Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

The SIMPLE_1 simulation environment

Phitip Cobbin
Sierra Simulations & Software
303 Esther Avenue
Campbell, California 95008

Overview

SIMPLE_1 is an integrated modeling environment for
interactive simulation using the IBM PC, XT, AT and true
compatible microcomputers. SIMPLE_1 has a number of
innovative features relative to simulation software and
programing languages: The implementation of SIMPLE_1
combines compilation and run time systems into an integrated
environment including on-line tutorials, learning modules, and a
full screen editor coupled to the compiler and run time system.

Errors detected by the compiler or run time system initiate a
call to the editor to isolate the error and speed up the edit-
compile-debug model development cycle. The language supports
application programs and a "fool box" concept whereby models
and programs to support simulation project activities can be
written in SIMPLE_1 to post process simulation results or for
data collection activities. Application programs can be run
using RUNSIM which loads and executes SIMPLE_1 models
compiled to disk with the commercial version of the software. A
built in capability to animate simulation results using a
character graphics methodology stresses a simplified approach
to model animation. The language supports reading and writing
of data to files and devices as standard ASCIl text files in
addition to animation and keyboard data input capabiiities. ASCII
text file I/O serves as a straight forward hook to other third
party software. SIMPLE_1 is not just a pretty picture: the
language support extensive statistics collection capabilities
including statistics on ‘individual elements of user defined
arrays!

SIMPLE_1 an integrated modeling environment:

Simulation projects inherently involve the integration of many
activities and analysis skills to accomplish study objectives. In
addition to the obvious requirement to construct, execute and
analyze simulation results: Data collection and analysis, model
validation, and convincing decision makers as to the merits of
simulation are important issues in simulation that emerging
simulation software must address.

SIMPLE_1 has been implemented as an integrated modeling
environment to facilitate simulation related activities by
organizing the software into a set of modules accessed through
function key driven menus. Editing of models is accomplished
via a full screen text editor coupled to the compiler and run time
system error detection routines. The compiler and run time
error recovery mechanisms endeavor to return the modeler to
the editor and point out the source of the problem to expedite
debugging. The text editor also serves as a means for
reviewing model reports and editing data files. SIMPLE_1's
main environment display is illustrated in Figure 1 and Figure 2
summarizes the unique features of SIMPLE_1

Current Date & Time
Box lists command keys
and their function

SIERRA SIMULATIONS & SOFTWARE DATE: 8/18/86 TIME: 3.41:46 PM

F1 GETFILE Fs5| DELETEFLE F9|COMPILEMODEL ¢| CHANGEDRIVE

F2| REVISEFILE F6| RENAMEFLE F10 RUNMODEL D|LIST DIRECTORY

F3| SAVEFLE F7 EDITFLE A |CHANGEACTIVE | | INSTALLINFO

F4l COPYFILES F8 TUTORIAL DIRECTORY X EXIT SYSTEM
SIMPLE_1 supports modeling discrete and continuous systems Ty joMDL CRANEMDL GT EXMPLMDL DATAMDL HISTO.INP
world views using a network modeling orientation. Features of ROCKET.MOL CONVEYORMDL H_GRAM.MDL PILOT.EJT ELEVATORMDL
the fanguage include the ability of the user to declare variables WAFERMDL TESTER.MDL DISK.MDL CAFEMDL CASH.MDL.
and statistics requirements, perform I/O operations on files and SHIPMDL SPRING.MDL

to animate simulation results in real time easily utilizing built in
language features. SIMPLE_1 utilizes a repetitive approach to
run control to facilitate goal seeking modeling and run length
definition based on model behaviour. Discrete system models
are defined via networks used to define the flow of events for
entities. A key concept in SIMPLE_1 is the ability to organize
entities into groups which travel together and retain their unique
characteristics. In addition, groups of entities can be
assembled as a collection of different types of entities. The
entity grouping feature of the language is particularly suited for
modeling assembly operations in manufacturing and complex
resource management situations.

DISK FREE SPACE: 24678 BYTES Listing of disk directory

Currently working with drive B

USING DISK DRIVE: B AVAILABLE MEMORY: 443872 DIRECTORY: \MODELS
FILE IN MEMORY: TV_IO.MDL
COMMAND:

Amount of memory
available
File loaded into memory for:

* Compiling

* Editing

Currently working with
' "B"s \MODELS directory
Figure 1 - SIMPLE_1 main environment display.

136

The SIMPLE_1 Simulation Environment

Integrated Editor: SIMPLE_1 Language Features:

* If Compiler/Run time error detected Editor is * CONDITIONS block: Provides a unified queue
called and the cursor positioned 1o the problem release mechanism.
area for rapid debugging. * Discrete & Continuous world views:

" On-line tutorials accessed from editor provide A Activity on node orientation for Discrete
quick and easy look up for: A Differential equations defined as simple
A Lanaguage documentation & syntax noles expressions.

A Color pallete look up for building animated * General purpose programming features:
models using color monitors. A IF-THEN-ELSE : with embedded activities

A ASCII look up for PCs graphics characters. A WHILE loop: with embedded activites

A Error code quick look up debuging. A READ-WRITE to files.

*PCs graphics characters, (happy face, greek A STRING variables.
letters, etc.) can be entered into model text. A Accept data from keyboard.

" Extensive statistics collection features:
A Observational & Time weighted statistics

Built in Animation Features: for user defined variables; Including
. . individual elements of matrices.
" Multiple screens can be in use for input menus * Dynamically allocates memory up to 650K!

or animation of model state during simulations.
* Simplified definition for animation/menu

background as a text image. Built in Debquer:

" Automatic updating of screens as system * Halt simulation and take a peek at whats
changes state using: going on.

