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ABSTRACT:

The Art and Science of modeling and simulation is

rapidly changing. Recently there has been an
increasing interest in the possibilities of
incorporating the technologies developed by the

artificial intelligence research community into the
modeling and simulation process. This  paper
addresses: (a) the nature of artificial intelligence,
(b) it’s present and potential applications in the
design and management of modeling systems, (c) the
potential benefits of this technology over existing
approaches, and (d) the current state-of-the-art as
it applies to simulation.

INTRODUCTION:

Ever since the advent of the modern digital
computer, scientists have speculated about and argued
over the possibility that computers could be made to
behave in a way that would be perceived as
intelligent. Artificial Intelligence (AI) has its
roots in the speculative essays by Turing on the
powers of computers. AI as it is known today, is the
result of a meeting convened 1in 1956 by ten
scientists interested in symbolic computation at
Dartmouth College. The Dartmouth conference
represented the beginning of AI as a separate and
distinct aspect of computer science. Thus it is
important to recognize that the fields of artificial
intelligence (AI) and expert systems (ES) is over 30
years old.

The purpose of this paper 1is %o discuss the
potential of modeling and simulation environments
based upon Artificial Intelligence and Expert Systems
technology. Such  systems will hopefully allow
models to be quickly developed, validated and run
with as much of the necessary expertise as possible
built into the software. Expert simulation systems
[Shannon et al 1985, Adelsberger et al 1986, Arons
1983, Gaines & Shaw 1985] and the application of
Togic programming offer the potential for a new
generation of substantially more powerful methods for
modeling and simulation. Such AI/ES based modeling
systems will follow a different paradigm than that
currently used. The goal is that in the future, the
modeTer will declare the knowledge about the system ,
define the goal and let the computer work to find the
soTution by defining the experiment to be vrun, the
correct model, execution of the experiment and
reporting the resuits.
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NATURE OF ARTIFICIAL INTELLIGENCE:

Before getting into a discussion of AI
applications in modeling and simulation, we should
first define AI. McCarthy (who coined the term at
the 1956 meeting mentioned above) characterized
artificial intelligence as the part of computer
science concerned with designing intelligent computer
systems that for certain limited areas, emulate some
of the characteristics associated with intelligent
human thought. Among these are the ability to Tlearn,
reason, solve problems and understand ordinary human
Tanguage.

It is important to separate the discipline or
science of AI from the application of the results of
this research. The discipline of AI has since its
inception been concerned with trying to understand
how humans beings acquire, organize, store and use
knowledge. In order to test and prove it’s theories,
the artificial intelligence research community has
formulated computer implementations of their models.
These implementations take the form of specific
algorithms, data  structures, and programming
Tanguages which try to emulate the knowledge which a
human uses and the cognitive processes with which the
human manipulates this knowledge. The applications
aspect of artificial intelligence focuses on
attempting to apply these theories and their
resulting computer implementations to solve practical
problems in a real world environment. The
applications of AI vresearch thus fall into two
general classes:

(1) Duplication of natural human capabilities.

(2) Duplication of learned skills and expertise.

The first class of AI  applications, the
duplication of human abilities, includes such areas
as language processing, vision, reasoning, sensory
fusion, scene analysis, touch sensing etc.. Example
applications of language processing include command
interpretation, speech recognition, natural language
database query, and automated documentation
generation. These and the other areas of the first
class of applications have broad applicability,
particularly 1in the areas of process automation and
robotics.

is concerned
skills and
is usually

The second class of applications
with attempting to duplicate T1earned
expertise. This class of applications
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referred to as "expert systems." These applications
are concerned with the automation of tasks that are
normally performed by specially trained, talented and
experienced people in some specialized problem
domain. In other words, expert systems try to
provide one person with interactive access to another
person’s skills and knowledge, encoded in a computer.
The primary goal of Expert Systems (ES) 1is not the
understanding of the basic mechanisms used by the
human expert to arrive at a given result, but rather,
it 1s to consistently duplicate the decisions which
would be reached by the human expert. Even though
the first class has broad applicability,
remainder of this paper will concentrate on ‘"expert
systems", as they offer the most direct opportunities
for improved modeling and simulation support.

