Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

A PROCESS-ORIENTED SIMULATION PACKAGE
BASED ON MODULA-2

Pierre L’Ecuyer and Nataly Giroux
Département d’informatique
Université Laval
Ste-Foy, Qué., Canada, G1K 7P4.

ABSTRACT

SIMOD is a process-oriented, discrete-event simulation
package, implemented as a set of precompiled modules writ-
ten in Modula-2. It is not a new language; basically, a
SIMOD program is simply a Modula-2 program. The pack-
age offers predefined data types and procedures, and run-
time support facilities to manage the clock, event list, pro-
cesses, resource acquisitions, etc. Using these tools, a pro-
grammer is able to express his model quickly and concisely,
in a readable language. In this paper, we describe SIMOD,
give some programming examples, and summarize the pos-
itive and negative aspects of our experience with Modula-2
as a host language for building a discrete-event simulation
programming environment.

1. INTRODUCTION

Discrete event computer simulation is an important tool
for decision makers. Many simulation programs have been
(and still are) written in general purpose languages, like
FORTRAN, (see Law and Kelton (1982) and Bratley, Fox
and Schrage {1983)). To avoid reinventing the wheel again
and again, people have developped subroutine libraries that
provide the basic utilities for simulation programming (like
GASP, for instance). On the other hand, specialized sim-
ulation languages were also created (like e.g. GPSS, SIM-
SCRIPT, SLAM, SIMAN, DEMOS, etc.).

Specialized languages usually offer higher level tools,
leading to shorter and more readable programs. But they
also have limitations, and in the most widely used simulation
languages, people often have to call FORTRAN subroutines
for operations that cannot be done in the specialized lan-
guage. Compared to general-purpose languages, simulation
language compilers are usually more expensive, not as well
documented, produce less efficient code, and provide less de-
bugging support. As Bratley, Fox and Schrage {1983, pp.
214-215) pointed out, none of the commonly used simula-
tion languages is a modern language, and none has an easily
understandable and predictable behavior. Another obstacle
to specialized languages is that people have to learn them.

165

This often imply a significant time investment, especially for
one-time or occasional use. Programmers are more produc-
tive when they work in a familiar language. We feel that a
good part of the time spent learning a new language could
be better used working on more fundamental aspects of the
problem.

For all these reasons, many simulation projects are pro-
grammed in general purpose languages, of which FORTRAN
is still the most widely used. But FORTRAN is an outdated
language, with many handicaps (see Kreutzer (1986)). More
modern, more reliable, better structured and conceptually
richer languages like Pascal, Modula-2 and ADATM
becoming increasingly popular.

are now
Good and well supported
compilers for these languages, and often very sophisticated
programming environments, are available on most machines.
Pascal is, in many respects, a marked improvement over
FORTRAN, but still has its limitations, like not supporting
modular design (with separate compilation) and coroutines.
Implementing a process-oriented simulation package based
on Pascal calls for a language extension, which means that
one has to either rewrite a compiler or write a preproces-
sor (we intentionally forget the unelegant approaches which
require the user to put labels all over his code). Rewriting
or patching the compiler largely destroys portability. Some
disadvantages of using a preprocessor are that two compi-
lations are more time-consuming than one, error messages
are more difficult to interpret, and the object code is some-
times slower. See Kaubisch, Perrot and Hoare (1976), Malloy
and Soffa (1986), Vaucher (1984) and the references given in
Kreutzer (1986) for ways of doing this.

Modula-2 was developped recently by N. Wirth as a suc-
cessor to Pascal (see Wirth (1985), Ford and Wiener (1985),
Gleaves (1984)). It was designed to overcome Pascal’s short-
comings, while keeping simplicity and a small size (in oppo-
sition to Ada, for instance). Modula-2 provides access to
low level machine functions on the one hand, and encour-
ages good software engineering practices on the other hand.
Large programs are built from separately compiled modules,
which allow operations on the abstract objects (types, proce-
dures, etc.) defined inside them, but hide the details of their
implementations. A coroutine facility is supplied, on top of

P.L'Ecuyer and N.Giroux

which one can implement different process synchronization
paradigms for quasi-concurrency. The module Processes sug-
gested by Wirth (1985) is one example. Modula-2 is already
available on most computer systems, and has already been
used successfully for various kinds of applications, like writ-
ing operating systems, compilers, expert systems, computer
graphics, etc. Anybody already familiar with Pascal (which
means almost every programmer) can learn it in a very short
time. Hence, using it as a base language for developping a
simulation software environment is quite appealing.

