and

Validation 8 8 10 25

Project Management 12 11 7 8

CM/Quality 4 3 7 9

Manuals 6 8 6 8

Figure 2: Activity Distribution




Software Reuse and Simulation

3.1. Subroutine Libraries

Subroutine libraries are generally
implemented as libraries of functions or
procedures written in a single language and
stored in object module format. The
operating system’s linker accesses the
library to obtain the needed modules.

This is a simple, low level approach.
It lacks any degree of user interface
sophistication. In addition, the libraries
generally consist of components which are
too small to be of practical use in large-
scale projects. The granularity of the
components is not conducive to designing-in-
the-large.

The language in which the subroutines
are written limits theilr applicability to
projects written in other languages. While
it is possible to combine subroutines
written in different languages, it is often
a difficult process because of interface and
data structure incompatibilities. For
example, modern block structure languages
such as C, Pascal, and Ada use a program
stack to manage subroutine invocations and
recursion. Older languages do not support
this approach. Difficulties may even arise
because of different calling conventions
among compilers on the same machine.

Data structure incompatibilities also
account for reduced reusability. Different
memory allocation schemes for the storage of
structures and varying internal
representations for primitive data types are
common differences in languages. Advanced
data types such as pointers and enumeration
types may also differ considerably from one
language to another. Support, or lack
thereof, of dynamic memory allocation
further complicates the matter. These
differences all contribute to the difficulty
of combining subroutine components of
different languages.

The development of Ada packages is
offering some promise towards reducing the
difficulties of reuse procedures., Generic
packages containing useful operations on a
generic data type allow a programmer to
create instances of the package for various

data types. For example, consider a routine
which swaps two values:

TEMP = A;

A = B;

B = TEMP;

This swap procedure might be needed for
integers, reals, and records. Many
languages would require the development of

separate routines for each conceivable type
even though the only difference is the
typing of the variables. Ada, however,
allows creation of a generic routine in
which a data value and its corresponding
type may essentially be passed to the
routine, thus avoiding the need for the
programmer to develop separate routines.

In general, however, subroutine
components typically leave little room for

187

variation. They are usually fixed in their
function, interxface, and frequently in their
data structure. Their applicability to a
general reuse philosophy is limited since
they do not have the flexibility to adapt
readily to different applications.

3.2. Software Generators

The current state-of-the-art limits the
applicability of software generators for
three reasons. First, most software
generators produce a large amount of code in
the process of creating an application.

This is often due to inherent inefficiencies
in the generator and in the difficulty of
accurately specifying an application’s
requirements. Without a large amount of
specification, it is difficult to prune
unwanted functions from the system. As more
options are provided for specifying the
nature of the generated software, the
generator becomes more complex.

Secondly, existing software generators
have been limited to well defined and
understood application domains. Software
generators for simulation have been
developed (Mathewson 1981). However, the
nature of many simulation projects is such
that the application area is often new and
not thoroughly understood. As a result,
software generators are rarely available.

Finally, the software generated by a
software generator is often difficult to
enhance because 0f poorly documented source
code. This is because the flexibility
exhibited by the generated software is
dependent upon many of the same factors
which make code reusable, such as data
structures and interface design.

4. ATTRIBUTES OF REUSE SYSTEMS AND
COMPONENTS

This section discusses those factors
which contribute to successful reuse systems
and components. The reuse system is
essentially a storage and retrieval system
used to access individual components.

Central to both a reuse system and its
components is the issue of quality. The
component and system should be of high
quality as there is no substitute for a high
quality product.

4.1. Attributes of Reuse Systems

There are several attributes which can
contribute to the successful reuse
component: language independence,
composition of components, standard
interfaces, accessibility, and selection.

4.1.1. Language Independence. The
reuse component, if at all possible, should
be language independent. This will increase
its range and application because it is not
limited to a single language. This often
means that the underlying algorithm of a



R.Reese and D.L.Wyatt

code component is embedded in a psuedo-—
language, a language which allows
translation from the psuedo-language to the
target language. Several systems use this
approach (Bassett 1987, Kaiser 1987, Lenz
1987).

4.1.2. Composition of Components. The
reuse system should allow easy construction
of complex systems from elementary
components. The term, building block, is
often used to describe this methodology. It
is based upon concepts borrowed from more
mature disciplines such as electrical
engineering in which construction of a
system is made from a more or less standard
set of components. However, this analogy
breaks down for a number of reasons.

Computer science is not as mature as
other fields in which standards and theories
are better defined and understood. Concrete
identification of these building blocks is
essential. The nature of computer science
is such that standards may never be present
except in a few well-defined and understood
areas of application.