DIFFERENCES:

A very real question for us to consider is what
is the reality of AI/ES technology? 1Is it all smoke
and mirrors or is there something new and useful? An
immediate problem for anyone first getting interested
in AI/ES is the terminology. "Knowledge Engineering"
means modeling, "Knowledge Base" means database,

"Backward Chaining" 1is the concept of dynamic
programming using symbols as well as numbers,
"Production Rules” are IF-THEN or  IF-THEN-ELSE
constructs, "automatic programmers” are compilers,

demons are conditional events etc. When the truth is
told, expert systems techniques turn out to be mostly
the same as operations research techniques, and good
software engineering put together in some clever
ways.

Once you get beyond the buzzwords and hype,
there’s Tless difference than you might think between
conventional computer programs and so-called expert
systems.  Because artificial intelligence and expert
systems have become so much in vogue, it has become
fashionable to refer to any computer program which
uses LISP, PROLOG, object oriented programming, rules
or any of the myriad programming languages/shells as
being "knowledge-based" or "AI based.” A1l software
embeds knowliedge and certainly a simulation model
written in any of the existing modeling systems
represents the knowledge or understanding of the
modeler about the system being studied. The
so-called "expert system tools" or "shells" that are
so widely discussed in the technical press are really
nothing more than 1) a programming language for
encoding and applying knowledge, and 2) a special
environment that facilitates program development.

Most of AIl’s successes and contributions have
historically been from it’s spin-offs; fancy user
interfaces, timesharing, spelling checkers, screen
editors, pointing devices and so on. Al1 of these
have come about as a result of AI researchers trying
to create a friendlier environment in which to work.
The ultimate goal of any programming paradigm is to
close the gap between what users conceptualize as a
representation of a system to be simulated and how
they actually express that relationship in some sort
of computer executable  form. Despite the
proliferation of terms, almost all AI/ES simulation
systems under development today utilize object
oriented programming, rules and graphics. We will
therefor first discuss these concepts and then
discuss some representative systems currently under
development.

the .
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OBJECT-ORIENTED PROGRAMMING:

The basic unit of information and organization in
most AI/ES based simulation systems is the "object."
Object oriented programming originated not from Al
research but rather from the simulation language
SIMULA [Dahl and Nygaard 1966]. Today it plays a key
role in most AI/ES systems. Although it has assumed
a number of different names in the literature (e.g.
concepts [Lenat 1976], frames [Minsky 1975], schemas
[Bartlett 1932], actors [Klahr et al 1980], flavors
[Allen et al 1983] and units [Bobrow & Winograd
19771), the underlying notion of the object is to
organize and store pieces of information relating to
a single concept into a single location. The pieces
of information may include facts about the object,
how the object behaves under certain stimuli, and
with whom the object interacts.

Objects are structurally organized as a
collection of slots. Each slot corresponds to a piece
of information related to the object. Slotnames
identify each slot and are public to all objects.
The information associated with each slot, however,
is internal to the object itseif and is hidden from
the other objects. It is obtained by sending a
message requesting the information by slotname.

Object-oriented programming provides
elevate model and experiment representation to a
higher Tevel of abstraction and a more natural form
of representation than is possible with today’s
procedural oriented simulation Tanguages.
Object-oriented programs are written in terms of
"objects" (also referred to as schemata or frames)
rather than in terms of procedures. In this style of
programming, knowledge about the objects (facts as
well as how the object is to do things) is associated
with the objects themselves. The philosophy of

a way to

object-oriented programming is a simple one, and
directly supports the simulation problem solving
approach, especially for systems that deal with the

explicit passage of time and/or changes of objects in
time. This can be summarized as follows:

(1) The user first creates or defines objects
that correspond to real world objects, and
represént modular components of the real
world.

