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ABSTRACT

Ye discuss sampling procedures for selecting
that one of a number of normal populations (with

common known variance) which has the largest
mean. We present procedures appropriate for
single—factor experiments, and then give
procedures devised for R2-factor experiments

without interaction between the factor-levels. In
all cases, the procedures guarantee a prespecified
probability of selecting the correct population.

1. INTRODUCTION

This the
ranking and selection, a field that has enjoyed a
‘deal of
literature

tutorial introduces reader to

great popularity in the statistical
the 1last
specifically on
that

populations (with common known variance) which has

over thirty years. Ye
the

number of

concentrate problem of

selecting one of a normal

the largest mean.

The paper is organized as follows. In

Section 2, we present some basic notation and

formally state the normal means problem. Some

procedures for wuse in single—factor experiments
for finding the normal population with the largest
mean are outlined in Section 3. Section 4 gives
relevant notation and formally states the normal
means problem for the 2-factor case. Section 5
generalizes the procedures of Section 3 for use in

R~factor experiments without interaction.
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2. THE SINGLE-FACTOR NORMAL MEANS PROBLEM

Suppose ﬂi,...,ﬂk are k independent normal
populations with unknown means By and common known
Without 1loss of

that o = 1.
Denote the ordered but unknown ui's by ”[1] < ”[2]
€ .o £ p[k]. of do not know the
values of the u[i]'s nor how they are paired with
the TTi’s.
lTi's has the largest mean p[k]; we call that rr,i

variance 02, i=1,...,k.

generality, we henceforth assume

course, We
Our goal is to determine which of the

the "best" population.

A typical procedure for choosing the best
population wusually requires the experimenter to
take

prescribed manner from each ﬂi; the selection is

a certain number of observations in a

then made using statistics calculated from these
the

realizations of random variables,

observations. Since observations are
it is possible
that the experimenter will not choose the best
lTi.

chosen, we say that a correct selection (CS) has

However, if the best population is indeed

been made.

We shall 1limit
guarantee

consideration to procedures

that the following probability

requirement on the P§CSi [cf. Bechhofer (1954)7.
PiCS: > P* whenever k] ~ Mri-1] > & (PR

&* and P*

specified prior

are two constants which must be
to the start of experimentation
that &8* >0

5% is chosen as the smallest value

subject to the restrictions and
1/k < P* < 1.
of “[k] - p[k—l] that the experimenter regards as
"worth detecting.' That is, if “[k] - ”[k—l] were

to be > &%, the experimenter would prefer to
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choose the ni associated with p[k]; if
p[k] - “[k—l] were to be < &%, the experimenter
would, for all practical purposes, be indifferent
about choosing either the population corresponding
to ]J.[k] or that corresponding to u[k—i]’ Hence,
Rex = el ‘l[k]_‘l[k—i] > &*% is called the
preference-zone, and its complement is the
indifference—zone. Procedures which guarantee
(PR) are often referred to as indifference-zone

procedures.

3. SINGLE-FACTOR INDIFFERENCE—ZONE PROCEDURES

In this section, which closely follows
Goldsman (1986), we give a number of indifference-
zone procedures for the normal means problem
discussed in Section 2.

3.1 A Single-Stage Procedure

A single-stage procedure is one for which the
size of the sample to be taken from each Tri is a
constant determined prior to the start of
experimentation. We first examine a single-stage
procedure due to Bechhofer (1954).

Procedure PSS:

1. Por given k and known 02=1, specify

§5%,P*2, with &* > 0 and 1/k < P* < 1.

2. Determine nSS’ the smallest integer

constant satisfying

J'” [8(x + 6*n§s)]k_1d¢(x) > P*,

—®

where @(-) is the standard normal c.d.f.
[nsS can also be calculated easily from the
tables in, e.g., Bechhofer (1954).]

3. Take Ny independent observations from each
of the k populations.

4. Let xij denote the jth observation from “i’

i=1,...,k and j = 1,...,nss. Calculate
n
SS :
Ai € Zj=1 xij’ i=1,...,k.
5. Select as best that population

corresponding to the largest Ai.

Example 1: Suppose that k = 3, 02 =1, P* = 0.75,

and &% = 0.2. From the tables in Bechhofer
(1954), we can calculate that ngg = 52.  So we
must take 52 independent observations from each of

the three populations.

Although a single-stage procedure such as PSS
is very easy to implement, it has the drawback of
being conservative; that is, it cannot react to
"favorable' configurations of j{ by reducing the
number of observations to be taken. Sequential
procedures, to be discussed next, can react to

such conditions.

3.2 An Open Sequential Procedure

A sequential procedure is one which can
involve more than a single stage of sampling.
Such a procedure is open if, prior to the start of
sampling, we can not place an upper bound on the
number of observations to be taken from each ﬂi.
Otherwise, the procedure is closed. The next
procedure is an open sequential procedure from
Bechhofer, Kiefer, and Sobel (1968).

Procedure Pppq:

i. For given k and known 02= 1, specify
§8*,P*2, with 8* > 0 and 1/k < P* < 1.