A MONITOR block to specify what to monitor * Simplified referencing of matrix elements
and who to tell about it. to look up or change values using arrow keys.
A CHARTIng of information on screens using " Find out how many entities of each type are
ascii characters as symbols. currently residing in activities & queuss.

A SHOWing numeric information on screens. Assignment of global and string variables

from the run time interrupt.

" Page among mulliple screens to view the
current state of the simulation.

" Find out when activities are scheduled to be
completed and find out the ranking of entities
in queues.

Compiler Options:

* Generate Application Progams:
A RUNSIM utility program loads & execules
SIMPLE_1 programs compiled to disk
A Write application programs
and distribute them to "client" users.
“Include file option to breaking up models into
sections.
A Break down large models into sections.
A Develop multiple experimental files.
‘ Toggle keyboard trigger for run time interrrupt:
A Write customized keyboard handling routine.
A Turn run time debugging off.

Over 24 Examples Supplied

Examples range from short lllustrative models
to large manufacturing assembly applications.

On-line Documentation & Tutorials:

" Menu driven system accesses extensive system

. of buiit in tutorial information.
No Special Hardware Required: * Spacial SIMPLE_1 animaled models called

"No special graphics adapters: "Learning Modules” to illustrate language
A Runs on Color and monocrome systems. concepts graphically.

"Runs on IBM PC, XT, AT & Compatibles. " Theory of operation, and syntax for all language
A AT&T PC6300 concepts available on-line.
A COMPAQs * On-line documentation on built in SIMPLE_1
A Zenith, Including the governemt ones! functions, random number distribution functions.

R A

Figure 2 Summary of SIMPLE_1 Features:

137

P.Cobbin

Information on various aspects of SIMPLE_1 are available
through on-line tutorial screens and learning modules. These
features facilitates debugging and learning the language quickly.
Information on syntax and language elements are available
through extensive on-line tutorials. In addition to on-line
documentation on language elements, special learning modules
written in SIMPLE_1 are accessed via menus to assist
beginners in learning the language. The learning modules feature
animated simulations to illustrate language concepts. Figure 3
is a "road map" of the simulation environment menu structure.
The language tutorials are organized into groups and can be
accessed from the main environment, or from within the editor
via a few key strokes using the function keys on the keyboard.

Managing disk files is performed with a function key driven
operating system to manage disk directories, active path names
and drives, etc. When editing a file one can exit the editor and
execute a SIMPLE_1 application program. Application
programs can be compiled for simulation or collection and
analysis of data via "toolbox" programs written in SIMPLE_1
featuring interactive execution of models with disk or keyboard
input of program variables.

Animation of simulations uses SIMPLE_1 language elements to
direct updating of the monitor to reflect the changing state of
the simulation model. A debugging facility is included in the run
time system to interrupt the model and review or change
program variables. The character based animation scheme
combined with the run time interrupt facility have been found
particularly useful for model verification, and problem isolation.

SIMPLE_1 has no special hardware requirements for graphics
adapters or special monitor requirements. The software runs
on’the IBM PC, XT, AT and like compatibles such as the AT&T
PC 6300 equipped with either a monochrome or a color monitor.
Avoidance of special hardware requirements was a conscience
design constraint with the monochrome IBM PC being used as the
baseline machine for implementation

The text editor is a full screen text editor coupled to the
compiler and run time systems. When the compiler or run time
system detects an error the editor is called after displaying a
descriptive message of the problem encountered. Figure 4 is a
sample reproduction ‘of an editor display. From the initial
environment the mode! was loaded into memory and the editor
accessed by subsequently pressing the F7 key.

When an error is detected by the SIMPLE_1 compiler or run
time system, a message describing the nature of the error is
displayed. After displaying the error ‘message SIMPLE_1
returns control to the editor with the cursor initially at the
problem area. Once returned to the editor the usual routine is to
consult with the on-line tutorials to check syntax or language
concepts. Once the error is isolated and fixed in the the editor
the user re-compiles the revised model. SIMPLE_1's coupling
of a full screen text editor with the compiler, run time, and
tutorial systems provides an effective mechanism for program
development and speeds up the learning process for beginners.

LOGON BANNER

MAIN ENVIRONMENT

F
' v !
EDITOR TUTORIALI I INSTALL I
\ \

Ly !

MAIN
KEYS

4
EDITOR
TUTORIAL

A4
COL
LOOKUP

A l
FIND LESSONS
STRING

v
ASCl
LOOKUP

v
SIMPLE_1
TUTORIAL

Ll

Y A L \ 4
BLOCK ERROR
CONCEPTS |VARIABLES I | FUNCTIONSI l I_OOKUPI

Figure 3 - Road map of menu screens in SIMPLE_1

A ark M,

for Copying
or Delsting a block of text

File being editad

BLKSTRT :
10 MDL LINE:

Insert/Overwrite mode setling

ocoL: 0 ¥

; BLK END: 0COL i
F1 FINDSTR § F4 DELBLK COPY BLK F10 WRITEBLK §Ctrl F3 EDITOR
F2 DELLINE l F5 MKBLKTOP l;:e OVE B Icm Fi TOP I TUTOR
F3 QUIT F6 MKBLKBOT ¥rg PEADBIK lcw F2 BoTTOM

DECLARE;
GLOBALS:

TOTAL_INVENTORY TIME_STATS:
TIME_IN_SYSTEM TIME_STATS:
ARRIVAL_TIME:
RUN_TIME:
INSPECT_TIME:
INDEX:
RUN_LENGTH:
FIX_TIME;