The behavior of the simulation model’s
objects describe the behavior of the real
world objects and how these objects will
behave/perform in response to various inputs.

(2)

(3) Objects act on each other by passing messages
describing both functional and relational
actions. Messages passed between objects are

carriers for all interaction between objects.

Thus,
program as
actions

object-oriented programming treats a

a collection of objects that perform
by sending and receiving messages. In
essence, the object oriented "world" of this
simulation environment consists of packets of
information that provide behavioral rules (object
embedded) and manipulation specifications (message
embedded). The object-oriented approach is
especially valuable in that it provides a close
correspondence between simulated objects and real
world objects.
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Furthermore, once an object is defined, it may
serve as an abstraction for additional objects. 1In
practice this is done by grouping objects that do the
same things in the same way into "classes" (also
sometimes called "flavors” or "types"). An object’s
class specifies the attributes of the object such as
the kind of data it stores and the possible actions
that can be performed on the data (known as "methods"
or "behaviors"). A single composite object may be
created that behaves similar to a group of more
primitive objects. Thus a complex hierarchy of
objects with inherited properties and behavior
rivaling real world situations may be modeled.

The power of object-oriented programs comes from
two features of classes: encapsulation and
inheritance. Encapsulation refers to the fact that a
specific type of data and the means to manipulate it

can be combined in a class. Inheritance means the
classes can be organized in a tree-like fashion
(called an inheritance hierarchy or semantic network)
so that new classes can inherit information (facts
and methods) from their ancestors [Salzberg 1987].
These  features also make software writfen in
object-oriented languages highly reusable.

One of the powerful aspects of object-oriented
representation is its ability to conserve information
when describing objects. As we have seen, objects may

be defined in terms of other objects. This is
similar to the approach taken by Simula [Dahl and
Nygaard 1966] and Smalltalk [Goldberg 1984]. Objects

consist of slots which contain values. New objects
may be defined so as to inherit siot values from
previously defined objects. The new object may be
specialized with the addition of new slots. A single
composite object, then may be created that behaves
Tike a group of more primitive objects.

Not only may object definitions be structured
hierarchically, but object behaviors as well. This
concept reflects a structured approach to model
composition in which objects at one level of
abstraction perform no productive behavior other than
to activate objects at a lower level of, abstraction.
Data encapsulation is preserved since objects at the
Tower Tevels are autonomous and need not know what
initiated their actions. Objects are only aware of
message transfers, thus defining the scope of
communication. This top down approach allows the
user to readily model real systems in any level of
detail. Moreover, it permits pieces of models to be
simulated for verification and validation purposes.

As an example, consider a work station consisting
of a drill and a Tathe. The two sentences "load the
drill with part xyz" and "load the Tathe with part
xyz" both have the same abstract meaning., That is,
it is desired to perform an operation on a machine.
In this case the operation is to load part xyz.
However, Toading a lathe is different from loading a
drill and would require different times to
accomplish, even though the word ‘load’ is the same
in both sentences. In most implementations of object
oriented programming, the definition of an object is
of the general form:

object(<name>, <properties>, <behaviors or methods>)

A property vrepresents a fact about the
corresponding real worid entity. For example, one
type of fact might be about membership in a class. A
class represents the familiar concept of a set. For
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example the class "lathe" represents a specific
subset of the meta class "machine" which is used to
turn parts. A "turret_lathe" 1is a subclass of the
class "lathe". Thus we may describe a complex
hierarchy of objects. Suppose we define an object:

object: machine
is-a: equipment
type: stationary

Machine is defined as an object with two
properties one of which is being stationary. This is
a property that we want to be true of all child
objects of machine. It is further described as being
a subclass of a more abstract object called equipment
which, in turn may have properties. Now if there is
another object:

object: drill
is-a: machine, workshop
capacity: 1
Toad_time: 5
status: idle
behaviors: load, execute, unload

then, the drill also inherits the property of being
stationary and any other properties that the objects
"equipment," "machine" or ‘“workshop” might have.
Notice that an object can have more than one parent.
Behaviors or methods can also be inherited In a
similar manner. In this way, a complex network of
characteristic and behavioral relationships can be
established.