SIMOD is a simulation package which is implemented as
a structured set of precompiled modules written in Modula-2.
These modules offer predefined data types and procedures,
and encapsulate a run-time executive system which keeps the
simulation clock, manages the event list, takes care of pro-
cess synchronization, etc. SIMOD is process-oriented, which
means that an active object in the system is represented by
a process, which holds its private data and describes the se-
quence of actions it experiences throughout its life. The pro-
cess view of simulation is recognized as a very natural way to
program a complex model (see Birtwistle (1979), Unger et al.
(1984), and Kreutzer (1986)). Real world systems often con-
sist of independent objects (such as people, aircrafts, robots,
vehicles, etc.) which interact with other objects to accom-
plish their tasks. There may be different types of processes
in a model, and many instances of the same process type
at any given time. In SIMOD, processes are implemented
as coroutines. Event-scheduling facilities are also offered,
so that one can mix the process-oriented and event-oriented
views, if desired. SIMOD borrows some of its ideas from
the simulation package DEMOS (Birtswistle (1979)), which
is based on the language Simula (Birtwistle et al. (1979)),
and from the SIMSCRIPT IL5 language (Russel (1983)). As
in DEMOS, different patterns of process-synchronization are
available, like mutual exclusion through capacity-constrained
resources, producer-consumer synchronization with a buffer
{or a bin), waiting on conditions, and master-slave synchro-
nization (see Kreutzer (1986)).

Other facilities provided by SIMOD include a predefined
type List (a doubly linked list) with an extensive set of list
management tools, multiple random variate generators, and
tools to collect statistics. The user also has access to the
vast Modula-2 libraries which are available on most systems.
Before giving an overview of SIMOD, which we do in section
3, we discuss a small example in the next section, to give
the reader a basic feeling of the SIMOD programming style.
A more elaborate example appears in section 4. In section
5, we discuss the positive and negative aspects of our ex-~
perience with Modula-2 as base language for discrete-event

simulation. The current implementation of SIMOD is a pro-

166

totype version, based on Logitech’s Modula-2 (Eckhardt et
al. (1985)), under VAX/VMS.

Other simulation packages have been proposed, based on
languages that support quasi-concurrency. There are pack-
ages based on ADA (Unger et al. (1984)), C (Schwetman
(1986)), SMALLTALK (Knapp(1986)), etc. SMALLTALK
is a nice language, but current implementations are rather
slow. C is efficient, but not easily readable. ADA is a well
designed language, but it is also big, complex and difficult to
master, at least for a novice. While efficient implementations
of Modula-2 are readily available on most micro-computers,
ADA is not. We do not claim that Modula-2 is the perfect
language for writing simulation software (see our negative
comments in section 5), but it is certainly attractive and
worth trying.

2. A SIMPLE EXAMPLE

Consider a M/U/s queue. Customers arrive according
to a Poisson process, wait for one of the s servers to be
available, and use this server for the duration of their service
time, which is the value of a Uniform random variable. A
SIMOD program to simulate this system appears in figure
1. The list of identifiers following the reserved word IMPORT
are the names of SIMOD’s modules from which objects are
imported. In the program, the identifiers of those imported
objects are qualified (i.e. prefixed) by the name of the module
from which they come.

Every customer in the system is viewed as a process,
whose lifetime is described by the procedure ProcCustomer.
A customer arrives, requests one server, waits if no server is
available, occupy the server for a certain duration (its service
time), releases the server, and terminates his activities. Re-
quest and Release are imported from the module RES, who
provides the Resource type and resource management facil-
ities. The procedure Terminate terminates the life of the
process. It is imported from the module PROCS, who offers
the basic tools for working with processes. Upon calling the
procedure Delay, also imported from PROCS, the customer
waits for the simulation clock to move forward for a “delay”
equal to his service time. This service time is a random vari-
able, uniformly distributed between 12 and 16 units of time,
and whose value is produced through the generator number
2. The procedure Uniform is imported from module RAND.
A second procedure, called ProcEndSim, describes an event
which marks the end of the simulation. It prints a complete
statistical report on resource Server, and stops the simula-

tion.

