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ABSTRACT

This paper surveys existing methods, and presents
several new ideas, for optimizing performance measures with
respect to input parameters for simulation. The usual methods
fall into three categories. First, there is the application of
traditional non-linear programming techniques, regardless of
the stochastic properties of most discrete event simulations.
Second, is the application of response surface methodologies.
Third, are stochastic approximation techniques, a well known
but little used optimization technique. The last two categories
account for the stochastic behavior of simulations.

This paper also discusses several developments within
the past seven years that promise greater efficiency in
optimizing simulations. These developments
Karmarkar's algorithm, infinitesimal perturbation analysis and
likelihood ratios to estimate derivatives of performance
measures with respect to parameters, adaptive control and
hybrid models.

include:

1. INTRODUCTION

This paper has three goals. The first goal is classify
methods of optimization for simulations by the amount of
structure or information required by the method. Methods
that require detailed knowledge of the simulation usually yield
optimal values for parameters faster.

The second goal is to survey the post-1975 literature of
optimization techniques in simulation. The popular techniques
prior to 1975 have been summarized and compared in the
paper by Farrell, McCall, and Russell (1975). One area not
covered in that paper is the use of stochastic approximation
techniques for simulation optimization, This overlooked
subject is recently gaining much attention and deserves a prime
spot of its own. The massive theoretical knowledge of
stochastic approximation, developed during the past 36 years,
contains valuable insights into the do's and do not's, and the
asymptotic efficiencies, of several optimization procedures.
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Another review of optimization techniques in statistics
(not necessarily simulation) is Rustagi (1978).

There has been a lot of exciting work in simulation
optimization, especially since 1982, on using perturbation
analysis (Section 5.4), and likelihood ratios (Section 5.8). This
new work is the focus of the third goal in the paper, namely to
present new ideas and directions.

This paper was originally presented as a tutorial in the
Winter Simulation Conference, 1983, Unfortunately, it was not
written for the proceedings of that conference. This paper also
includes the new work on likelihood ratios, more results on
perturbation analysis, further results in the application of
stochastic approximation when coupled with perturbation
analysis (what was coined 'single run optimization' in the WSC
1983 tutorial), and the discussion of the (possible) significance
of Karmarkar's algorithm
problems in simulation.

to comstrained optimization

Lastly, this paper is not self contained. In many cases,
there will be an informal or non-rigorous discussion of a
technique; references that explain the technique in detail are
provided.

2. A WORKING DEFINITION OF OPTIMIZATION IN

SIMULATION

Simulation is an experiment with inputs, outputs, and a
controlled environment. The outputs, often called the
performance measure, is the (stochastic) function that needs to
be optimized. It is assumed throughout the paper that this is a
real-valued (i.e. single valued) function. On the other hand,
the inputs, called the parameters, are usually multivariate. We
will denote the inputs by x, the output by Y(x), and the
expected value of Y(x) by M(x) = E[Y(x)].
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There are two classes of objectives of optimization
procedures. The first is the level crossing, or root finding,
problem. In this case, we wish to find the value of x so that
M(x) = p, for some prespecified p. For example, let Y(x) be
the fraction of customers that wait more that 3 minutes in a
queue, and x be the service rate. If the service rate is
adjustable (perhaps by adding more servers), then it may be
desirable to find the service rate so that customers wait more
that 3 minutes only 5% of the time. Hence, we wish to find x
so that M(x) = .05.

The second class is a minimization (or maximization)
problem. Here, we wish to discover an x that minimizes M(x).
For example, suppose that Y(x) is the average number of
customers in a tandem queue, where x is the service time for
the first queue and 6« for the second quene. (There is a
tradeoff between placing resources at the two queues.) We
wish to minimize M(x), subject, of course, to 0 < x < 6.
Throughout this paper, we will assume minimization is the
default criteria.

Naturally, these two classes of optimizing problems can
be unified. The level crossing problem is the same as
minimizing E[(Y(x)-p)¥], if the variance of Y(x) is constant.
And we could have treated the minimization problem as a
level crossing of the first derivative of M(x). However, since
there are different algorithms for these two classes we will
continue to differentiate these two classes.

3 CLASSIFICATION OF OPTIMIZATION

TECHNIQUES

Figure 1 classifies various optimization techniques with
regard to the information that is known or assumed about the
simulation. These methods will be described in varying levels
of detailed in the remainder of the paper.