Behaviors or methods are usually in the form of
rules {(or algorithms) to be executed when a certain
message is received. For example a behavior might be:

rule: load
IF  told ’Toad Machine X’
THEN set Machine_X status to busy and
delay for Toad_time and
send message ’‘ready Machine X’.

Objects can exhibit behavior which 1is dependent
on either time or conditions. In the latter case,
most systems distinguish between independent (active)
and  dependent (passive) objects [Zeigler 1976].
Active objects are monitoring the system constantly
and trigger off their behavior as soon as they
recognize that their conditions have been fulfilled.
They are capable of influencing the actions of other
objects in the model. Active objects would be such
things as workers. Passive objects are objects which
also wait for conditions to be satisfied but they are
getting this knowledge in the form of messages sent

to them. They are objects that are acted upon i.e.
they require some sort of external stimuli to
operate. Queues exemplify this type of object in that
they retain their state indefinitely unless acted
upon by another object.

Aq object-oriented simulation system  would
contain three types of objects: domain independent,
giomam dependent, and application specific.  Domain
independent objects provide behavioral definitjons
for.a generic set of model components such as random
variate generators, statistical analysis modules etc.
Thesg objects are common to all simulation models,
Domain dependent objects describe mode] parts that

gorrelgte to real components of the system.  Objects
in this category, atlthough used in a particular
application, are general to the domain  of
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manufacturing. For example, a manufacturing
simulation system would have predefined objects for
workers, machines of different types, material
handling systems, etc. These domain dependent
objects” provide the templates for the creation of
specific instances of the object described.
Application specific objects provide information on
the specific combinations and numbers of components
needed for the specific study underway as well as the
sequence of model components that are activated
during the execution of the model. They define
transactions that are unique to a single application
area or study.

RULES:

Rules (sometimes called production rules) are
used for multiple purposes in a simulation
environment. These are statements of the form, "IF

<condition> THEN <action>". The condition is often a
conjunction of predicates that test properties about
the current state of the system, and the action then
changes the current state. Descriptions of a given
situation or context of a problem are matched to a
collection of conditions in a rule that causes the
rule’s actions to execute, in turn giving rise to new
descriptions that “produce" more actions (hence the
name "production rule"), and so on until the system
either reaches a solution or halts. This is not a
new concept and is simply the IF-THEN construct
present in most standard programming languages. A
simulation system containing a set of production
vules is called a production or rule-based system.
The production rules are the operators in the system;
they are what it uses to manipulate the database.

In a rule-based simulation system, rules can be
used for at least three different purposes:

1. To define the behaviors or methods which
to be used by objects;

are

2. To test the model for completeness and
validity;

3. To drive the model towards goal achievement.

The use of rules to define the methods objects
are to use when told to do so, has already been used
in the preceding discussion of object-oriented
programming. The object’s declaration describes a
set of facts about the objects (the attributes) and a
set of rules for the manipulation of those facts.
The rules describe the steps that permit the
assertion of new facts into the knowledge base.

Rules can also be used for model verification.
Model verification can be viewed as a series of
decisions about completeness of the specified model
and flow of information/entities through the system.
These decisions can be represented as a set of rules.
An example rule might be of the following form:

rule: Processing_Prerequisite

IF entity A is a component of operation P AND
P is executed at station X AND
A is not initially located at X AND
A is not routed to X AND
A is not an output from an operation Q at X

THEN print an error message AND
display all stations that have A as an
output AND prompt for a correction to model
specifications.