In the main program, the procedure Create, imported
from PROCS, defines a process type associated with the pro-

A Process-Oriented Simulation Package Based on Modula-2

MODULE Queue;

IMPORT SIM, EVENT, PROCS, RAND, RES;

VAR
Server : RES.Resource;
Customer : PROCS.ProcessType;
EndSim : EVENT.EventType:

PROCEDURE ProcCustomer;
BEGIN
RES.Request (i, Server);
PROCS.Delay (RAND.Uniform (12.0, 16.0, 2));
RES.Release (1, Server);
PROCS.Terminate;
END ProcCustomer;

PROCEDURE ProcEndSim;
BEGIN
RES.Report (Server);
SIM.Stop;
END ProcEndSim;

BEGIN
PROCS.Create (Customer,ProcCustomer,
EVENT.Create (EndSim, ProcEndSim);
RES.Create

(Server, RES.Fifo, 3, 'Service facility');
RES.CollectStat (Server);
SIM.Init;
EVENT.Schedule (EndSim, 1000.0, NIL);
PROCS.StartPoissonArrivals

(Customer, NIL, 10.0, 1, 0);
SIM.Start;
END Queue.

1000) ;

Figure 1. Simulation of a M/U/s queue, version 1.

cedure ProcCustomer. Ifs third parameter gives the number
of memory words in which each instance of this process will
execute. The variable Server was declared as a resource
type. RES.Create creates that resource (the service facil-
ity), with a single Fifo (first in first out) waiting queue,
and a service capacity of 3 units (3 identical servers). The
character string “Service facility” will be used by SIMOD for
the heading of its statistical report on this resource. The call
to RES.CollectStat indicates that automatic statistical col-
lection should be done for the resource. SIM.Init initializes
the simulator. The event EndSim, marking the end of the
simulation, is scheduled to occur in 1000 units of time, and
the arrival process of customers is started. Customers arrive
according to a Poisson process, with mean times between ar-
rivals of 10 units, the interarrival times are generated with
generator number 1. SIM.Start then starts the simulation,
which will go on for 1000 units of simulated time.

In Modula-2, imported objects can also be used without
qualification, provided that they are imported explicitly from
their modules of origin. This is illustrated by the program in
figure 2, which is equivalent to the one in figure 1, but written
differently. In figure 2, some objects are imported explicitly

167

MODULE Queue;

IMPORT SIM, EVENT, PROCS, RES;

FROM RAND IMPORT Uniform;

FROM EVENT IMPORT EventType, Schedule;

FROM PROCS IMPORT ProcessType, Delay, Terminate;

FROM RES IMPORT Resource, Request, Release;
VAR

Server : Resource;

Customer : ProcessType;

EndSim : EventType:

PROCEDURE ProcCustomer;
BEGIN
Request (1, Server);
Delay (Uniform (12.0, 16.0,
Release (1, Server);
Terminate;
END ProcCustomer;

2));

PROCEDURE Proc¢EndSim;
BEGIN
RES.Report (Server);
SIM.Stop;
END ProcEndSim;

BEGIN
PROCS.Create (Customer, ProcCustomer, 1000);
EVENT.Create (EndSim, ProcEndSim);
RES.Create

(Server, RES.Fifo, 3, 'Service facility’);
RES.CollectStat (Server);
SIM.Init;
Schedule (EndSim, 1000.0, NIL);
PROCS.StartPoissonArrivals

(Customer, NIL, 10.0, 1, 0);
SIM.Start;
END Queue.

Figure 2. Simulation of a M/U/s queue, version 2.

and used without qualification, while others are referenced
through qualified identifiers. It is up to the programmer to
decide which choice is best, for each imported object, in order
to improve program’s readability. One obvious constraint
is that all identifiers which are imported explicitly must be
unique with respect to each other and to locally declared
identifiers. For instance, in SIMOD, the identifier Create
may represent a procedure to create a List, a Resource, a
Bin, etc. according to weither it is imported from module
LIST, or RES, or BIN, etc. respectively. If Create is to be
imported from two or more of these modules in the same
program, then it should be qualified.

3. OVERVIEW OF SIMOD

This section briefly describes the principal modules com-
prising SIMOD, as viewed by the user, and the basic features
they provide. A more elaborate user’s guide, to be available
in the near future, gives a precise functional definition of
each object.

P.LEcuyer and N.Giroux

UTIL contains basic tools for objects idenfication by
characters strings, reports printing, etc.

RAND is a random number generation package. Its
kernel is an adaptation of the package proposed by L’Ecuyer
and C&té (1987), and it is based on the 32-bit generator pro-
posed by L’Ecuyer (1987). Multiple “virtual” generators can
run in parallel {(by default, the package has 16 generators,
but that number can be increased to more than a thousand),
and each generator has its sequence of numbers partitioned
into 220 disjoint substreams of length 22 each. A simple ini-
tialization procedure permits to make any generator to jump
ahead to the beginning of its next substream, back to the be-
ginning of its current substream, or back to the beginning of
its first substream. Initially, each generator is automatically
set to the first value of its first substream (its initial seed).
A simple switch (one per generator) permits to change from
regular to antithetic variates or vice-versa. Other functions
permit to generate values according to different probability
laws, like discrete uniform, continuous uniform, exponential,
Weibull, normal, Student, etc.