Cursor coordipates relative
to fils, and edit window

c:h

Figure 4 Integrated full screen text editor

Box lists command keys
and thair function

ENTITIES: TVv(i): Text being edited:
Cursor is at letter

D in "DECLARE" (line 2
cofumn 1)

138

The SIMPLE 1 Simulation Environment

SIMPLE_1 "Toolbox" programs:

The SIMPLE_1 language and environment support development
and use of a "toolbox" approach to systems analysis. Programs
can be written in SIMPLE_1 to collect and analyze data: real
or synthetic data. The learning modules introduced with
version 3.0 of the software where written in SIMPLE_1 and
illustrate language concepts via animated examples. Examples
of tool box/application programs include the histogram analysis
program supplied with the software: A generalized stochastic
cash flow analysis program described in [7]; and an inventory
ordering module for teaching purposes described in [8]. In
addition SIMPLE_1 application programs have been run under
an expert system shell. The ability of the user to build "tool
box" programs in SIMPLE_1 provides an open ended means of
expanding the capabilities of the system. The open ended nature
of SIMPLE_1 is a direct consequence of merging simulation
language concepts with general purpose programing language
concepts common in BASIC, Pascal, C, or FORTRAN.

SIMPLE_1: The Language

SIMPLE_1 employs a number of unique approaches to
simulation from a language design point of view. The
development of SIMPLE_1 evolved with the intention of
providing basic building blocks, or language primitives, to model
systems of both a discrete and a continuous nature. A network
approach to modeling has been demonstrated to be a highly
affective vehicle for describing and documenting models of
systems. Accordingly, SIMPLE_1 was desighed as a network
oriented language with an activity on node orientation. The
language integrates modeling concepts with general purpose
programing concepts to unify modeling efforts. The language
includes concepts common to high level programing languages
including string and file variables for ASCII I/O operations to
devices and files. In addition to data structure concepts the
language implements "C" like side affects whereby block
parameters can assign a value to a variable as a side affect of
a blocks' execution. A repeatative approach to run control is
used so that results from one simulation run can be used to
establish parameters for subsequent simulations. For example,
the decision to halt the simulation is established by the model
and does not require "compiling in" the number of runs, run
length ete. common to traditional discrete simulation languages.
Models are structured into five segments, one of which is used
to declare variables. The other segments of a model describe
the discrete and continuous nature of the system and run
control aspects of model execution. Table 1 summarizes the
block types that make up the SIMPLE_1 language and Table 2 is
a listing of the built in functions. The blocks summarized in
Table 1 can be used to open and close files, buffer keyboard
input and perform discrete/continuous modeling of systems. In
addition general purpose concepts like an IF-THEN-ELSE and a
WHILE loop construct are included in the language. SIMPLE_1
also contains a number of built in function 1o perform arithmetic
operations and access statistics and internal SIMPLE_1
variables.

Simutation

139

SIMPLE_1's repetitive approach to run control employs a
PRERUN and POSTRUN model segment to set initial
conditions and analyze run results. Figure 5 illustrates
SIMPLE_1's approach to running the user's model. The
PRERUN section of the model is executed first to establish
model parameters and run control limits such as the stopping
time for the simulation. After execution of the PRERUN code
the DISCRETE and/for CONTINUOUS sections of the model
are processed. Using SIMPLE_1's repetitive approach to run
control one can look at the results of a simulation to base
decisions for parameter values of the next run.

Discrete event aspects of the model are defined using an activity
on node network structure. The Continuous aspects of the
system model are described using algebraic state equations
which define variables overtime via first order differential
equations. The Continuous aspects of the model are simulated
using a Runge Kutta fourth order fixed step procedure with the
step size assignable by the modeler. The discrete aspecis of
the model are processed via an event scheduling mechanism to
sequence the flow of entities through blocks in the network

model.
DISCRETE
| CONTINUOUS |

g}
__Re-Run simulation f STOP block is not

encounteered in POSTRUN

Start
of

Return to
Modeling
Environment

POSTRUN

Figure 5- Schematic of run control in SIMPLE_1

SIMPLE_1 is a declarative language supporting user defined
variables. Variable identifiers can have up to 20 significant
characters including the underscore to facilitate self
documentation of the model. The language supports the
declaration of the following classes of data structures:

1) Globally scoped reals: scalars and arrays .

2) Entities: each type having their own unique number of
atiributes.

3) Screens: Windows for animation backgrounds or menu
screens.

4) Files: File variables for reading and writing to files.

5) Strings: scalar and string arrays with individual string size
limits .

Statistics on globally scoped variables of an observation or time
persistent nature are collected automatically by appending key
words to the variable declaration. When statistics are declared
for arrays the statistics are collected for each element in the
array; accordingly SIMPLE_1 models can collect extensive
statistics on model variables.

P.Cobbin

—» em [AcCERT J—+ LABELACCEPT.XYNVARLH; ——»f BE [heewer | & |ABELPREEMPT.BLNUMYAR;
X

PREEMPT entitles engaged In the ACTIVITY
labeled P_LABEL and assign thelr remaining
activity time to VAR,

VARI]\!!.E a variable value, Preempmed Enytey
"
._.pl LABEL DURATION LABEL ACTIVITY DURATIONN; OLABEL

AcTivity (3] OUEUE

Engage arrlving entitles In an activity
for » duration of time,

I ¥ P_uwa.l MM vm:AaLE'
ACCEPT at a screen location | L

OLABEL QUEUE,RANK;

Hold entitles in QUEUE until a
CONDITIONS block refeases them.