19

The third use of rules is in driving the model
towards goal achievement. Assume for example that
the goal is to show that the system can meet certain
performance criteria. The criteria serve as goals in
the sense that they describe how the model must
behave to meet the user’s needs: they are a measure
of model acceptability. Failure to meet the
performance cyriteria may mean that the required
resources were not available. Suppose for example
that one of the performance criteria (goals) was to
have the utilization of all workers at between 50 and
70%. Me could then specify two rules such as:

rule: Worker_Underutilization
IF  Worker Utilization is less_than .5 AND
Number_of_Workers is > Min_Workers

THEN reduce Number_of Workers by one AND
continue

rule: Worker Overutilization
IF  Worker_Utilization is more_than .7 AND
Number-of_Workers is < Max_Workers

THEN increase Number of Workers by one AND
continue

One possible way to implement such rules would be
to assign performance criteria to certain objects

(e.g. workers, machines etc.) along with procedures
(rules) to be executed if the object failed the
criteria.

GRAPHICS IN STMULATION:

The use of graphics has become an integral
of many simulation systems and will
increasingly important. The use of graphics is and
will continue to be important to the new simulation
systems. There are basically two ways in which
graphics can help 1in simulation: (1) to facilitate
model construction and debugging; (2) To display and
help in the understanding of the simulation results.

part
become

There are three classes of graphics applications
in simulation and modeling. One class is the use of
"jconics" for displaying the real system on the
screen. In this type of application, dicons which
Took 1ike the components of the system being modeled,
are placed on the screen to show the physical
(spatial) relationships. Such iconic models are
scaled down to fit upon the screen and are often used
for animating the flow of objects through the system
so that the user can "see" a simulation of the system
in operation. Such applications can be very useful
in debugging (verification) and validation of the
simulation by showing whether the results are logical
and the model is behaving 1ike the real system.

Iconic modeling «can also be wused for
specification ({definition) of the system. The user
selects an icon representing the appropriate system

component from a menu and places it on the screen.
That action calls up a pre-defined template which the
user then uses to define the action and /or logic of
the component by selecting pre-defined functions or
by explicit entry.

The second class of graphics application is
similar to flowcharting and could be called "Jlogic"
graphics. Symbols are interactively placed on the
screen to represent systems Tlogic. The symbols
represent modules of macro-code designed to perform a
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certain computational function. This idea was first
used in GPSS to aid the model developer and was later
adopted by SLAM, SIMAN and others. The picture shown
on the screen does not reflect the systems components
but rather represents the Tlogical relationship
between the system components. There is a one to one
mapping of the symbol into a function call to a
pre-written program module. The user provides the
arguments to be used by the module. This type of
graphics helps the user te visualize the logic flow
of the model. There is very little correspondence to
actual systems components. It ds also possible to
develop such systems where the flow of the objects
thru the program are shown thru the changing of
colors of the blocks. This graphical tracing can be
helpful in debugging.

The third class of graphics used in simulation
are those for presenting and displaying output
information and simulation vresults, the so-called
"presentation” graphics. Display graphics are of two
types, static and dynamic. In the static mode,
results of simulation runs are displayed as bar
charts, Tine graphs, histograms, scatter diagrams,
pie charts etc. Such applications are helpful in
analyzing and communicating results. Several
Tanguages provide methods of presenting such results
and/or of converting the output files to DIF format
so that they can be used and displayed with other
graphics systems such as Lotus 1-2-3 etc..

The dynamic mode of presentation graphics is also
used to display an animated form of output results.
Some software packages allow the user to display
information such as queue lengths (by bars graphs
which dynamically change their vertical length) and
whether a resource 14s busy or idle (by color
changes). In some cases this is done in a post
processor package, while in others it is displayable
during simulation execution. Finally, this third
class of graphics can also be used for displaying
such things as probability distributions, frequency
diagrams etc. to help the user identify input or time
delay distributions. .