Module STAT provides tools for statistical collection.
For each kind of statistics to be collected, the user declares a
variable of type Block (a predefined type in module STAT),
and calls the procedure Create to create the corresponding
information block and define its type. There are two types
of statistical blocks: the Tally type is used to tally a se-
quence (sample) of real valued observations X1, X3, X3, ...,
while the Accumulate type is used in the case of a variable
which evolves over time, ie. X(t),t > 0, with piecewise
constant trajectory. User-defined statistical blocks are not
updated automatically by the package. This gives more flex~
ibility. The user calls the procedure Update to give each new
observation X;, for Tally type blocks, and to give the new
value of X (2) at every jump, for blocks of type Accumulate.
Procedure Init can be called at any time to reinitialize all
the counters associated with a statistical block. Procedure
Report prints a full statistical report on a block. For both
types of blocks, specific functions are available to observe
the minimum, maximum, sum (or integral, in the “accumu-
late” case), and average. For Tally type blocks, other func-
tions return the number of observations, the variance and
the mean square, while a confidence interval of desired level
can be printed with a simple procedure call. Of course, such
a confidence interval is valid only for the case of independent
observations, like for instance when observations correspond
to means of independent runs, and if a normal distribution
can be assumed.

Module SIM provides a function which returns the cur-
rent simulation time, and procedures to initialize, start and
stop the simulation. This module maintains the clock and

168

the event list, and provides an interface to the simulation
“engine”.

Module EVENT offers tools to schedule an event to
occur after a specific time delay, or to cancel an event already
scheduled. In defining an event type, one gives the name of
the (parameterless) procedure that should be executed when
an event of this type occurs. When scheduling an event, one
gives the name of the event type, and (optionally) a pointer
to a block of parameters that could be recovered during that
procedure execution.

Basic facilities for process-oriented programming are
supplied by the module PROCS. As seen in the example
" of section 2, each type of process must be associated with a
user-defined parameterless procedure that describes its be-
havior. Like events, processes can be scheduled to start after
a specific time delay, possibly with a pointer to a block of
parameters which could be recovered during process execu-
tion. Normally, processes are anonymous. However, a spe-
cific name (identifier) could be given to a process instance at
scheduling time. That identifier should be declared by the
user as a variable of type ProcessInstance, a pre-defined
type in PROCS. A process can delay itself for a specific period
of time, suspend itself and wait to be reactivated from the
outside, or terminate. Processes may also be interrupted, re-
sumed or killed from the outside. Procedures permit to start
or stop a Poisson arrival process, which generates (anony-
mous) processes of a given type. A trace of operations on
processes could also be printed if desired.

The module LIST provides the predefined type List,
which is a doubly linked list, and a set of list management
tools. Lists are managed without knowing the types of ob-
Jjects they contain. In fact, the objects in the lists are viewed
by the package as of the ADDRESS type, which is compati-
ble with any pointer type. Hence, lists may contain about
anything, like for instance processes, statistical blocks, re-
sources, other lists, etc. (all these objects are implemented
as (opaque) pointer types). In practice, the objects handled
by a list have pointer types declared in the user program.
Here, in contrast to what happens in Simula, an object can
be in many lists at the same time.

.

Every user-defined list should be declared as a variable
of type List, and then created (initially empty) before being
used. A list can be ordered or unordered. In an ordered list,
the objects are kept in order automatically by the module
using an ordering function supplied by the user at list cre-
ation. This user-defined function should be a boolean valued
function which takes two objects A and B as its arguments,
and returns TRUE if and only if object A should precede ob-
ject B in the ordered list. In an unordered list, the objects

A Process-Oriented Simulation Package Based on Modula-2

are also arranged in some way, but their ordering depends
on how they have been inserted in the list.

For each list, the system maintains a (hidden) pointer
to its last referenced or inserted object, which is called its
“current” object. In an unordered list, an object can be in-
serted at the head, at the tail, just before the current object,
or just after. An object can be removed from a list, or viewed
{recovered) without being removed from the list. One can
remove or view the first object in the list, the last one, the
current object, its successor, or its predecessor. This per-
mits running through a list, for instance to find an object
with particular features. Procedures are also available to
remove a specific object from a list, when the name of the
object is known, or to verify if that object is in the list or not.
There is a function which returns the size of a list (the num-
ber of objects it contains), a procedure to sort an ordered
list according to a new ordering function, and other tools
to concatenate, merge, split, empty and delete lists. Every
user-created list owns two predefined statistical blocks: one
to “tally” the times spent in the list by objects, the other
one to “accumulate” (i.e. integrate and average) the size of
the list with respect to time.