__gi LABEL. AEAD —_——
._'I LABEL SRANCH, LABEL BRANCH
CONDITION s | LABEL 1 CONDITION/PROBABIUITY,LABELT: FLE_VARIADLE] VARIABLEL:
- - LABEL2: VAIUAALEZ | VARIARLEL
CONDINONZ | LADFLZ fpp . JLABELN: P I
conoimonn | LaseLs
Route entitles using conditional or
probabillistic branching criterla, l ADEL AEFONT

. LABEL CHART SCREEN NAMEX,Y,SYM,
—p| wos SHART } [y CNT.LIM,FORE_COLOR,BACK GOLOR;

SCAONNAME X Y

Display vnr(ablc number of ASCIi characters
at loczﬂon on a screen The CHART

stm o | us

FORE_COLOA | BACK_COLOR block is the prndpl | of
of models.

e

o LABEL CLEAR;

CLEAR all statistics

LABEL READ,FILE_VARIABLE,
VARIABLE1 : VARIABLEZ:,
VARIABLEI : VARIABLEN: /;

Read data from ASCII text flles.

LABEL REPORT, FILENAME;

Generalte a standard report on
simulation results.

LABEL RESET:

Destroy all exlsing entitles In the
modaf,

LABEL CLONEQTY.LBL; —__.i LABEL SCAEEN |omeoe ey LABEL SCREEN, SCREEN_NAME,
_.I LABEL CLONE — TEXT_SWITCH,BORDER_SW,
oty | oL CLONE arriving entitles and routs them . TExTS CLEAR_SW,FORE_COLOR,
the block with the label specified by the BORDERSW | CLEARSW BACK_COLOR;
CLBL parameter. COLR
P FoReS Back coxoq Activates the screen and optionally
resels color atiributes,
__.’ LABEL CLOBE f— LABEL CLOSEFILEVAR;
sbititeni CLOSE a file;
CONDITIONS, GLOBAL CONDITIONS, — wa | vewseneonesson: | LABELf,iTR‘QAFf"Ef:.(ﬂPgiifgﬁgf
QUABEL1 | OONOMIONS |TAETLEL1| QLABEL1,LOCAL CONDITIONS, TARGET LBL1: . . VARN:aEXPRESSIOND:
QLABEL2Z o/ TARQET LBL 2 QLABEL2, OR JTARGET LLBL2:
PYyerTp ey — QLABELN, MATCH ,TARGET LBLN: SET valus of model variables and
SET I entity atiributes,
GLOBAL CONDITIONS Monltor system state until spacified conditions
CONDIIONS are met. When conditions are ail true then the
CONDITIONS block releases items from the QUEUEs
and routes them to the targeted blocks in the model. .
LABEL SHOW SCREEN NAME XY,
ary N | TivesETw CREATE, QTY1,NAMET; ~—] woa | show | .5 EXPRESSION.LD;

TRRST | G LM QTY2,NAME2:

SCREENNAVE] X

QOTYn,NAMEn,TIME BETW,T FIRST, C LIMIT;

CREATE

CREATE groups of entljes by name in the

FORE_COLOR | BACK_COLO

In the specified quantitles at Inter-creation timss
spacified by the TIME BETW, T FIRST, and G LIMIT
parameters.

s e _;1wsa.

SPLIT

__i LAGEL EXPRESION E_;
- ELIE

F
— —
IF CONDITIONS THEN; :
SIMPLE_1 BEOCKS; 1f CONDITION is true execute the block of
ELSE; statements after the IF, otherwise executs
SIMPLE 1 BLOCKS; statements that follow the optional ELSE clause,
END_IF;

LABEL INTEGRATE VAR: EXPRESSION;

.{ LABEL { VARIABLE EXPRESSION l; Define rate of change for the inlegrated variable
VAR as an EXPRESSION. Where the EXPRESSION

I8 used by a Runge-Kutta fourth order fixed step

procedure to estimate values for VAR,

INTEGRATE

_’l vesl | k] kscrevent N LABEL KILL, KILL INCREMENT;

NAVELQTYs RABEL

NAVEFOTY2 fager]

NAMEA] GT¥n RABI

RN

LABEL EXPRESSION

'WHILE

WHILE, CONDITION;

SIMPLE_1 BLOCKS;

END_WHILE;

[TAOEL Py LABEL OPEN,FILE_VAR AS FILE_NAME;
FLE_VAR P\!' FILE NAME OPENs a file for READ/WRITE operations,
—> e
USTOF MONITOR system state ard whenever

I::M:ON:WDH n—Es SIMPLE 1 :mn_maunon one of the listed varlables changes
BLOCKLAGELS] BLOCKS value, or a llsted block changes state
execute the the MONITORs block of
SIMPLE_1 statements,

Table 1 - Summary of SIMPLE_1

140

FILE_VARIABLE]

VARIABLET

| VARIABLER

SHOW the current value of a varfable
or an expression at the specified
screen coordinates,

LABEL SPLIT:NAME1,OTY1,LABEL1:
NAME2,Q0TY2,LABEL2:
NAMEN,QTYn,LABELn;

SPUT entitles from arriving group and
route them to the targeted blocks.

LABEL STOP;

STOP simulation processing and return
to the modeling environment.

END_WHILE |__>

Executes a WHILE loop until the
CONDITION I8 false.

WRTE |

Write numeric values or text strings to
an ASCII text file.

block concepts

The SIMPLE 1 Simulation Environment

EUNCTION DESCRIPTION EUNCTION DESCRIPTION
ABITHMETIC:

ABS Absolute Value MAX Max of 2 arguments
ARCOS Arc Cosine MIN Min of 2 arguments
ARCSIN Arc Sine MOD Modulus operation
ARCTAN Arc Tangent ROUND Round to integer
Cos Cosine SIN Sine

EXP e taken to a power SQRT Squar root

oG Base 10 log TAN Tangent

N Natural fog

BLOCK STATISTICS

AVE_NUM Average Activity lavel MIN_NUM Min activity level
COUNT Execution count NUM Current block usage
MAX_NUM Max activity level

ENTITY GROUPS

NUM_ENTITY Number of entities of a given type in current group

LAST_STATE Last state value LAST_DERIV Last derivative.