The first level assumes that the output of the
simulation, Y(x), is a deterministic number that can be
replicated, and implicitly assumes that Y(x) is a continuous
function of x. We note that in stochastic experiments Y(x) is
usually considered a random variable, although Y{x) can be
duplicated if the random number seed is held constant
between runs. However, Y(x) is not continuous, since a small
change in x may change the sequence of events and hence Y(x)
is not continuous.
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Figure 1. Classification of Optimization Techniques

The second level assumes that Y{x) is a random variable
and, with probability one, will optimize M(x). The convergence
can be very slow, especially for the minimization problem.
Without assuming any more structure, some of these
algorithms (e.g. certain modified forms of stochastic
approximation) can be shown to be asymptotically optimal.

Let S(t|x) be the underlying stochastic process in the
simulation. If that process is stationary (for a given x) then
single run optimization techniques, where parameters change
during the course of the simulation, may be applicable. This
reduces the initialization bias substantially.

If we assume that S() is a regenerative simulation, then
initialization bias is eliminated and the usual assumptions for
stochastic approximation hold. The regenerative assumption is
non-parametric since in does not involve the estimation of
model parameters. If we assumed that §() is an autoregressive
/ moving average model of known order, which is a parametric
assumption, then stochastic adaptive control techniques are
applicable. Other parametric models lead to likelihood ratio
techniques.
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The sixth level assumes that Y{x) is the output of a
discrete event simulation, and that the simulation can be
modified to keep track of virtual changes in Y{x) with respect
to x. However, faster convergence for the minimization
problem is possible using the techniques of this level.

The remaining level assumes additional analytical
models are known that approximate Y{x), such as ARMA
models or analytical models.

4. NON-LINEAR PROGRAMMING TECHNIQUES

Since 1975, several authors have tried traditional non-
linear programming techniques fof the unconstrained
minimization problem. The procedures differ by the use of
(estimated) first and second derivatives.

The Nelder & Mead sequential simplex method does not
use any derivative information, and therefore is a natural
choice for simulation problems where derivative's may not be
practical to calculate. When optimizing in an n-dimensional
space (i.e. x is an n-vector), this method first guesses at n+1
points, x, .., x™%, (which define a simplex) and runs the
simulation for each of those points, yielding Y(x), .., Y(x**1).
To maximize the M(x), pick the ‘worst' point and choose a new
point that is reflected away from the worst point. Details are
given in Avriel(1976, pp 245-247).

Convergence is not guaranteed when Y{x) is observed
with noise (i.e. Y(x} = M(x) + e, where e is a non-degenerate
random variable with zero mean) for this and the following
traditional non-linear techniques. In fact, these techniques
generally converge to a neighborhood of the optimal and
bounce around that neighborhood without converging. In
order to obtain convergence, stochastic approximation
techniques need to be used (Section 5).

Optimization techniques that require derivatives
include steepest descent (e.g. Avriel 1975), and Davidon's
variable metric technique (Avriel 1975, chapter 11). Often,
these methods calculate a descent direction, and then perform
a one dimensional search along that descent direction. A good
method for performing the line search in the single run
optimization method described in Section 5.7. Although a line
search is not required for Davidon's variable metric technique,
which approximates the second derivative (or Hessian) matrix.

Empirically, Davidon's method is good in the early
stages of optimization: If the initial guess is far away from the
optimal, this method will get you close to the optimal. The
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Nelder & Mead method works well close to the optimum.
Finally, steepest descent methods that use previous data to
estimate the derivatives may outperform the Nelder & Mead.
For very 'nmoisy' problems, the Nelder & Mead method
outperforms the other techniques.

These empirical results are based on the works of
Segreti, Carter, and Wampler (1979, 1981), Barton(1984), and
Deming (1977).

41  Implications of Karmarkar's Algorithm for

Constrained Optimization

‘We have avoided the issue of constrained optimization
techniques because little, if any, significant new work has been
accomplished in this field that was applied to simulations.
However, Karmarkar's linear programming algorithm offers
the promise of enhanced methods for constrained optimization
of simulations.

There are three general approaches to use for
constrained optimization. Of course, these approaches are not
exclusive and have been mixed and matched. The first is to use
penalty or barrier functions that move the constraints into the
objective function. For example, if a constraint was of the form
g(x) = b, then a term w(g(x)-b)? might be added to the
objective function for sufficiently large w.