From module RES, one can import the Resource type,
and a set of associated routines for synchronization through
capacity-constrained resources. A Resource represents a ser-
vice facility with a limited (integer valued) capacity (e.g.
number of servers), and a single waiting queue, with service
policy fixed at creation time. A process must request a num-
ber of units of a resource before using it, and releases that
number of units when it has finished with it (it is not nec-
essary to request or release all the units at the same time).
Requests can also be made with (real valued) priorities. Sim-
ple procedures permit to modify part of the capacity of a
resource (for instance, when a machine breaks down). Each
resource owns two lists, one for its waiting queue and one for
the processes in service, and both lists have their associated
statistical blocks.

Module BIN provides the Bin facility, which allows a
user to establish producer/consumer relationships between
processes. A Bin corresponds essentially to a pile of tokens
(or a buffer), and a waiting queue of processes. A (producer)
process may add any number of tokens to the Bin by calling
procedure Give, while a (consumer) process retrieves tokens
by calling Take. In the latter case, if enough tokens are avail-
able, the consumer process is allowed to continue after the
Bin count is decremented by the number taken. Otherwise,
the consumer is blocked and placed into the waiting queue
for this Bin. It is reactivated when it is his turn for service
and enough tokens are available. Processes may call func-

169

tions that return the number of tokens in a bin, or the List
of processes in its queue.

Sometimes, a process should be delayed until a (of-
ten complex) boolean condition becomes true. The mod-
ule COND offers the type Condition, which consists of a
boolean flag and a waiting queue (List) of processes. Pro-
cedure calls permit to set the Condition to true or false.
A process who calls Wait on a Condition is allowed to con-
tinue if the Condition is true. Otherwise, it must wait in the
queue until the Condition is reset to true (from the outside).

Module MASLA implements the master/slave syn-
chronization paradigm between processes. A MasterSlave
(a predefined type) has two queues: one for the waiting mas-
ters and one for the waiting slaves. A (master) process asks
for a slave by calling the function Request, which returns
a process willing to act as a slave. If no slave is presently
available, the calling process is blocked and placed into the
master’s queue until one becomes available. A process be-
comes a slave by calling Wait for a given MasterSlave. If
no master is waiting, it is blocked and placed into the slave’s
queue, otherwise a master is waken up and both may con-
tinue.

For any given List or Resource the user can ask for
automatic statistical collection, by simple procedure calls.

4. A JOB SHOP MODEL

In this section, we use SIMOD to simulate a job shop
model, taken from section 2.6 of Law and Kelton (1982).
The shop contains M groups (types) of machines, with N,,
machines in group m, for m = 1,...,M. It is modelized by
an open queueing network, with one FIFO queue for each
group of machines. J types of jobs arrive to this shop.-For
7 = 1,...,J, jobs of type j arrive according to a Poisson
process, with rate A;. Each job follows a sequence of tasks
that must be executed in a specific order, on specific ma-
chine groups. A job of type j has T; tasks, to be executed
on machine groups mj,1,...,m;1; and whose durations are
dj,1,...,d5,1; respectively. The purpose of the model is to
evaluate the performance of the shop for a particular work-
load. We simulate the shop operations for Tp hours, starting
with an empty shop. To reduce the initial biais, we collect
statistics only over the time interval [Tw,Tr], where T is
an initial warm-up time. Statistics are collected on (i) the
times spent in the shop by jobs of different types, and (ii) the
utilization rate, waiting times, service times, queue length,
etc. for each machine group.