DERNV Current Derivative

BANDOMNUMBER GENERATORS

UNIFORM Uniform distribution LOGNORMAL Log normal distr.
NORMAL Normal distribution POISSON Poisson distribution
EXPON Exponential distribution SEED Seed setting function
TRIAG Triangular distribution DISC_STEP Discrete values

YARIABLE STATISTICS

OBSERVE_AVE Average value
OBSERVE_MIN Minimum value
OBSERVE_MAX Maximum value

TIME-AVE Time weighted
TIME_STD T. W. std. deviation
TIME_MAX Maximum value

OBSERVE_N No. of observations. TIME_MIN Minimum value
OBSERVE_STD Standard deviation

TIME BELATED

STIME Simulation time SYS_TIME Hardware time

KILL_ COUNT Termination count STOP_TIM Stop time

STEP_SIZE Step size KEY_PRESSED Keybrd info.
FILE RELATED
ECF Returns End-Of-File status

Table 2 - Summary of SIMPLE_1 functions & variables

Screens can be declared in SIMPLE_1 which define a character
schematic to be used as a background over which animation of
the model state is to be performed. One or more screens can be
declared in each simulation and activated by SCREEN blocks in
the model.

Entities are created by name and have their one unique
attributes. Entities with identifiers like: CPU_BOARD and
CHIP_SET can be declared each with differing attribute

141

requirements. CPU_BOARD can be declared to have one
attribute while CHIP_SET entities can have say five attributes
associated with them. Entities can be brought together into
groups without loss of their individual attributes in SIMPLE_1.
The maintenance of entity values is an important feature of the
language allowing sophisticated statistics gathering on entity
movements and resource decision making in complex systems.
Manipulation of entity attributes by their unique name simplifies
referencing attributes and improves the self documentation of
models. When multiple entitities of the same type are present
in a group the individuals are refenced by the * operator. For
example: If televisions go by the name TV and each has four
attributes then

TV(3)"5

would reference the third attribute of the fifth TV in a group
of TVs.

String variables are typically used for defining input and output
file names at run time using keyboard inputs and can also be used
for customizing simulation reports. A prototype model
generator application program uses string variables to generate
SIMPLE_1 source code based on menu responses by a novice
modeler. String variables are invaluable for applications work
and they are used extensively in the version 3.0 system's
learning modules to manipulate text messages and animation
screeens.

The body of a SIMPLE_1 model is composed of five sections:
DECLARE, PRERUN, DISCRETE, CONTINUOUS, and
POSTRUN. The DECLARE section is used to define key
model variables such as entities, screens, and so forth. The
PRERUN and POSTRUN sections execute in a basic
subroutine like manner much like BASIC or FORTRAN.
SIMPLE_1 models typically employ the language's seven (7)
basic block types to define discrete and continuous models. The
brevity of language concepts for discrete system modeling is
dueto the flexibility of the CONDITIONS block which will be
described in detail later.

Discrete system models involve construction of networks
defining the flow in time of entities. Conceptually, entities are
distinct individual objects that flow through blocks in the
network model. Typically, entities are used in models to
represent real objects: tools, parts, people, and so forth. The
network model is used to define the interrelationship between
entities and other elements of the system. In the most basic
form, network models describe the processes to:

1) CREATE :groups of entities

2) QUEUE :entities until specified CONDITIONS are met.

3) ACTIVITY: activities are undertaken by entities

4) BRANCH: fo alternative parts of the model.

5) KILL: Disposal of entities when they are no longer needed.

6) SET :warlable values to update system state or entity attributes.
7) INTEGRATE :Define derivatives for integrated variables

P.Cobbin

CONDITIONS block: A key language element

The CONDITIONS block is used to define the state conditions
required for entities to leave queues. The block is a cornerstone
concept of the language and provides a unified queue release
mechanism. The block functions somewhat analogous to
achameleon, in that a CONDITIONS block can be configured
for a diversity of queue release constraints. The schematic
representation of the block and an example statement are
illustrated in Figure 6. In a basic queue/server relationship a
CONDITIONS block is used to associate a specific QUEUE
with an ACTIVITY block. The CONDITIONS block is the
principal means for formation of groups of entities and is readily
applied to modeling assembly constraints in manufacturing.

LABELS OF BLOCKS TO ROUTE ENTITIES TOO

LABELS OF QUEUES TO PULL ENTITIES FROM

-ADDITIONAL CONDITIONS CAN BE
SPECIFIED TO CONSTRAIN QUEUE
RELEASESFOR MODELING BLOCKNG
CONSTRAINTS, ETC
QLABELY | \CONDITIONS | TARGET LBL 1
QLABEL 2 OR TARGET LBL 2
QLABELn | "MATCH" |TARGETLBLn
GLOBALCONDITIONS X
4 conpimions \
QUELIES CAN BE RELEASED
WHEN THERE ISA "MATCH"
AMONG ELEMENTS IN THE
ABOOLEANEXPRESSION TAGGED QUELES.