The second approach is to use active constraint analysis,
which usually treats constraints of the form g(x) < b.

The last approach is to linearize the constraints and
objective function, and then use a linear programming
approach to obtain a direction of decrease in the objective
function subject to remaining within the constraints. This is
sometimes known as successive linear programming, Within a
simulation approach, linearizing the constraints and objective
function potentially réquires much computational effort, since
derivatives must be estimated.

However, we believe that this last approach has
promise, due to the Karmarkar linear programming procedure
in 1984 (Karmarkar (1985), see also Vanderbei, Meketon, and
Freedman (1986) for the popular ‘affine scaling’ variant). This
algorithm has several good properties, but for the purposes of
simulation optimization, the most important property is that it
requires far fewer iterations than other linear programming
algorithms.

When used for constrained simulation optimization,
reducing the number of iterations - and therefore reducing the
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number of simulation runs - is far more important that
reducing the computational effort given the linearized
equations. Hence, the promise of Karmarkar's algorithm is a
significantly faster method for constrained optimization.

5. OPTIMIZATION METHODS FOR OBSERVATIONS

WITH NOISE

The second category of optimization techniques have
been designed for noisy experiments. When they are applied
to optimization of non-random functions, they will converge
very slowly compared to the methods described above.
However, they generally will converge to the optimum in the
presence of noise unlike the traditional non-linear
programming methods.

The best known technique for this is response surface
methodology. The technique has been used successfully, and
described in many articles, prior to 1975. In particular, Farrell,
McCall, and Russell(1975) and Smith(e.g. 1973) spend
considerable time on this subject. Post 1975, Biles(1977)
described its use for optimization when there are multiple
objectives.

A well known statistical technique, apparently custom
designed for optimization with noisy functions, but one that has
seen little wuse in the simulation field, is stochastic
approximation. In Azadivar and Talavage (1980), a general
approach that uses stochastic approximation is developed.
Rubinstein (1982, 1983) and Glynn (1986a) have recently re-
examined the implications of stochastic approximations for
simulations.

Due to the importance of stochastic approximation in
the following, we will present a short introduction to it.

5.1  Stochastic Approximation - Level Crossing Problem

The original stochastic approximation algorithm was
applied to the level crossing problem, i.e. to find the x” so that
M) = p. Assume that x is a real number (i.e. a 1-vector).
With mild assumptions on M(x) and on Y(x), it can be proved
that the following sequence converges to x:

Let x! be arbitrary.

2 = 20 (a/n) (V) - p)

It should be understood that this is a sequential
procedure. After choosing x!, the simulation is run and Y(x!) is
observed. Then, according to the formula above, x* is
calculated, and the simulation re-run to observe Y(x2).
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This was first introduced by Robbins and Monroe
(1951) and is termed the Robbins-Monroe (RM) stochastic
approximation procedure.  They showed under rather
restrictive assumptions the mean squared convergence to x.
Since that time, the assumptions have been considerably
relaxed and the knowledge of this procedure has been
increased substantially. Here we review several of the more
important features of this stochastic approximation procedure.

If x" is the average of x* through x", and Y" is the
average of Y{x') through ¥{x"), then

(1) x"*!' =x".g(Y"- p). If we consider M(x) to be a
differentiable function, and if we force x**! = x°,
then (1/a) ~ (Y-p)/(x"x’) which indicates that
the optimal choice of a is the reciprocal of the
slope of M(x} at x. Let m = M'(x"). See Lai

and Robbins (1979, Lemma 1).

@

For a > 1/2m, the asymptotic variance of x" is
proportional to 1/x. Indeed, if Var[x"] = % then

("x") /' = N(0,2a%%/(2am - 1))

If Y(x") -~ N(M({"), s, then the Cramer-Rao
lower bound of the variance of any estimator
coincides with the variance of the stochastic
approximation estimator. (See Anbar (1973)
and Abdelhamid (1973))

)

Several conclusions may be drawn from these facts.
The estimator decreases with variance proportional to s%/n,
only for @ > 1/2m. If batches of observations are taken for
each step in the stochastic approximation procedure, the
variance decreases in exact proportion to the batch size, so
batching does not affect the asymptotic variance. However,
fact (3) indicates that normality of the error term is important.
Hence, large batch sizes would be important.