The SIMOD program appears in figure 3. Each group of
machines is viewed as a Resource, whose capacity is equal to

P.LEcuyer and N.Giroux

MODULE JobShop;

IMPORT UTIL, RES, STAT, SIM, PROCS, EVENT;

FROM Storage IMPORT ALLOCATE;

FROM RES IMPORT Resource, Request, Release, ServicePolicy;

FROM InOut IMPORT ReadCard, ReadReal, ReadString, OpenlInput, Closelnput;
TYPE

NumTypMachine = [1,.5]; (* A machine group number. *)

NumTypJob = [1..8]; (* A job type number. *)

NumTask = [1..5]; (* A task number. %)

InfoTypJob = RECORD (* Information on a type of job. *)
ArrivalRate : REAL; (* Arrival rate. *)
SojournTimes : STAT.Block; (* Stats. on times spent in shop. #)
NTask : CARDINAL; (* Nb. of tasks for this job type. %)
DurationTask : ARRAY NumTask OF REAL; (* Durations of the tasks. *)
MachTask : ARRAY NumTask OF Resource; (% Mach. required for tasks. #)
END;

VAR
NTypMachine : NumTypMachine; (* Number of machine groups. *)
NTypJob ¢ NumTypJob; (* Number of job types. *)

TypMachine : ARRAY NumTypMachine OF Resource;
(* A table of all machine groups. %)

TypJob : ARRAY NumTypJob OF POINTER TG InfoTypJob;

(* A table of all job types. *)
m : NumTypMachine; (* Index of a machine group. *)
j : NumTypJob; (* Index of a job type. *)
Job ¢ PROCS.ProcessType;

EndSim, EndWarmUp : EVENT.EventType;
WarmUpTime, FinishTime : REAL;

PROCEDURE ReadAndCreate;

VAR
Name : UTIL.String20; (* Name of a machine or job type. *)
Capacity : CARDINAL; (* Number of machines in the group.x)
Task : NumTask;

BEGIN

OpenInput (".DAT");
ReadReal (WarmUpTime); ReadReal (FinishTime):
ReadCard (NTypMachine); ReadCard (NTypJob);
FOR m := 1 TO NTypMachine DO
ReadString (Name); ReadCard (Capacity);
RES.Create (TypMachine [m], Fifo, Capacity, Name);
RES.CollectStat (TypMachine [m]);
END;
FOR j := 1 TO NTypJob DO
NEW (TypJdob [j1);
WITH TypJob [j1~ DO
ReadString (Name); ReadReal (ArrivalRate); ReadCard (NTask);
FOR Task := 1 TO NTask DO
ReadCard (m); ReadReal (DurationTask [Task]):
MachTask [Task] := TypMachine [m];
END;
STAT.Create (SojournTimes, STAT.Tally, Name);
END;
END;
Closelnput;
END ReadAndCreate;

Figure 3. Simulation of a job shop model.

170

A Process-Oriented Simulation Package Based on Modula-2

PROCEDURE ProcJob;

VAR
ArrivalTime : REAL; (* Arrival time of this job. *)
Typ : POINTER TO InfoTypJob; (* Type of this job. *)
Task : NumTask; (* Current task number. *)
BEGIN

ArrivalTime := SIM.Time();
Typ := PROCS.Attrib();
WITH Typ~ DO
FOR Task := 1 TO NTask DO
Request (1, MachTask [Task]):
PROCS.Delay (DurationTask [Task]);
Release (1, MachTask [Task]);
END;
STAT.Update (SojournTimes, SIM.Time() - ArrivalTime);
END;
PROCS.Terminate;
END ProcJob;

PROCEDURE ProcEndWarmUp;

BEGIN
FOR m:=1 TO NTypMachine DO RES.InitStat (TypMachine [m]l); END;
FOR j:=1 TO NTypJob DO STAT.Init (TypJob [j]~.SojournTimes); END;

END ProcEndWarmUp;

PROCEDURE ProcEndSim;
VAR
BEGIN
FOR m:=1 TO NTypMachine DO RES.Report (TypMachine [ml]); END;
FOR j:=1 TO NTypJob DO STAT.Report (TypJob[jl~.SojournTimes); END;
SIM.Stop;
END ProcEndSim;

BEGIN

ReadAndCreate;

EVENT.Create (EndSim, ProcEndSim);

EVENT.Create (EndWarmUp, ProcEndWarmUp):

PROCS.Create (Job, ProcJob, 2000);

SIM.Init;

EVENT.Schedule (EndWarmUp, WarmUpTime, NIL);

EVENT.Schedule (EndSim, FinishTime, NIL):

FOR j := 1 TO NTypJob DO
PROCS.StartPoissonArrivals (Job, TypJob[jl .,(TypJobl[jl~.ArrivalRate), i, 0);
END;

SIM.Start;

END JobShop.

Figure 3. Simulation of a job shop model {continuation).