THAT MUST BE TRUETO
ALLOW RELEASING OF

ENTITIES FROM THE GLOBAL CONDITION: Musthavean

LISTED QUEUES available HEAD. | workstation avail able
during the current shift.
All three queues release to HEAD |
XAMP, TATEMENT: rasulting In the assambly of entities

Into & new group

CONDITIONS , NUM(HEAD_J) < NO_HEAD_|_TOOLS(SHIFT_INDEX) ,
HEAD__Q, NUM(HEAD_[}+NUM(FINAL_Q)<10 , HEAD_I:
HEAD_Q ,

SERVO_Q,

Secondary blocking constraint on n umber of
active tools and status of downsir eam queue

Figure 6 CONDITIONS block: a unified queue release
mechanism

Notably absent in SIMPLE_1 is the concept of a resource for
modeling complicated queue-server relationships. SIMPLE_1
does not employ resources because by it's nature, the
CONDITIONS block is used to model simplistic and complex
resource situations. Key system resources in SIMPLE_1
models are typically modeled as entities that are grouped with
"customer” entities while in use and SPLIT from the customer
and routed to a QUEUE when the resource entity becomes idle.
The advantage inherent in modeling resources as a separate
entity type is the ability to model explicitly the decision making
processes of the resource inclusive of the resources own
attribute state. For example, the entry of passengers onto a
bus is typically a function of the route assigned to a bus.

Accordingly, modeling such a situation in SIMPLE_1 involves
modeling decisions based on entity attributes and system state
variables.

The example statement in figure 6 is taken from a model of a
typified winchester disk drive assembly process. The three
queues: HEAD_|_Q, HEAD_Q, and SERVO_Q are used to store
work in process inventory (WIP) and paris inventory. Sub
assemblies are contained in the HEAD_|_Q (each composed of
multiple part entities). The sub assembly entity group is added
to and the assembly activity is initiated when the
CONDITIONS block detects all of the required release criteria
have been met. The CONDITIONS block in this case executes
the entity movements only when the upstream queues each have
a minimum of one element and both of the boolean expression are
true.

The CONDITIONS block is an important means for organizing
entities into groups. Returning to the passenger- bus analogy; a
model of such a system using SIMPLE_1 organized passenger
entities with a vehicle entity into groups like that schematically
shown in Figure 7. The decision to release a passenger entity
from the group involved checking the list of individual
passengers o see if any were to leave at the current stop. The
value of a bus atiribute in this case contained the groups current
location. When passengers were at their final destination, the
model SPLIT them off and routed them to the exit segment of
the model.

Threa seperate PASSENGER enlities,
each with their own unique exit st gp

142

e \ N

"EVENT
CALANDER"

PASSENGER PASSENGER PASSENGER
A (STOP &) (STOP 12) * -\ (STOP 2)

. [BUSAT
STOP 11

One BUS entitly whose route and stop
attributes are used to load and unioad
PASSENGER enlities

Figure 7 Entities organized into a group for mddeling a busline
operation

The CONDITIONS block supports building models in stages. In
most situations you start off modeling the main processes and
add embellishments to capture additional constraints on system
operation. For example when modeling product assembly, one
can start by modeling the basic process sequence and add part
queues later to capture the affects of assembly constraints on

The SIMPLE _1 Simulation Environment

the overall efficiency of the system. In addition, blocking, shift
staffing, and other constraints on system operation can
typically be added in stages without a major restructuring of the
model.

Run Control Concepts

Four specialized blocks are used to control simulations. A
CLEAR block is used to control clearing statistical
accumulators and a RESET can be used in the POSTRUN to
eliminate all entities in existence in the discrete portion of the
model. A standard report on system performance can be
obtained using the REPORT block in the POSTRUN. In
addition, /O concepts in the language fully support customized
report writting. The key run control block is the STOP block.
The STOP block is used in the POSTRUN to halt execution of
the model.

A discrete system example

An original GPSS example of a basic TV inspection and
adjustment situation will be used to introduce SIMPLE_1. This
example,(based on Scriber's SIMULATION using GPSS , 1974)
models TV's arriving to be inspected by one of two available
inspectors. After inspection good sets are routed to shipping
and defective sets are routed to an adjusting station. The
SIMPLE_1 version of the TV inspection and adjustment system
is:

DECLARE;
GLOBALS:TIME_IN_SYSTEM OBSERYE_STATS:
INYENTORY TIME_STATS;
ENTITIES: TY(1);

{$| SCREEN.DEF} {<<<<-- Include file used to gefine animation sereen }
END;
PRERUN;

SET STOP_TIME := 1440;
{$1 SCREEN.PRN} {<<<<~~ Include file used to scfitwle animation screen}
END;
DISCRETE;
{$1 AMIMATETY} {<<c<-- Include file used to saimede simulstion }

CREATE, 1,TY , UNIFORM{ 3.5, 7.5, 1);

SET T¥{1) := STIME: INVENTORY:=INVENTORY+1;
WAIT_INSP QUEUE,FIFO;

CONDITIONS NUM{INSPECT) <2 , WAIT_INSP , , INSPECT,
INSPECT ACTI¥ITY UNIFORM{ 6,12, 1);

BRANCH 0.85, PACK:
0.15, WAIT_ADJ;

WAIT_ADJ QUEUE,FIFO;

CONDITIONS, NUM{ADJUST) < 1, WAIT_ADJ , , ADJUST;

ADJUST ACTIVITY UNIFORM(20, 40, 1);
BRANCH, WAIT_INSP;

PACK SET TIME_IN_SYSTEM := STIME-TV{1):

INYENTORY:=|NYENTORY-1;

KILL;

END;

CONTINUOUS; END;

POSTRUN;
REPORT,;
STOP;

END;

143

In addition to modeling the basic flow of events for this simple
example this model illustrates SIMPLE_1's unique approach to
collection of statistics on user declared variables. The global
variable TIME_IN_SYSTEM is declared with the key word
OBSERVE_STATS appended to signal collection of statistics.
When the SET block near the bottom of the code assigns the
value of TIME_IN_SYSTEM with the expression:

TIME_IN_SYSTEM:= STIME -TV(1)

The creation time for the TV and the current simulation time
(STIME) are used to calculate the time in the system for the
exiting TV. As a side affect of the variable assignment,
SIMPLE_1 updates observational statistics for
TIME_IN_SYSTEM. In a similar fashion time weighted statistics
are maintained for the variable INVENTORY used to track work in
process inventory.