4.1.3. Standard Interfaces. Standard
interfaces are an important cornerstone for
successful integration. A difficult
integration may become a very expense and
time consuming part of a project. The
interface design will stay with the
component throughout its existence,
therefore, a good interface design is
paramount.

4.1.4. Accessibility and Selection.
When a component is to be selected and
subsequently used, it is important that it
be readily accessible. If it is not then
the customer will not be as eager to spend
the time it may take to access the
component. The problems of centralized and
distributed libraries come to bear. A
centralized library makes it easier to
maintain and control the components but is
often not easily accessed. A distributed
library is easier to access but is more
difficult to maintain and control.

A good selection with a wide range of
options is important. If the user can’t
find it, he won’t use it. If he
consistently fails to find what he needs, he
will stop using the reuse system.

A significant reuse problem is the
storage and retrieval of the project’s
components. Questions to consider include:

What format to use for storage?

How to fragment the components?

Which attributes should be used
for retrieval?

These problems demand careful
consideration as initial decisions
will set the tone of the reuse system
for most of its life. TIf an
inappropriate format is used then it
may be difficult to add new component
attributes or to obtain new
information.

188

4.2, Attributes of Reuse Components

There are several criteria which can be
used to evaluate software components being
considered for reuse. Figure 3 is a list of
many of these criteria (Adapted from Tracz
1987).

The more important aspects of a
successful component include a standard set
of features and options, a usage and
maintenance record, documentation, and the
ability to adapt to new uses. The other
attributes are important, but usually found
in a limited domain.

4.2.1. Component Features. In the
evaluation of software, it is important that
the software provide the minimum set of
standard features for the function being
performed. If the software function is that
of a standard queue, then it should support
the basic queue operations of enqueue,
dequeue, provide some mechanism to handle
the queue full condition, and provide a test
for queue empty.

Options will be important for some
implementations but will be an expensive
extra for others. An example option for a
queue might be a priority mechanism which
would dequeue elements on a priority basis.

Rearrangement of the order of elements might-

also be useful in some applications. These
options are not free and the impact of any
option should be carefully documented. An
important point is that a given feature may

-be an option for one application and a

necessity for another. The options should
be packaged to reflect these differing
viewpoints.

4.2.2. Usage and Maintenance Records.
A usage record of a component should be
maintained. The record would typically
include information about the number of
times selected, its frequency of use, how
long the component has existed, and possibly
thedtypes of applications where it has been
used.

. The maintenance record should contain
information relating to the frequency of bug
detection and correction. The severity,

Quality

Standard Features
Options

Usage Record
Maintenance Record
Reputation

Warranty

Appearance
Standards/Documentation
Accessibility

Price

Trial Access
Adaptability

Execution Characteristics
Standard Interfaces

Figure 3: Evaluation Criteria for
Software Reuse




Software Reuse and Simulation

type, and corrective action should be
recorded. ‘'This record, when used in
conjunction with the usage record, can
provide a potential user with insight into
the durability and reliability of the
component. If the component has been
corrected frequently or if modifications to
the component typically result in a large
number of subsequent bugs, then the quality
of the component may be questioned. A
component with a few bugs found earlier in
its usage history with few or none found
later suggests a robust and reliable
component.

4.2.3. Documentation. The
documentation which supplements the
component is crucial to understanding and
maintaining the component. The quality of
the documentation is as important as the
code itself. The code appearance often
reflects the care put into the development
of the code. Difficult to follow and
contorted control sequence may be indicative
of poor design. However, readability is
sometimes sacrificed for efficiency and
should therefore be considered when
evaluating the appearance of the component.

4.2.4, Adaptability. The adaptability
of the component is often an important
factor in the selection process. If the
component is not exactly what was needed,
then a hopefully large percentage of it may
be usable if modified. The ease of this
modification effort is important as well as
the number of variations possible. A good
structured design will go a long ways to
improving the adaptability of a component.

5. IMPACTS OF REUSE

The concepts of reuse can be applied
throughout the software life cycle and
impacts all attributes which are commonly
used to quantify software. It affects
software and the development of software in
terms of productivity, maintainability,
portability, and gquality.

5.1. Productivity

One of the primary reasons for reusing
software is to achieve an increase in
productivity. However, it is one thing to
say that it will be increased and another to
actually demonstrate conclusively that the
improvement will or did actually take place.
Central to this issue is the metrics used to
measure productivity. The two most commonly
used metrics have been lines of code for the
general computer science community and
Albrecht’s Function Points (Albrecht 1983)
for the data processing community. Both
have been confined largely to the coding
phase in spite of the fact that the majority
of effort occurs elsewhere. Thus, to use
either lines of code or function points is
to neglect, or at least gloss over, the
effort performed in these other areas.