52  Single Run Optimization - Level Crossing Problem

Stochastic approximation can be used to adaptively
update the parameters in a long, single, simulation run.
Perhaps the easiest example is the simulation of an AR(1)
process. The particular AR(1) process we choose is defined by

|14

=W +1te,

where x < 1 is a parameter and e_ is an iid sequence of N(0,1)
random variables.
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Suppose we wish to find the x such that E[W] = 2. One
way is to adaptively estimate the x by stochastic approximation,
To wit:

W .= W+ 1+e

n+l

™ = 0= (a/m)(W,,, - 2).

+1

That is, choose an initial W, and x%. Then simulate e;, calculate
W,, and update x2. Continue, simulating e,, calculating W,, and
update x>

The advantages of this procedure is that the transient
due to initialization bias is reduced. That is, if the parameter x
was fixed, then E[W, ] will converge to (I-x)"!. The usual way is
to run the simulation for a particular x, wait for the transient
effects to diminish, estimate E[W], and then change x.
However, using single run optimization techniques will
decrease the lost time due to transients. Figure 2 plots x
versus n (jagged curve) and the cumulative average of x"
(smooth curve).

Single Run Optimization — AR(1) Process
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Figare 2: Graph of x™

A more complicated example is a tandem quene (two
queues in series). Quene 2 has a buffer size of 2, and Queue 1
has an infinite buffer. The interarrival time is an exponential
random variable with mean length 5, queue 2 has exponential
service times of mean length 4. The parameter of interest is
the mean service time of queue 1, called x. The object is to
find the mean service time of queue 1 so that the average
number of customers in the system is 4.23 . The parameter x is
updated every 500 customers by the formula:

X = 30 (1), - 4.23)

where N_ is the average number of customers in the system
based on the last 500 customers that entered the system.
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Figure 3 plots x" (jagged curve) and the cumulative average of
the x™s (smooth curve). Figure 4 plots the cumulative average
of the number of customers in the system.

Single Run Optimization — Tandem Queue
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Figure 3: Mean Service Time

Single Run Optimization — Tandem Queue

Gonl: EfNumber in System) = 4.23
10

a

ke

Average Number in Queue

80 80 100
{Thousands)
Clock Time

Figure 4: Average Number of Customers in System

Batching customers together is generally a good idea.
The batching give approximate normality to N, and hence
increases the efficiency of the algorithm. Further, there is a
slight bias effect if the batch size is 1: if the parameter changes
whenever a customer enters the system, then the number of
customers in the system would tend to be biased high.

53  Stochastic Optimization - Minimization Problem

There is a version of stochastic approximation which
can be used for the second type of optimization problem,
namely to locate the maximum of M(x). Suppose that M(x) has
a unique maximum atx". The sequential experiment,

Pl QY I (a/n){(Y(xn . Cn) - Y(x“ + cn))/2cn}
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will, with probability one, converge to x'.
usually ¢/n/* .

In this case, ¢, is

This technique is known as Kiefer-Wolfowitz stochastic
approximation technique, after the paper by Kiefer and
Wolfowitz (1952). The technique estimates the derivative of
the function M(x) by the term (Y(x" - ¢ ) - Y(x" + ¢ ))/2c,.
Unfortunately, at the best Var[x"] is proportional to 1/n'/?,
which is very slow.

To speed up the K-W process, we would need to
estimate the derivative M(x) more directly. This can be done
using the techniques of Perturbation Analysis or Likelihood
Ratios.

5.4  Perturbation Analysis

One method for obtaining estimates of derivatives of
M(x) is perturbation analysis (see, e.g. Suri (1983)). There are
two classifications of perturbation analysis (PA): finite
perturbation analysis (FPA) is designed for inherently discrete
parameters such as buffer size. FPA is an heuristic that
approximates the difference of a performance measure when
the discrete parameter(s) is perturbed by one unit, and has
minimal known theoretical properties. Infinitesimal
perturbation analysis (IPA) is used to obtain derivatives of
continuous parameters. In this paper, we consider only IPA,
for which several theorems can be proved.

The key to IPA is the concept of an event free. An event
tree is a tree where the nodes are events. Whenever an event
is extracted from the event list, it causes other events to be
placed on the event list in the simulation. The directed arcs of
the iree point from the extracted event to the events that it
directly generates.