The CONDITIONS blocks in this model employ the built in
function NUM which returns the current number of entity
groups at a block in the model. Built in functions of the language
provide access to arithmetic functions, random number
generators etc. The CONDITIONS blocks in this case is used
to model straight forward queue-server relationships but is
readily extendable to handle such complications as:

* Blocking by a downstream QUEUE

" A variable number of servers changing over time

* Mobile resource entities that decide which queuss to tend

" Model component assembly to see impact of logistics policies

Animation, Input, & Output

The language has input and output concepts for both file /O and
screen animation with the screen being updated while the model
is running. SIMPLE_1 supports /0O operations using
specialized block constructs. The input and output operations
supported in the language are for two types of operations. Block
constructs in the language control I/O 1o the screen or keyboard
and to DOS. Screen /O constructs include mechanisms for
writing ASCII characters and numbers coupled with template
images. The character and number based display formats of the
language combined with screen generation features form a
character based animation capability. In summary, SIMPLE_1
supports file and screen /O Operations associated with:

1) SCREEN activation to display a text background.

2) SHOW block to display numeric values on a screen.

3) CHART block to display characters on a screen.

4) ACCEPT block for reading variable values from
keyboard.

5) READ and WRITE blocks for file input/output.

6) OPEN and CLOSE files during model execution.

the

Include files were used in the model to include animation code
into the model! for clarity. Include files also allow management
of various versions of a model to turn on or off compiling of
animation code and for management simulation experiments. A
screen is used to form a schematic of the TV inspection system
over which SHOW and CHART blocks animate the state of the
system by writing characters and numbers to the screen. The

P.Cobbin

schematic background is defined in the include file:

"SCREEN.DEF" illustrated in Figure 8.

LINES & BOXES "DRAWN" WITH ASCI C HARACTERS

DEF_SCREEN: PICTURE,1,1,80,19,YES;

N

TIME: \

11 TV INSPECT/ADJUSTMENT EXAMPLE! ¥

— L

INSPECT TV ADJUSTOR
T STATION

CREATE NO.
v —» » ’ ———PACKING

. "1} INSPECTORS .
TOTAL: BUSY - TOTAL:

----- CURRENT STATISTICS -----
NUMBER OF TVs IN SYSTEM INSPECT QUEUE: ADJUST QUEUE:

4

"PICTURE" is 80 characterM

and 19 characters high
Figure 8 - screen definition for animation of TV repair model.

During the PRERUN phase a SCREEN block contained in the
include file: "SCREEN.PRN" (not illustrated) is executed to
initialize the character image. The image is updated to show the
changing state of the simulation using a series of MONITOR
blocks that function as a kind of interrupt in the DISCRETE
section of the model. Whenever a variable or labelled block listed
in a monitor block changes state the MONITOR is executed.
This side-affect/interrupt mechanism provides an efficient hook
for animation and generation of custom trace filés to track
model execution. The include file: ANIMATE.TV is used to drive
the animation of the TV repair model. To illustrate the function
of the MONITOR, SHOW, and CHART blocks in animation of
models consider what happens when an INSPECT activity is
started, or completes. Whenever an entity enters or leaves the
INSPECT activity the monitor block:

MONITOR INSPECT;
CHART ,38,13,4,178, NUM(INSPECT),3,12,0;
END_MONITOR;

Is execute as a side affect of the event. The MONITOR block
in turn executes a CHART block to write ASCIl characters
onto the monitor fo indicate what just happened. The number of
ASClHl characters written by the CHART block graphically
represents the number of busy inspectors in the system.

Conversely, if only numeric information is to be updated a
SHOW block would be used to update the screen and a WRITE
block for outputing the information to a disk file.

144

Augmented Example:

A modified version of the above TV repair model illustrates
powerful modeling features of the SIMPLE_1 simulation
language. For example, assume TVs come in two types, color
sets and black and white units. By assigning a TV attribute to
signify which type of set is being inspected, the INSPEGCT
activity :

INSPECT ACTIVITY UNIFORM(S,12,1);
Can be reconfigured as an /F block with embedded activities for

inspection of color and black and white sets by substitution of
the code fragment:

INSPECT IF TV(Type) = Color THEN;

COLOR ACTIVITY UNIFORM(6,12,1);
ELSE;

BW ACTIVITY UNIFORM(3,6,1);
END_IF;

The TVs attribute for set type is reference using the global
variable Type (assigned the value of 2 and used to enhance
reading of the code). Based on the TVs type the IF block
executes either the COLOR or BW ACTIVITY blocks. For this
example three utilization statistics are automatically tracked
for the time TVs spend in the IF block and for the utilization of
the COLOR and BW Iabelled activity blocks.

Augmenting the TV model to collect observational statistics on
composite inspection time for color and black and white sets is
straigh forward. In the DECLARE section the global variable
declaration:

InspectTime OBSERVE_STATS

would be inserted to declare the varable "InspectTime" and
signal the collection of observational statistics on the values
assigned to this variable. The coliection of the statistic is
accomplished by side effect assignment in the COLOR and BW
labelled activity blocks: For example the COLOR labelled
activity block would be modified to assign the sampled activity
duration to the variable InspectTime via the modified statement:
COLOR ACTIVITY InspectTime :=yNIFORM(6,12,1);
The collection of the desired statistic would be accomplished by
the assignment of the InspectTime variable as a side effect of
sampling an activity duration for the block. In turn the
assignment of InspectTime causes updating of statistical
accumulators for automatic tracking of observational statistics.