2. Set the stage counter n « 0.

3. Set nen+ 1. Take one observation x,

in
from each rri, i=1,...,k. [Thus, we
actually take observations a

vector—at—a-time. ]

4. For all i, calculate
n
A * Ljmg X5 -

Further, let Amax « maxlsiskAin’

5. Calculate
7 & Zk exp{-8*(A_ - A.)} -1
n i=1 max = in :

6. If Zn < (1~P*)/P*, stop sampling, and
select as best that lTi corresponding to

Amax' Otherwise, go to Step 3.
Let NBKS denote the random number of stages
required for PBKS to terminate (i.e., the value of

the counter n at termination). The distribution
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of NBKS depends on the underlying configuration of
the population means j; two configurations are of

special interest:
Least favorable configuration (LFC):
= - -t
M3 = Poe-1] T g T %

Equal means configuration (EMC): M4 = Mk

shown that the LFC
Thus, the LFC is the
B E 2.

case"

It can be maximizes
E[NBKS]H] over all j E Q,.
"worst case" configuration

the EMC is the
configuration over the entire space of WU's since
E[NBKSI Bl < E[NBKSI p=EMC] w¥p. If (unknown to the

experimenter) 4 is in the EMC, PBKS might require

for

Similarly, "worst

an inordinate number of stages.

Example 1 (continued): Again suppose that k = 3,
P* = 0.75, and &* = 0.2. Bechhofer and

(B-G) (1987b) show that PBKS yields
P§CS[E=LFC§ = 0.777, E[NBKs]kFLFC] < 38.84, and
E[Npyo|p=EMC] = 47.98.  Therefore, for this
example, these expected values are less than the

crz=1,

Goldsman

52 observations required by each population for

the single-stage PSS'

of PBKS
facts that it is open and that it generally gives
PECS|H=LFC§ which is
desired P*. (In the previous example, P§CS|p=LFC}
# 0.777 > 0.75 = P*.) B-G (1987b) study a closed

version (PBKS—T) of PBKS which employs automatic

Two unappealing features are the

somewhat larger than the

truncation of sampling after a certain
predetermined number of stages have been
conducted. The truncation point (no) is the

smallest upper bound on the number of stages which
still (PR);

experimentation is required in order to determine

guarantees tedious Monte Carlo
ng for given ik,cz,a*,P*i‘ For the above example,
Ppys (with n, = 68 stages) yields PiCS|y=LFC} =
0.751, E[NBKS—TIE=LFC] = 35.94,
E[NBKS_TIE=EMC] # 41.89. Ppys_p 2lways results in
less than PBKS’

the possibility of extreme values of

ElNpgslal

and

probability ‘"overprotection'

eliminates

and reduces (sometimes

Npys
substantially).
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3.3 Other Sequential Procedures

Other
means procedures are due to Paulson (1964), Alam
(1970), Fabian (1974), and Tamhane and Bechhofer
(1977,1979). The reader should also consult the
of Gibbons, Olkin, and Sobel (1977) [in
see Bechhofer (1980)]
Panchapakesan (1979),

comprehensive treatments on ranking and selection

single-factor indifference-zone normal

texts
addition, and Gupta and
both of which give more
techniques (primarily from a single-factor point

of view).

4. THE 2-FACTOR NORMAL MEANS PROBLEM

This section parallels the development of
Section 2. We are now concerned with 2-factor
experiments without interaction. References are

B~G (1987a,1987c).

Suppose that we have a+b independent normal
populations nij (1<iga, 1<3j<b) with
unknown means “ij and a common known variance 02;

we henceforth assume without loss of generality
that 02 = 1. Further, we assume the usual additive

fixed-effects ANOVA model,
llij=ll+°‘i+5j >

where Eioci = Ejﬁj = 0; that is,
interaction between the factor-levels. oy (ﬁj) is
the "effect” of the ith (jth) level of factor A (B)

on .

there is no

Analogous to the single-factor case, denote
the ordered but unknown txi's and 5j's by “[1]
€ .. £ tx[a] and B[l] £ oo £ B[b]’ ¥e do not
know the values of the tx[i]'s and ﬁ[j]'s nor how
OQur goal is to

determine which of the a-b Trij's has the largest

they are paired with the Trij’s.

mean (i.e., the nij associated with oz[a] and
B[b]); we call that nij the 'best” population. If
the best
procedure, a

population is indeed
CS has

consideration to procedures that guarantee the

chosen by a

beén made. Ye limit

following =2-factor indifference-zone probability
requirement on the P$CS3.

o - o > &*

P§CS? > P* whenever { B[a] _ ﬁ[a 1] N 53(

[v] [b-1] B

8 and P* are three constants which must be

specified prior to the start of

BE,

experimentation
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&% > 0,
8

exposition, we

subject to the restrictions that 6; >0,
and 1/ab < P* < 1.

only consider the case 6; = & = &%, say.