Let's give an example of IPA using 2 G/G/1 queue
where the interarrival times for customer j is distributed as g +
W,; qis non-random and W; is an exponential random variable
with mean 30. We wish to use IPA to estimate the derivative
of the expected number of customers in the system with respect
tog. The parameter g was chosen for simplicity - changing the
parameter g by & will uniformly change all the interarrival
times by 4.

The event tree for the G/G/1 has two types of nodes:
arrivals and departures. An arrival node always has an arc that
leads to the next arrival. An arrival node may also have an arc
that leads to a departure node if the arrival found the queue
empty. A departure node may have an arc that leads to the
departure of the next customer in the queue if the queue is not
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empty, otherwise the departure node is terminal - it has no arcs
leading out from it.

Figure S is an example of an event tree for a realization
of the G/G/1. The time of the event is depicted on the left-
hand side of the middle of a box. The number in the right-
hand side of the event boxes are the cumulative number of
customers in the system up till the time of the event: the
integral, from 0 to the current time, of the number of
customers in the system.

ARRIVALS

Customer
Number

DEPARTURES

Time of event

[ | [

|#1 | 22 =o+22

Interarrival Time

cumulative Number
of Customers

[42 [43 =22+421 |21 |
[#1 | 51 =22+20 | 37 |
[#3 [ 62 =a3+10 [ 48|

[#2 [ 98 =51+47 [120 |

[#3 | 101=08+3
[123 b—-—

[#4 | 155=103+52 [175 |

[45 [160=103+57 [175 ]

[123 |

[#4 | 103=62+42

Figure 5: Nominal Event Tree

Figure 6 depicts the event tree when g is increased by 1.
Note that the graph of the event tree has not changed. This
would not be true if the interarrival time was increased by 10
instead of 1. For then customer #1 would depart the system at
time 61, while customer #2 would enter the queue at time 63.
Hence, when customer #1 left the system the queue would be
empty, and there would be no arc from the departure of #1 to
the departure of #2.
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ARRIVALS DEPARTURES

Customer

Number Time of event

’_ Interarrival Time

Cumulative Number
of Customers
]#1 | 23=0+23

[22 ]

[#1 | s2=23+29

[0 ]

|42 | 45=23+22

26 ]

[#3 | 65=45+20

|#2 | 99=52+47 117
[#3 | 102=99+3 | 120 ]

[120 ——

|#4 [ 159=107+52 [172 |

[§4 |107=65+52

|45 [165+107458 [172 |

Figure 6: Event Tree with Interarrival Times Increased by 1

IPA computes the estimate by adding an accumulator,
4, to the simulation, and by adding an attribute, S to the event
list. Recall that event lists have a number of attnbutes, such as
time of event and type of event. Now we are adding another
attribute. The algorithm works as follows.

(1)  Letd =0, give initial event attribute Sy =-1

(2) X event i schedules a departure event j, let S
S, SubtractS from A.

(3)  Ifevent i schedules an arrival event LS =5-1

Add S;to 4.

The algorithm is depicted in Figure 7.
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ARRIVALS DEPARTURES
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Number Time of event

Changes in the

J_ cunulative number
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l#5 [160[a=-8[s=—5] -3]

Figure 7: Tllustration of IPA Algorithm

5.5  Common Random Numbers and Perturbation Analysis

Common random numbers is another technique that
can be used to estimate derivatives. Indeed, if by actually
changing the parameter g to g+1, then re-running the
simulation with the same random number seed, we could
obtain another estimate of the change in the number of
customers in the system. If the event tree did not change, this
estimate will coincide with the perturbation analysis estimate.

Unfortunately, if the simulation is run long enough the
event tree will change. This dramatically increases the
variance of the estimate of the derivative. IPA does not suffer
from such problems. Also, when using common random
numbers, the simulation will have to be re-run for every
parameter that is changed. IPA only uses the one simulation
Tun to simultaneously estimate all the derivatives.

5.6  Limitations of Perturbation Analysis

Heidelberger (1986) reports of situations where
perturbation analysis would lead to the wrong answers - in
situations such as multi-class queueing networks. In response,
Gong and Ho (1987) suggests several changes to the
perturbation algorithms that yield correct estimates. Though
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IPA correctly calculates the infinitesimal change of Y(x), it is
not easy to prove that estimate is unbiased or ergodic.