171

P.L'Ecuyer and N.Giroux

the number of (identical) machines in the group. All wait-
ing queues are FIFO. Each type of job has an associated
“RECORD” holding all its related informations. A job type
has an arrival rate, 2 number of tasks to be performed, two
tables giving the duration of each task and the machine group
on which it should be performed, and a statistical block that
gathers statistics on the overall time spent in the system by
jobs of this type. The procedure ReadAndCreate reads all
data from a file and creates the machine types and job types.
The numbers § in the type definitions are upper bounds on
the numbers of machine groups, job types and tasks per job,
respectively.

Every job in the system is a process whose lifetime is
described by the ProcJob procedure. Jobs are generated ac-
cording to Poisson processes, one per type of job, started off
from the main program. The procedure StartPoissonAr-
rivals requires five parameters representing respectively the
process type to be activated, the address of the process at-
tributes, the mean time between activations of process, the
random number generator to be used, and the maximum
number of processes to activate (a value of zero for this last
parameter means that this maximum number is infinite).
Hence, each job is created with a parameter (or attribute)
indicating its job type, and whose value could be recovered
by calling the Attrib() function, inside the ProcJob proce-
dure. For each task to be performed, the job requests one
machine of the appropriate type, keeps it for the specified
duration, and releases it. When the job terminates, its time
spent in the shop is computed and added as a new observa-
tion to the SojournTimes statistical block for this type of
job.

Before starting the simulation executive, two events are
scheduled. The first one (EndWarmUp) marks the end of the
warming-up period and reinitializes all the statistical blocks,
while the second one (EndSim) prints statistical reports and
stops the simulation.

5. POSITIVE AND NEGATIVE ASPECTS OF
MODULA-2

As mentioned in the introduction, Modula-2 has many
strong points and is gaining widespread attention. Com-
pilers and libraries are easily available on most machines.
The language is relatively small and simple, enables strong
typing and modular design, separates the definition of an
abstraction from its implementation, provides procedure-
valued variables, and supports concurrency. Current imple-
mentations are also reasonably fast. Modula-2 is a good lan-
guage for applications for which the speed is important. For
instance, the examples given in figures 2 and 3 were also pro-
grammed in SIMSCRIPT IL5, and executed with the same

172

data than the SIMOD programs, on the same machine. The
SIMSCRIPT II.5 versions took between 20% and 60% more
CPU time, depending on the data.

Like any other language, it also has its weaknesses. Mof-
fat (1984) has much to say about that; his arguments raise
serious concerns and some of them are summarized below.

One bad aspect of Modula-2 is its treatment of I/O. The
I/O facilities are low level and are not really part of the lan-
guage. They must be imported from a large set of library
modules (usually provided with the compiler), which con-
tain hundreds of I/O procedures, all with different names.
This name space cluttering problem is a consequence of the
fact that I/O has been removed from the language, com-
bined with a rather annoying language restriction: Modula-2
does not allow procedure parameters that are optional (de-
fault valued), or varying in number, or generic (like in ADA,
for instance). A different procedure name must be used for
each number and combination of types of parameters. This
often makes many many identifiers. These identifiers may
also differ between implementations, giving rise to portabil-
ity problems.

Another irritating matter is the obligation to give, ev-
erytime a new coroutine is created, the size of memory in
which that coroutine would execute. Every coroutine has its
own executfion stack, which is used to store procedure call
information, local variables, and any other procedures called
by this coroutine. The memory area allocated at coroutine
creation should be large enough, otherwise stack overflow
and program termination occur. Additional space cannot
In the context of
process-oriented simulation, where thousands of processes

be allocated when overflow is to occur.

are created dynamically during execution, and where pro-
cesses may call procedures from precompiled modules whose
implementation is hidden, determining the memory require-
ments of a process is not always trivial.

Other useful features that are absent from Modula-2
include facilities for exception handling, automatic storage
management (a garbage collector), varying-length strings
and string operators, and coroutines whose associated pro-
cedures have parameters.

6. CONCLUSION

We have shown how the Modula-2 language can be used
to implement a process-viewed simulation package. We also
pointed out some important or useful features which lack
from Modula-2. Adding these features to the language could
bring some benefits, but would also add to the complexity
and difficulty of implementation. In short, we should say

A Process-Oriented Simulation Package Based on Modula-2

that Modula-2 is an experimental language, not a finished
product. But it is widely disseminated and has been adopted
as the base language for a number of experimental systems.
SIMOD is one of these. We can expect that these experi-
ments will give valuable insights for future versions of the
language, or for other new languages.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant
A5463, FCAR-Quebec grant # EQ2831, and a devel-
opment grant from the Faculté de Sciences et Génie de
P’Université Laval, to the first author. Denis Alain, Jean
Bélanger, Michel Duclos and Gaétan Perron also took part
in the design and development of SIMOD. We wish to thank
‘Jules Desharnais, Olivier Roux and Thien Vo-Dai for helpful
comments and suggestions.