The SIMPLE 1 Simulation Environment

Ephancement of the model to account for differing product
inspection times alteres the time spent in the system as a
function of product type. Accordingly, one would like to
differentiate the TIME_IN_SYSTEM observational statistics by
product type. This final modification to the model is readily
implemented by changing the giobal variable declaration in the
DECLARE section from:

TIME_IN_SYSTEM OBSERVE_STATS:

to a subscripted variable (vector) with dimension 3 :
TIME_IN_SYSTEM(3) OBSERVE_STATS:

Then in the DISCRETE section the PACK labelled SET block:

PACK SET TIME_IN_SYSTEM := STIME-TV(1):

INVENTORY:=INVENTORY-1;

would be revized to collect the time in system for both TV types
as well as a composite statistics for both types with the revized
statement:

PACK SET TIME_IN_SYSTEM(TV(Type)) := STIME-TV(1):

TIME_IN_SYSTEM(3) :=TIME_IN_SYSTEM(TV(Type)):

INVENTORY:=INVENTORY-1;

This revised SET block assigns element (1) or (2) of the
variable TIME_IN_SYSTEM based on the TVs type and assigns
element (3) to the time in the system calculated for both types

of TVs. The ability to collect statistics on user defined
subscripted variables is a unique and powerful feature of
SIMPLE_1.

Applications of SIMPLE_1:

SIMPLE_1 has been applied in manufacturing, academia, and by
the United States Military. Applications to date have ranged
from manufacturing systems, robotics justification, health care
systems, emergency planning, and analysis of logistic support
systems SIMPLE_1 has been used to plan for future
manufacturing systems, and as a tool for scheduling current
systems. A number of students throughout the United States
have employed the language in support of their graduate work.
SIMPLE_1 is currently being used to teach Principles of
Management at Cal State Long Beach via teams of students
trying their skills out with a detailed model of a production
system. The language has been employed by Starr et al [11] to
investigate schedule recovery strategies and currently the
software is being used in applied research for scheduling an
electronic assembly system in a mid-western aerospace site.
Inspection issues relative to FMS systems was investigated
using SIMPLE_1 according to Hauck [9]. The language has not
been restricted to manufacturing usage solely, as evidenced by
captain Bottomly's investigation of logistics support for
avionics equipment [1].

145

SIMPLE_1 References
[1] Bottomly, Larry D. Capt. USAF, "Station Loading on the DATSA
(Depot Automated Test Station for Avionics)", unpublished
Masters Thesis, Air Force Institute of Technology,
Wright-Patterson AFBase, OH, 1986

Cobbin, Philip, "SIMPLE_1: A simulation environment for the IBM

PC", Modeling and Simulation on Microcomputers, Claude,

C. Barnett, Editor, Society for Computer Simulation, La Jolla,

1986, pp 243-248,

Cobbin, Philip, "Applying SIMPLE_1 to manufacturing systems",

Summer Computer Simulation Conference, July 28-30 1988,

Reno, Nevada, Roy Crosbie and Paul Luker, Editors, Society for

Computer Simulation, La Jolla, pp 724-730.

Cobbin, Philip, "A Tutorial on the SIMPLE_1 simulation

environment”, Winter Simulation Conference procedings,

December 1976, Washington D.C. pp 168-177

Cobbin, Philip, " Modeling tote stacker operation as a WIP storage

device", Winter Simulation Conference proceedings, December

1688, Washington D.C. pp 597-605

Cobbin, Philip, "SIMPLE_1: Follow-on developments in the life of

a micro-based simulation language”, Modeling and Simulation on

Microcomputers, Paul F. Hogan Editor, Society for Computer

Simulation, La Jolta, 1987, pp 29-32.

DiBiase, Debra, "The cash flow simulator: A microcompute-based

model", Modeling and Simulation on Microcomputers, Paul F.

Hogan Editor, Society for Computer Simulation, La Jolla, 1987,

pp 101-103.

DiBiase, Debra, "The inventory simulator:A microcomputer based

inventory model”, Modeling and Simulation on Microcomputers,

Paul F. Hogan Editor, Sociely for Computer Simulation, La Jolia,

1987, pp 104-106.

Hauck, Warren Stephen, "A study of heuristics for inspection

location in flexible manufacturing systems”, unpublished Masters

Thesis, The University of lowa, lowa City lowa, 1987.

[10] Sierra Simulations & Software: SIMPLE_1 User's guide and
reference manual, 1985,

[11] Starr, Patrick, Skrien,Douglas, and Meyer, Robert,"Simulating
schedule recovery strategies in manufacturing assembly
operations” Winter Simulation Conference proceedings, December
1986, Washington D.C.pp 694-699.

[2]

(3]

[4]

[51

[6}

71

[8]

[91]

Authors' Biography

Philip Cobbin is the owner of Sierra Simulations & Software and is the
developer of SIMPLE_1. Phil has developed and taught simulation to
undergraduates as an adjunct professor of Industrial Engineering at San
Jose State University. He holds a Master of Science in Industrial
Engineering from Purdue University, a Bachelor of Science in Industrial
Engineering and Operations Research from the University of
Massachusetts at Amherst, and an Associate in Science degree in
Manufacturing Engineering Technology from Waterbury Connecticut
State College. Phil is a native of Los Angeles and has been previously
employed by the General Products Division of the International Business
Machines corporation performing simulation modeling and material
handling engineering activities.