Until an unbiased and all encompassing set
of metrics is developed, no reliable or
accurate productivity measurement will be
consistently available.

189

So where does that leave the claim of
increased productivity due to reuse?
Claiming that reuse will improve
productivity is justifiable in most
environments when a core set of software
components can be identified. While the
reliability of the estimate may not be
extremely high, it will be sufficiently
accurate to provide justification for the
productivity improvement claim.

5.2. Maintainability

Maintenance is generally considered to
be the most expensive aspect of the total
life cycle cost of a system. This cost can
be decreased if systems are built which are
robust and relatively error free. If reuse
components which have been thoroughly tested
in previous applications are used, the
chance of discovering errors will be
reduced. This will contribute to less effort
spent on the maintenance of software.

A high quality, reusable component will
make the software maintenance phase
considerably easier. If the component
library is one which is continually enhanced
and expanded, then future enhancements may
be partially taken care of by the growth of
the library. Assuming that the library’s
components possess consistent interfaces and
data structures, the addition of new
components to existing components of the
system should be simpler.

5.3. Quality

The overall quality of a software
system developed from reusable components
will be better than a functionally
equivalent system developed without reusing
software. The primary reason for this
improvement originates from the additional
effort required uvup front to insure the
interfaces are complete and consistent and
from the prior effort which went into the
development of the components.

A major problem with many large systems
is the difficulty of integrating the system
as a whole. Poorly understood and changing
interfaces are often present during project
development. This difficulty will be
partially lessened as the reused components
become stable. In addition, the quality of
the individual components should be better
as they have already been field tested.

5.4. Future Impacts

In the long run, it may prove that
reuse will serve as a tool to improve the
ability to measure productivity. As answers
to the questions of what to reuse and how to
fragment a project for reuse are answered,
we will begin to better identify the
building blocks which constitutes many
systems. These building blocks will
represent the standards by which future
effort can be compared and estimated.
may be found that a particular network
protocol implementation always contains a

It



R Reese and D.L.Wyatt

certain set of core components and a
secondary set of components which enhance
and expand the protocol’s capabilities.
These will become the basis for estimating
the total effort require for modification
and integration of the network protocol.

The methodologies of reuse will also
affect the way software is developed.
Instead of designing unique software
components for each new system, available
components will be examine to determine if
they are applicable. Attempts will then be
made to design the system with these
components in mind. This implies that a
successful component must be of high guality
and must exhibit flexibility.

6. APPLICATIONS TO SIMULATION

The issues of reusability discussed
herein apply to all types of software,
including simulation software. The use of
these techniques are particularly adaptable
to the area of simulation software. Long
known for its cost overruns and poor
performance, simulation software often has a
credibility problem in the eyes of
management (Russel 1983). However, adoption
of a reuse philosophy and the subsequent
creation of a reuse library by management is
expected to improve the simulation software
development process and increase the
credibility of simulation results.

' It is expected that initial management
reaction will be skeptical because
simulations are often viewed as one-time,
disposable, software products. This
contrasts to other types of software such as
graphics, in which the potential for reuse
is recognized easily. This section will
discuss areas of simulation model and
program development which lend themselves
toward$ a reuse environment.

or

6.1. Areas of Reuse

If one were to ask a simulationist if
reuse potential existed in the development
of models and/or programs, the answers would
vary. However, most would agree that, in
discrete simulation, there are standard
procedures needed to support a simulation
application. 1In addition, many would argue
that certain patterns exist in models of a
given domain. The separation of functions
into simulation’ support functions and model
functions will form the basis for discussion
of potential reuse areas.

6.1.1. Simulation Support Function
Level. The support functions required in
virtually all discrete simulation
applications include time management, queue
management, statistics collection, random
number generation and data I/0. This is one
of the more obvious areas of discrete
simulation in which reuse technology might
be beneficial. 1In fact, the GASP (Pritsker
1974) and SIMPAS (Bryant 1981) simulation
languages used this observation to develop
subroutine libraries for high-level
languages which make simulation from these

190

languages simpler. Special purpose
simulation languages such as SIMSCRIPT
(Russel 1983) and SLAM (Pritsker 1984) also
recognize this need and incorporated these
support functions into the language itself.