B

For ease of

5. 2-FACTOR INDIFFERENCE-ZONE PROCEDURES

the

We give a number of indifference-zone

Here, we parallel development  of

Section 3.
procedures for the R~factor normal means problem

discussed in Section 4.
5.1 A Single-Stage Procedure

The following single-stage procedure is due

to Bechhofer (1954).
Procedure PSSZ:

1. For given a and b and known 02 = 1, specify
$8*,P*¢, with &* > 0 and 1/ab < P* < 1.

2. Determine Nggos 2 constant satisfying
o * Sy qa-1
J'_w [o(x + 5* (bngg,) )1 Las(x)
. _[°° [8Cx + 8% (ang ) 1P tas(x) » P
—o

[A table of
B-G (1987¢).]

nssz—values is given in

independent from

3. Take Ny observations

each of the a+b populations.

4. Let xijs denote the sth observation from

ﬂij’ i=1,...,a, i=1,...,b, and
s = 1""’nSSE' Calculate the quantities
b olsse .
A€ Ljoy Ly Xyje 1= Leenin

and

n
552 s
e Bl

s=1 xijs’
5. Select as best that nij corresponding to
the largest Ai and the largest Bj’

Example R2: Suppose that a =3, b =86, 02 =1,
P* = 0.9025 = (.95)%, and &* = 0.2. From a table
in B-G (1987c), we find that Nggp = 64. So we

must take 64 independent observations from each of

the 18 nij s.
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5.2 An Open Sequential Procedure

The next procedure is the R-factor
generalization of PBKS’ and is itself a special
case of a more general treatment of

Kooﬁman—Darmois populations
[ef. B-G (1987a)].

without interaction

Procedure PBKSZ:

1. For given a and b and known <:r2 = 1, specify
§8*,P*¢, with 8* > 0 and 1/ab < P* < 1.

2. Bet the stage counter n ¢ 0.

3. Set nen + 1. Take one observation x..

ijn
j=1,...,b.

observations a

from each "ij’
[Thus, we
matrix-at-a-time.]

i=1,...,2a,

actually take

4. Calculate the quantities
b n .
Ain « Zj=1 ZS=1 xijs’ i=1,...,a,
a n .
Bjn c Zi=1 Z:s=1 ¥jj8 1 7 1,...,b,

A « max A

max 1<iga™in® and

B ¢ max

max 1sjsijn'

5. Calculate
a e _ B
U« Zi=1 exp{ -6 (A Ain)} 1,
b
Vo Zj=1 exp{ —6*(Bmax- Bjn)} -1,
and Z_« U +V 4+ U -V .
n n n nn

6. If Zn < (1-P*)/P*,
select as best that nij corresponding to

Amax and Bmax'

stop sampling, and

Otherwise, go to Step 3.

Let NBKSZ denote the random number of stages
required for PBKSz to terminate. The 2-factor LFC

is given by

1] = %[a-1] T %a] T &

P11 = Plu-11 = Proy ~ *%
and the EMC is given by

%a] = Po1 = O



D.Goldsman

Example 2 (continued): Again suppose that a = 3,
b =6, P* = 0.9025, 8% = 0.2.
B-G (1987c) show that PBKSZ yields PECS|g=LFC§ 4
0.922, E[NBKSZ|L1,=LFC] # 44.80, and E[NBKszlg=EMC]
< 117.76. Recall that PSsa

observations from each population;

02 =1, and

required 64
this
example, PBKSZ is more parsimonious than PSSz in
the LFC.

so for

B-G (1987¢) also study a version (PBKS.?,—T) of
PBKSZ which employs truncation and still guarantees
the the
example, Ppyo, o (with "a truncation point of
n, = 80 stages) yielded P§CS|y=LFC} = 0.904,
E[NBKS.?.-—TIE=LFC] # 43.53, and E[NBKSZ—TI B=EMC] =
70.88. By design, PBKS.?.—T

PBKSZ in terms of these and
the Monte
suggests that P,

BKS2-T
PSSZ in the LFC, and that PBKSZ—T never fares too

probability requirement. For above

always outperforms
criteria.
in B-G (1987¢)
substantially outperforms

other

Further, Carlo work

much worse than PSS?, in the EMC.

5.3 Yhy Conduct 2-Factor Experiments?

One might think that conducting a sequential
R-factor procedure, which samples observations a
matrix-at-a-time, is less efficient than carrying
out two
which take a vector-at-a-time. A
major finding of B-G (1987a) shows that this is
Although the

take more observations per stage (a-b) than do the

independent single-factor experiments,

observations
not the case. R~factor procedures

corresponding single-factor procedures (a and b,

respectively), the 2-factor procedures usually
Indeed,
B-G (1987a) find that, when the situation at hand

is appropriate,

terminate sampling in far fewer stages.

an experimenter can usually save
the total

observations by using a 2-factor procedure instead

substantially on number of scalar
of two single-factor experiments - about 40% when
the population means are in the LFC and much more

so when the means are in the EMC!

6. CONCLUSIONS

This tutorial served to give the simulation
practitioner a flavor of some of the ranking and
that
In this paper, we concentrated on the

selection procedures are available in the
literature.
single- and R-factor normal means problem (with

common known variance), but ranking and selection
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procedures exist to solve a wide variety of other
interesting problems. In fact, a number of papers
appeared which formulate

utilize ranking and selection techniques

have recently and/or

in the
simulation environment, e.g., Sullivan and Wilson

(1985).
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