5.7  Single Run Optimization - Minimization Problem

The single run optimization method used for the level
set problem can be used for the minimization problem by
incorporating IPA to estimate the derivatives.

For an example we consider a tandem queue, each with
infinite buffers. The first queue has mean service length of x
second queue has mean service length of 6. Both service
times are exponentially distributed. The interarrival times are
exponentially distributed with mean length of 10. We wish to
find the x that minimizes the expected number of customers in
the system. Theoretically, this is x* = 3, to give E[N] = 8.
Figures 8 and 9 show how well the combination of Robbins-
Monroe stochastic approximation (updating the estimates
every 1000 customers) and IPA to estimate the gradient works
in obtaining the optimal solution. After a clock time of
200,000 (approximately 20,000 customers), x = 3.24 .

Single Run Optimization — Tandem Queue
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Figure 8: Mean Service Time of Queue 1

Single Run Optimization — Tandem Queue
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Suri and Leung (1987) have recently corroborated these
results for an M/M/1 queue, using accelerated stochastic
approximation (Kesten (1958)).

58 Likelihood Ratio Methods

Suppose that there is an underlying Poisson process,
N{(t), with known rate x, within the simulation. Reiman and
Weiss (1986) showed that d M(x)/dx = E[(N(T)x - T)Y(x)],
where T is the run length of the simulation. Hence, the
statistic, (N(T)/x - T)Y(x), gives a useful estimate of the
derivative of M(x) with respect to x. However, Y(x) tends to
M(x) as T tends to infinity, so the variance of (N(T)/x - T)Y(x)
tends to be O(T). To overcome this situation, the authors
suggest using regenerative techniques to batch the sensitivity
estimates. That is, calculate the statistic in each regeneration
cycle and then average the statistics. Reiman and Nguyen
(1987) were able to improve the estimators using control
variables.

Glynn (1986b, 1986c) and Rubinstein (1987b) have
independently used likelihood ratios (and variants) to estimate
the sensitivities. Rubinstein (1987a, Section 3) compares a
likelihood ratio method to IPA for monte carlo simulations.
He concludes that (1) likelihood ratios are less sensitive to the
complexity of the model, (2) the variance of IPA estimates is
generally lower than likelihood ratio estimates, and (3) IPA
assumptions are hard to verify (relating to interchanging
expectation and derivative operators) and that its conditions
for convergence are generally harder to achieve than in
likelihood ratio methods.

6.
6.1

OTHER OPTIMIZATION TECHNIQUES

Adaptive Control Techniques

One relatively unexplored technique for optimization of
simulations is to use adaptive control theory. Essentially, the
idea is to assume that Y{(x) is an autoregressive / moving
average (ARMA) process with adjustable inputs.
parameters {a;}, {b,}, and {c},

So for

Y

Y() = Y(t|x) = a),, + . + a Y,

+ce

te +ce, t.. Lep

+hat bt 4L+ bpx"P.

Here, the parameters {a.}, {b,}, and {c,} are unknown, but can
be adaptively estimated using variants of the stochastic
approximation technique. The goal is to input values of x' so
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that the average of ||Y(t) - Y'(9]]|% from ¢
minimized.

L ., nis

Two recent papers are Becker, Kumar, and Wei (1983)
and Goodwin, Ramadge, and Caines (1981).

6.2  Hybrid Analytical/Simulation Models

Using analytical models to assist in optimization is
discussed in Hanssman, Dinif, Fisher, and Ramer (1980). An
overview of hybrid models is given in Shantikumar and Sargent
(1982).

7. CONCLUDING REMARKS

The investigation of optimization techniques for
simulation is still in its infancy. During the past seven years
research on perturbation analysis and likelihood ratios have
shown that derivatives of performance measures may be
estimated for many simulations without re-running the
simulation. The integration of these derivative estimators with
stochastic approximation
techniques has not been adequately explored for unconstrained
optimization. Using single run optimization, and thereby
reducing the computations needed to overcome initial
transients, is promising but needs better theoretical results to
understand the dynamics and efficiencies of the algorithms.
Constrained optimization is also largely untouched - although
using variants of Karmarkar's algorithm should provide

or non-linear programming

interesting research.

Optimization for simulation, to date, remains an art, not
a science.
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