However, exzamination of a 1983 survey
by Christy (Christy 1983) indicates that a
large percentage of the simulation software
developed across the country was being done
in languages other than those designed for
simulation. The top five languages, in
order, were: FORTRAN, GPSS, special purpose
languages (such as IPPS, SIMPLAN, and
EXPRESS), BASIC, and PL/I. Even though this
survey is several years old, it is expected
that the only language which might
significantly alter the survey results is
Ada.

The benefits of a reusable library of
simulation support routines include a
reduction in the effort required to manage
the development of simulation programs and
increased time available for the development
of models. These support libraries can be
extended to include debug routines,
validation and verification tools, and
graphics and animation support.

6.1.2. Model Function Level. The reuse
of model components is a less obvious, but
equally viable area for reuse. This is
especially true in domain-specific
environments in such areas as manufacturing,
CAD/CAM, and computer networking.

It is already known that companies
which specialize in a domain-specific
problem area have tools which aid in the
development of models. In particular, these
tools often take the form of model and/or
program generators. For example, computer
vendors often offer services to customers to
aid in the configuration of systems for a
particular purpose. To adequately determine
the configuration, these vendors have
departments which develop simulation models
of a proposed configuration to determine the
performance of the proposed configuration.
However, the development of these models is
sometimes tedious and can take several days.

To improve productivity, some vendors
have developed libraries of models which can
be extracted and altered using automated
software generation tools. Using this
method, models of proposed configurations
can be developed much more quickly and
efficlently. Errors are reduced and the
confidence in the model results improves.
This is an example of reusable components in
a domain specific environment. However, it
is not necessary that the automation of
model development be taken this far given
the existence of a taxonomy, storage, and
documentation strategy that would ensure the
utility of a reuse library.

7. ESTABLISHING A SIMULATION SOFTWARE
REUSE SYSTEM

Once the decision has been made to
develop a software reuse system, this
decision needs to be carried through to




Software Reuse and Simulation

completion. This section addresses the
issues which will effectively accomplish
that goal. A basic assumption of this
section is that the system is to built
within an organizational framework.

The process of developing a software
reuse system 1s, in essence, an iterative
one. Once the system is built, it must be
utilized and maintained. The successful
continued use of the system will require
ongoing management support and the
establishment and evaluation of system
objectives. Figure 4 outlines a set of
steps which can be used in the development
of a software reuse system. Each step will
be discussed in varying detail.

It is crucial to obtain upper
management approval and commitment for this
development effort. If management does not
support this effort with the proper
commitment of resources and encourages the
system’s subsequent use, then the system
will not realize its full potential.

It is necessary to establish an
individual or group with the responsibility
for the system. If this is not
accomplished, then there will be a lack of
system accountability. In addition, there
should be a focal point to reduce
duplication of effort and provide standards.
It will be that individual’s responsibility
to ensure that the system’s objectives and
plans are accomplished.

The successful reuse system must be
accepted by the people who will use the
system. This acceptance must be cultivated
and can not be demanded. Support should be
developed as early as possible, in order to
assure an accurate assessment of the
system’s needs.

While sometimes overlooked, the
specification of objectives, alternatives,
and constraints must be developed. The
objectives provide a goal. The alternatives
provide options to be traded against often

1. Obtain upper management commitment

2. Assign responsibility for the
system

3. Cultivate broad-based support

4. Identify objective, alternatives,
and constraints

5. Evaluate alternatives and select
the best

6. Prepare phased implementation plan

7. Obtain authority to proceed

8. Implement the plan

9. Follow up and reiterate the plan

Figure 4: Steps in the Development
of a software reuse system

191

conflicting goals, subgoals, and
constraints. The constraints will define
the limitations of the system which may be
imposed for any number of reasons. The

objectives, alternatives, and constraints
need to be clear, precise, and complete.

Once the alternatives have been
examined, it is necessary to evaluate them
in light of the constraints imposed upon the
system. Whenever possible, economic benefit
analysis should be performed based upon as
unbiased set of evaluation rules as
possible. The alternatives should not be
considered in isolation only, but also in
combination with each other. This helps to
avoid possible sub-optimization decisions.

Once the system has been carefully
evaluated, a phased implementation plan
should be developed. Careful consideration
should be given to the plan to insure its
correctness and completeness. Authority is
then needed to precede once the plan has
been accepted. This is then followed by the
implementation step.

These steps, while sequential, require
re-examination of preceding steps of the
process because one step will impact the
actions taken in another. This impact
normally has minimal impact upon earlier
steps, but could be significant if inherent
problems are not adequately resolved early.