The use of animation as a part of simulation
methodology has grown rapidly in the past few years.
Although it is often thought of mainly as an aid to
presentation, it is in fact beneficial in all stages
of model development and use. The benefits are in
three areas [Smith & Platt, 1987]:

(1)
(2)

Benefits for the builder

Improved communications between model
builder and user

(3) Benefits in presentation to users and
management

For
powerful

the model builder, animation provides a
verification tool by speeding the process of
locating and removing errors in the model. Although
correct  functioning of the animation 1is not
sufficient for complete verification of the model, it
is also true that many errors will signal their
presence by inappropriate behavior visible 1in the

animation. For example, if one sees two AGV’s pass
through each other on a single track one knows
something 1is wrong. Many analysts have found model

verification to be one of the most useful aspects of

animation.

Another benefit of animation is in the increased
communication it allows between the model builder and
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the model wuser during development. Written
specifications are hard to understand and it is
particularly hard to spot omissions, faulty Togic or
erronegus assumptions. It is very hard to engage the
typical model wuser in meaningful dialog over
specification documents, and technical descriptions
during model development. With high resolution
graphics, however, the user has a graphic depiction
of his or her plant which makes sense. The logic
and operations described in the specifications become
animated elements whose flows and interactions can be
observed and followed. The typical user becomes
eagerly and actively involved in periodic reviews of
the model under development and omissions or
inappropriate representations can be detected and
corrected early during the development.

The most obvious and recognized benefit
animation 1is in presentations to management.
presentation of the analysis and results is enhanced
immeasurably  when presented partially through
animation. Animation is invaluable in communicating
the nature of design flaws or problem areas uncovered
during the study, as well as demonstrating the
proposed solutions. This is simply a recognition of

the old saying that one picture is worth a thousand
words. Animation makes 7lively and immediate what
would otherwise be a dry and sometimes obscure
presentation of tables and figures.

of
The

The use
and animation

One strong word of warning is required.
of artificial intelligence techniques

have not revoked the Taws of probability and
statistics. Adequate sample sizes, correct
experimental designs and statistically correct

analysis techniques are still vrequired to draw
correct conclusions, Animation is useful for getting
a "feel” for system performance but not a substitute
for correct simulation methodology.

EXAMPLE SYSTEMS:

The state-of-the-art in bringing AI/ES technology
to bear wupon simulation is very early in the
development cycle. There are basically two different
approaches being pursued.

(1) Hybrid Systems - building intelligent front
and back ends on existing simulation
systems.

(2) New Systems - changing the simulation
modeling paradigm.

A number of simulation software developers have
taken the approach of developing intelligent,
automatic  programming interfaces to existing
simulation systems. In these hybrid systems an
interactive interface is developed to allow the user
to describe the system to be simuTated in terms of
graphical icon selection/ placement, menu choices,
and answering computer controlled interrogations.
Such systems of necessity are limited to a specific
domain such as computer networks [Murray 1986],
electronic assembly [Ford & Schroer 1987], flexible
manufacturing systems, [Mellichamp & Wahab 1987],
AGVS’s [Brazier and Shannon 1987}, or manufacturing
[SIMFACTORY 1987, Nyan 1987, Ulgen & Thomasma 1987
and Seliger et al 1987]. In each of these cases, the
system automatically writes the model and experiment
to be run in an existing simulation language such as
SIMAN, Simscript II.5, Simula, Smalltalk-80 or GPSS.
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The user need not be familiar with these languages
and may not even be aware of what Tanguage is being
used to write the model.

Beginning as early as 1974, [Heidorn 1974, 1976]
and continuing to the present [Ford & Schroer 1987],
there have been attempts to develop automatic
programming systems in which the user enters a
natural Tanguage description of the system to be
modeled, the system analyzes the input and requests
any additional information needed, either for
clarification or completeness, and then writes the
necessary computer code in an existing commercial
simulation 1language. However because of the Timited
state-of-the-art in natural language understanding,
these systems must severely constrain the domain and
form of discourse.