REFERENCES

Birtwistle, G. M. (1979). Demos — A System for Discrete
Event Modelling on Simula. MacMillan.

Birtwistle, G.M., Dahl, O.J., Myhrhaug, B., and Nygaard,
K. (1979). Simula begin. Lund:Studentlitteratur.

Bratley, P., Fox, B. L. and Schrage, L. E. (1983). A Guide
to Simulation. Springer-Verlag, New York.

Eckhardt, H., Koch, J. and Mall, M. (1985). Logitech
Modula-2 Users Manual, Logitech Inc., Redwood City,
California.

Ford, G. A. and Wiener, R. 5. (1985). Modula-2 : A Software
Development Approach. Wiley, New-York.

Gleaves, R. (1984).
Springer-Verlag, New-York.

Modula-2 for Pascal Programmers.

Kaubisch, W. H., Perrot, R. H. and Hoare, C. A. R. (1976).
Quasi-parallel programming. Software Practice and Ez-
perience, 6, 341-356.

Knapp, V. (1986). The Smalltalk Simulation Environment.
1986 Winter Simulation Conference Proceedings, 125—
128.

Kreutzer W. (1986). System Simulation — Programming
Styles and Languages. Addison Wesley.

Law, A. M. and Kelton, W. D. (1982). Simulation Modeling
and Analysts. McGraw-Hill.

173

L’Ecuyer, P. (1987). Efficient and Portable Combined Ran-
dom Number Generators. To appear in Communications
of the ACM.

L’Ecuyer, P. and C6té, S. (1987). A Random Number Pack-
age with Splitting Facilities. Report no. DIUL-RR-8705,
Département d’informatique, Université Laval.

Malloy, B. and Soffa, M. L. (1986). SIMCAL : The Merger of
Simula and Pascal. 1986 Winter Stmulation Conference
Proceedings, 397-403.

Moffat, D. (1984). Some Concerns about Modula-2. SIG-
PLAN Notice 19, 41-47.

Muller, C. (1986). Modula—Prolog: A software Development
Tool. IEEE Software, 3, 6, 39-45.

Russel, B. C. (1983). Building Simulation Models with SIM-
SCRIPT IL.5. C. A. C. L, Los Angeles.

Schwetman H. (1986). SIMCAL : A C-Based, Process-
oriented simulation language. 1986 Winter Simulation
Conference Proceedings, 387-396.

Unger, B. W., Lomow, G. A. and Birtwistle, G. M. (1984).
Simulation Software and ADA, The Society for Com-
puter Simulation, La Jolla, California.

Vaucher, J. (1984). Process-oriented Simulation in Standard
Pascal. in Simulation in Strongly Typed Languages :
Ada, Pascal, Simula, Ed. by R. Bryant and B.
W. Unger, SCS Simulation Series, vol. 13, no. 2.

Wirth, N. (1985). Programming in Modula-2. Third ed.,
Springer-Verlag, New-York.

P.L'Ecuyer and N.Giroux

AUTHOR’S BIOGRAPHIES

PIERRE L’ECUYER is an associate professor in the
Computer Science Department at Laval University, Ste-Foy,
Québec, Canada. He received the B.Sc. degree in mathemat-
ics in 1972, and was a college teacher in mathematics from
1973 to 1978. He then received the M.Sc. degree in opera-
tions research and the Ph.D. degree in computer science, in
1980 and 1983 respectively, both from the University of Mon-
treal. From 1980 to 1983, he was also a research assistant at
I’Ecole des Hautes Etudes Commerciales, in Montreal. His
research interests are in Markov renewal decision processes,
approximation methods in dynamic programming, optimiza-
tion in stochastic processes, random number generation, and
discrete-event simulation software. He is a member of ACM,
IEEE, ORSA and SCS.

Pierre L’Ecuyer
Département d’informatique
Pavillon Pouliot

Université Laval

Ste-Foy, Qué., Canada

G1K 7P4

(418) 656-3226

NATALY GIROUX is a master’s student in computer
science at Laval University. She is also working as a consul-
tant for Somapro inc. in the scientific group. As research
assistant, she has worked in different research centers, par-
ticularly for the National Defence where she worked on a
pattern recognition algorithm. She received a B.Sc. in com-
puter science from Laval University in 1987.

Nataly Giroux

699 Dalquier

Ste-Foy Qué., Canada
G1V 3H4

(418) 653-8585

174