There is a price to pay for any
reusable scheme, that it the cost of
education. There will be a definite
learning curve which has to be overcome
before the full power and utility of the
system becomes available. Any organization
which seriously attempts to reuse software
will eventually have to pay this price.

8. CONCLUSION

General issues relating to software
reuse and its application to simulation
software were addressed in this paper. An
important point developed was the concept
that a software component is not limited
only to code. Reuse can be applied to any
documentation used in the development of a
project. In addition, a simple
classification scheme was presented to
assist in the identification of software
components. The last section of the paper
presented a general method for developing a
reuse system.

The reuse of software requires
commitment and effort to properly acconmplish
the goals of reuse. It also involves a
modification of the software development
process. More effort must be made initially
to insure that components will be reused.
Designers must begin thinking of reuse as an
initial step in the design process.

Reuse systems and
developed. Components
developed from scratch
the desirable features
component. Reuse must

components must be
will most likely be
S0 as to incorporate
of a high quality
be engineered from



R.Reese and D.L. Wyatt

the start. Attempts to retrofit existing
software into components generally require
more effort than to develop the components
from scratch.

The basic concepts behind reuse are
straightforward. What is needed is an
effort to develop reusable components,
incorporate them into a reuse system, and to
modify the current development methodologies
to take advantage of this technology. Reuse
will not work without a commitment and an
application of effort to this end.

REFERENCES

Albrecht, A., and Gaffney, A. (1983).
"Software Function, Source Lines of Code,
and Development Effort Prediction: A
SOftware Science Validation", IEEE
Transactions on Software Engineering, 9,

6, 639-648.
Bassett, P. (1987). "Frame-Based Software
Engineering™, IEEE Software, 4, 4, 9-16.

Boehm, B. (1981). Software Engineerin
Economics, Prentice-Hall, Englewood
Cliffs, New Jersey.

Bryant, R. (1981). SIMPAS User'’s Manual,
Department of Computer Science and
Academic Computing Center, University of
Wisconsin - Madison, Madison, Wisconsin.

Christy, D., and Watson, H. (1982). "The
Application of Simulation: A Survey of

Industry Practice", Interfaces, 13, 5,
47-52.

Kaiser, G. and Garlan, D. (1987). "Melding
Software Systems from Reusable Building
Blocks", IEEE Software, 4, 4, 17-24.

Kartashev, S. and Kartashev, S. (1986)
"Guest ' Editor’s Introduction", Computer,
19, 2, 9-13.

Lenz, M., Schmid, H. and Wolf, P. (1987).
"Software Reuse through Building Blocks",
IFEE Software, 4, 4, 34-42.

Mathewson, S. (1981). A DRAFT TIT/SIMON

Manual, Department of Management Science,
Imperial College, London.

Prieto-Diaz, R. and Freeman, P. (1987).
"Classifying Software for Reusability”,

IFEE Software, 4, 1, 6-16.

Pritsker, A. (1974). GASP IV Simulation
Language, John Wiley and Sons, New York,
New York.

Pritsker, A. (1984). Introduction to
Simulation and STAMII, Halsted Press, New
York, 209 rdition.

Russel, E. (1983). Building Simulation
Models with SIMSCRIPT II.5, CACI, Inc.,

Los Angeles, California.
Tracz, W. (1987). "Reusability Comes of
Age®”, IEEE Software, 4, 4, 6-8.

192

AUTHOR’S BIOGRAPHIES

RICHARD M. REESE is a software design
specialist with the Data Systems Division of
General Dynamics where he is a member of the
Product Software Group. Currently, his
responsibilities include the development of
a division-wide software cost estimating
methodology and the development of a network
protocol. He received a B.A.S.S and M.S.
from Stephen F, Austin State University in
1978 and 1979. 1In 1983, he received a Ph.D.
in computer science from Texas A&M
University. His research interest include
the areas of software cost estimating,
software engineering, simulation, and
software reuse. He is a member of the ACM
and IEEE.

Richard M. Reese
General Dynamics

Data Systems Division
P.0O. Box 748 - MZ 2203
Ft. Worth, TX 76101
(817) 777-3992

DANA L. WYATT is an assistant professor in
the Computer Science Department at North
Texas State University. She received a
B.A.S.5 and M.S. from Stephen F. Austin
State University in 1978 and 1979. 1In 1986,
she received a Ph.D. in computer science
from Texas A&M University. Her current
research interests include distributed
simulation, simulation support tools, and
databases. She is a member of the ACM,
IEEE, and SCS.

Dana L. Wyatt

North Texas State University
Department of Computer Science
P.0. Box 13886

Denton, TX 76203

(817) 565-2767