Attempts are also being made to develop
intelligent backends to existing simulation systems
that will aide the user in analyzing the results and
suggesting modifications [Nyan 1987, Seliger et al
1981 and Wadhwa et al 1987]. In these systems, a goal
is set, the model executed and if the desired results
are not achieved, the sympthoms are analyzed by the
software and suggested modifications presented to the
user. This is usually accomplished by a program
consisting of a set of rules of the form (IF this
symptom or condition exists THEN suggest this
action). This approach has also been used to develop
Expert Diagnosis programs for debugging simulation
models [Hi11 and Roberts 1987].

The advantage of hybrid systems is that they are
fairly easy to develop, and the finished model
executes at a fairly rapid speed. The disadvantages
are that they stilil follow the current paradigm i.e.
they have reduced the programming task, but the user
must still decide upon the scenarios to be run,
interpret the results, decide upon what modifications
to the model must be made etc..

Several attempts have been made to take a
different approach and follow a different paradigm.
The RAND Corporation developed the Rule-Oriented
Simutation System (ROSS) in the late 1970's [Klahr et
al. 1980]. Subsequent to it’s introduction as a
war-gaming development tool, it gained popularity as
a general purpose simulation language in the American
Department of Defense Community. ROSS is a LISP
implemented, interactive system. Object oriented
programming serves as a basis for ROSS which was
developed specifically for war game simulations and
military air battles. Real world systems are modeled
as objects. Messages are passed between objects
describing actions that are to be taken, If-then
rules describe behaviors each object may assume. ROSS
aids. the user during model execution by displaying a
trace of all messages passed during the simulation.

Through selective filtering of trace data, users can
determine if the model is behaving appropriately
[McArthur & Klahr 1982]. . The user may at any time
stop the simulation, modify the model, and continue
the simulation. One of the primary objectives of ROSS
was to incorporate the ability to reason about the
behavior of models [McArthur & Sowizral 19817,
however, no publications have been found to indicate
that steps have been taken to implement this
capability.

Knowledge Based Simulation (KBS) is a LISP based
discrete simulation system developed at
Carnegie-Mellon University [Fox & Reddy 1982, Reddy &
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Fox 1982].  Outwardly similar 1o ROSS, it
incorporates an object-oriented paradigm to describe
the real world system to be modeled. Rules are used

to describe the behavior of each object. Unlike
ROSS, KBS uses a sophisticated knowledge
representation  scheme. In KBS, models are
constructed using SRL, a frame-based knowledge
representation lTanguage. Al1 entities in KBS are
represented as SRL  schemata which incorporate
inheritance relations. Goals describing the

performance criteria of model components may be
attached to objects and KBS informs the user whether
goals were met. KBS 1is designed to be used
interactively, enabling the user to examine the model
and 1its behavior. This includes model creation and
alteration, run monitoring and control, as well as
graphics display. It also allows the user to define

and simulate a system at different levels of
abstraction, and to check the completeness and
consistency of the model. Research has been

conducted on ways to automatically analyze the model
[Reddy et. al. 1985]. Commercial adaptations of this
system are being marketed by the Carnegie Group under
the name of SIMULATION CRAFT, by IntelliCorp as
SIMKIT, and by the IntelliSys Corp. under the name of
LASER/SIM.

A research group at the Hungarian Institute for
Coordination of Computer Techniques in Budapest,
developed a simulation system called T-Prolog,
written in M-PROLOG [Futo & Szeredi 1982]. This
system is based on an underlying theory of simulation
that is quite different from the previously mentioned
systems. They have combined the time handling
primitives of simulation and the symbolic processing
of artificial intelligence into a PROLOG superset.
The resulting system is intended to allow the user to
specify the model in first order predicate statements
and execute the model with the non-deterministic
problem solving methods of proleg. T-Prolog allows
the user to specify multiple model parameters and

goals the model 1is to achieve. The run time
interpreter executes the model and attempts to find
the™ first parameter set that meets the goals.
Further refinements called TS-Prolog], have resulted
in an object-oriented approach analogous to behaviors
in ROSS and KBS. TS-PROLOG incorporates facilities
similar to those found in conventional simulation
languages. Predicates are defined which start or
stop processes and to provide communication between
them. Every process is formulated as a goal. One of
the attractive features of this system is the use of
backtracking to automatically modify the model until
the simulation exhibits some desired behavior. Both
continuous and discrete modeling can be handled [Futo
19847,

Researchers at the Vienna University of Economics
and Administration [Adelsberger & Neumann 1985] have
developed a simulation system called V-GOSS (Vienna
Goal Oriented Simulation System) which is implemented
in several dialects including, Waterloo PROLOG, York
Prolog and micro-PROLOG. The system is a quasi
concurrent PROLOG interpreter along the lines of the
Hungarijan approach. It 1is a process oriented,
discrete event simulation system. The user defines
the initial structure of the model and declares the
goals which have to be achieved. An interpreter
implements a backtracking co-routine concept.

Another logic programming language for simulation
is being developed at the University of Calgary
[Cleary et. al 1984, 1985]. This language is based
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upon Concurrent Prolog with the addition of time
delay expressions. Limited backtracking is supported
in the initial impTementation. This enables
alternate paths in a simulation to be explored for
acceptable solutions. The system allows processes to
receive information from unspecified processes as
well as to send messages to arbitrary processes via
read only vreference variables. Processes are
dynamically created whenever a new goal is invoked.

Finally, an interdisciplinary team of faculty
from the Industrial Engineering and Computer Science
Departments at Texas A&M University has been working
to design a new simulation environment [Adelsberger
et al 1986, Humphress 1987, Ketchem et al 1985]. The
goal of this project is to "humanize" the simulation
environment and process while integrating the
functionality, ease of use, ease of model creation,
dynamic  run time interaction, and mode1
extensibility. The approach that the simulation
group at Texas A&M University has taken is to try to
combine the best of the environments. It integrates
the object-oriented programming and rule-based

techniques of ROSS, the knowledge base approach of
KBS and the goal proving mechanisms of TS-Prolog.

The system under development is a rule based,
object-oriented simulation environment having the
following system design characteristics:

*  Object creation performed via graphical
input, template/menu input, natural language
dialogue with an Intelligent Assistant, and
finally, if desired by using a specification
Tanguage. In any case, no programming is
required.

*  The simuiation model as well as any
simulation experiments are treated by the
system just as objects.

* A11 interaction with the system is
interactive.

* The run time environment provides for model
(object) modification, run time displays,
automatic experimental designs, and
statistical displays.

*  The model, experiment and any modifications
to the objects are checked by conflict
resolution for consistency and completeness.

*  Goal directed simulation is used to augment
the experimenter and to provide automatic
modification to the simulation model.

*  Graphic displays during model
creation/modifications as well as of the
simulation dynamics.

*  Selection of various abstraction levels of
the simulation model and/or experiment.

SUMMARY :

It is clear that the transition to knowledge
based modeling systems is already underway [Shannon
1986]. The increasing use of jinteractive graphical
model construction and data input; graphical and
animated output analysis; the separation of modeling,
experimental and output analysis frames; the
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embedding of more and more of the
analysis within the
first tentative steps.

statistical
Tanguage; all of these are the

Knowledge based simulation systems based on the
application of artificial intelligence concepts and
logic programming will hopefully generate a new, more
powerful environment for simulation modeling. The
goal is to simplify and put at the fingertips of the
semi-naive user the expertise of the most
knowledgeable and experienced simulation experts.
Although there are similarities between what is being
done today and the goals of an expert simulation
system, there are important differences. The primary
one is the desire to build into the modeling system
most of the decisions that are now made by the
simulation expert.
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